


FUNDAMENTALS
OF ALGORITHMICS





FUNDAMENTALS
OF ALGORITHMICS

Gilles Brassard and Paul Bratley

Dopartement d'informatique et de recherche opgrationelle

UniversitW de Montreal

PRENTICE HALL
Englewood Cliffs, New Jersey 07632



Library of Congress Cataloging-in-Publication Data

BRASSARD, GILLES
Fundamentals of Algorithmics / Gilles Brassard and Paul Bratley

p. cm.
Includes bibliographical references and index.
ISBN 0-13-335068-1
1. Algorithms. I. Bratley, Paul. H. Title

QA9.58.B73 1996 95-45581
511'.8-dc2O CU'

Acquisitions editor: Alan Apt
Production editor: Irwin Zucker
Copy Editor: Brenda Melissaratos
Buyer: Donna Sullivan
Cover design: Bruce Kenselaar
Editorial Assistant: Shirley McGuire
Composition: PreTEX, Inc.

© 1996 by Prentice-Hall, Inc.
A Simon & Schuster Company
Englewood Cliffs, New Jersey 07632

The author and publisher of this book have used their best efforts in preparing this book. These
efforts include the development, research, and testing of the theories and formulas to determine
their effectiveness. The author and publisher shall not be liable in any event for incidental or
consequential damages in connection with, or arising out of, the furnishing, performance, or use
of these formulas.

All rights reserved. No part of this book may be reproduced, in any form or by any means, with-
out permission in writing from the publisher.

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

ISBN 0-13-335068-1

Prentice-Hall International (UK) Limited, London
Prentice-Hall of Australia Pty. Limited, Sydney
Prentice-Hall Canada Inc., Toronto
Prentice-Hall Hispanoamericana, S.A., Mexico
Prentice-Hall of India Private Limited, New Delhi
Prentice-Hall of Japan, Inc., Tokyo
Simon & Schuster Asia Pte. Ltd., Singapore
Editora Prentice-Hall do Brasil, Ltda., Rio de Janeiro



A nos parents





Contents

PREFACE xv

* 1 PRELIMINARIES

1.1 Introduction 1
1.2 What is an algorithm? 1

1.3 Notation for programs 6
1.4 Mathematical notation 7

1.4.1 Propositional calculus 7
1.4.2 Set theory 8
1.4.3 Integers, reals and intervals 8
1.4.4 Functions and relations 9
1.4.5 Quantifiers 10
1.4.6 Sums and products 11
1.4.7 Miscellaneous 12

1.5 Proof technique 1 - Contradiction 13
1.6 Proof technique 2 - Mathematical induction 16

1.6.1 The principle of mathematical induction 18
1.6.2 A horse of a different colour 23
1.6.3 Generalized mathematical induction 24
1.6.4 Constructive induction 27

1.7 Some reminders 31
1.7.1 Limits 31
1.7.2 Simple series 34
1.7.3 Basic combinatorics 38
1.7.4 Elementary probability 41

Vii



Contents

1.8 Problems 48

1.9 References and further reading 55

*' 2 ELEMENTARY ALGORITHMICS 57

2.1 Introduction 57

2.2 Problems and instances 58

2.3 The efficiency of algorithms 59

2.4 Average and worst-case analyses 61

2.5 What is an elementary operation? 64

2.6 Why look for efficiency? 66

2.7 Some examples 67
2.7.1 Calculating determinants 68
2.7.2 Sorting 68
2.7.3 Multiplication of large integers 70
2.7.4 Calculating the greatest common divisor 71
2.7.5 Calculating the Fibonacci sequence 72
2.7.6 Fourier transforms 73

2.8 When is an algorithm specified? 74

2.9 Problems 74

2.10 References and further reading 78

* 3 ASYMPTOTIC NOTATION 79

3.1 Introduction 79

3.2 A notation for "the order of" 79

3.3 Other asymptotic notation 85

3.4 Conditional asymptotic notation 88

3.5 Asymptotic notation with several parameters 91

3.6 Operations on asymptotic notation 91

3.7 Problems 92

3.8 References and further reading 97

* 4 ANALYSIS OF ALGORITHMS 98

4.1 Introduction 98

4.2 Analysing control structures 98
4.2.1 Sequencing 98
4.2.2 "For" loops 99
4.2.3 Recursive calls 101
4.2.4 "While" and "repeat" loops 102

viii



4.3 Using a barometer 104

4.4 Supplementary examples 106

4.5 Average-case analysis 111

4.6 Amortized analysis 112

4.7 Solving recurrences 116
4.7.1 Intelligent guesswork 116
4.7.2 Homogeneous recurrences 118
4.7.3 Inhomogeneous recurrences 123
4.7.4 Change of variable 130
4.7.5 Range transformations 136
4.7.6 Asymptotic recurrences 137

4.8 Problems 139

4.9 References and further reading 146

* 5 SOME DATA STRUCTURES 147

5.1 Arrays, stacks and queues 147

5.2 Records and pointers 150

5.3 Lists 151

5.4 Graphs 152

5.5 Trees 154

5.6 Associative tables 159

5.7 Heaps 162

5.8 Binomial heaps 170

5.9 Disjoint set structures 175

5.10 Problems 181

5.11 References and further reading 186

* 6 GREEDYALGORITHMS 187

6.1 Making change (1) 187

6.2 General characteristics of greedy algorithms 188

6.3 Graphs: Minimum spanning trees 190
6.3.1 Kruskal's algorithm 193
6.3.2 Prim's algorithm 196

6.4 Graphs: Shortest paths 198

6.5 The knapsack problem (1) 202

6.6 Scheduling 205
6.6.1 Minimizing time in the system 205
6.6.2 Scheduling with deadlines 207

Contents ix



6.7 Problems 214
6.8 References and further reading 217

* 7 DIVIDE-AND-CONQUER 219

7.1 Introduction: Multiplying large integers 219

7.2 The general template 223

7.3 Binary search 226
7.4 Sorting 228

7.4.1 Sorting by merging 228
7.4.2 Quicksort 231

7.5 Finding the median 237
7.6 Matrix multiplication 242

7.7 Exponentiation 243
7.8 Putting it all together: Introduction to cryptography 247

7.9 Problems 250
7.10 References and further reading 257

* 8 DYNAMIC PROGRAMMING 259

8.1 Two simple examples 260
8.1.1 Calculating the binomial coefficient 260
8.1.2 The World Series 261

8.2 Making change (2) 263

8.3 The principle of optimality 265

8.4 The knapsack problem (2) 266
8.5 Shortest paths 268

8.6 Chained matrix multiplication 271
8.7 Approaches using recursion 274
8.8 Memory functions 276

8.9 Problems 278
8.10 References and further reading 283

* 9 EXPLORING GRAPHS 285

9.1 Graphs and games: An introduction 285

9.2 Traversing trees 291
9.2.1 Preconditioning 292

9.3 Depth-first search: Undirected graphs 294
9.3.1 Articulation points 296

9.4 Depth-first search: Directed graphs 298
9.4.1 Acyclic graphs: Topological sorting 300

Contentsx



9.5 Breadth-first search 302
9.6 Backtracking 305

9.6.1 The knapsack problem (3) 306
9.6.2 The eight queens problem 308
9.6.3 The general template 311

9.7 Branch-and-bound 312
9.7.1 The assignment problem 312
9.7.2 The knapsack problem (4) 315
9.7.3 General considerations 316

9.8 The minimax principle 317
9.9 Problems 319

9.10 References and further reading 326

* 10 PROBABILISTIC ALGORITHMS 328

10.1 Introduction 328
10.2 Probabilistic does not imply uncertain 329
10.3 Expected versus average time 331

10.4 Pseudorandom generation 331
10.5 Numerical probabilistic algorithms 333

10.5.1 Buffon's needle 333
10.5.2 Numerical integration 336
10.5.3 Probabilistic counting 338

10.6 Monte Carlo algorithms 341
10.6.1 Verifying matrix multiplication 341
10.6.2 Primality testing 343
10.6.3 Can a number be probably prime? 348
10.6.4 Amplification of stochastic advantage 350

10.7 Las Vegas algorithms 353
10.7.1 The eight queens problem revisited 355
10.7.2 Probabilistic selection and sorting 358
10.7.3 Universal hashing 360
10.7.4 Factorizing large integers 362

10.8 Problems 366
10.9 References and further reading 373

* 11 PARALLEL ALGORITHMS 376

11.1 A model for parallel computation 376

11.2 Some basic techniques 379
11.2.1 Computing with a complete binary tree 379
11.2.2 Pointer doubling 380

11.3 Work and efficiency 383

11.4 Two examples from graph theory 386
11.4.1 Shortest paths 386
11.4.2 Connected components 387

Contents xi



11.5 Parallel evaluation of expressions 392

11.6 Parallel sorting networks 397
11.6.1 The zero-one principle 399
11.6.2 Parallel merging networks 400
11.6.3 Improved sorting networks 402

11.7 Parallel sorting 402
11.7.1 Preliminaries 403
11.7.2 The key idea 404
11.7.3 The algorithm 405
11.7.4 A sketch of the details 406

11.8 Some remarks on EREW and CRCW p-rams 406

11.9 Distributed computation 408

11.10 Problems 409

11.11 References and further reading 412

*' 12 COMPUTATIONAL COMPLEXITY 413

12.1 Introduction: A simple example 414

12.2 Information-theoretic arguments 414
12.2.1 The complexity of sorting 418
12.2.2 Complexity to the rescue of algorithmics 421

12.3 Adversary arguments 423
12.3.1 Finding the maximum of an array 424
12.3.2 Testing graph connectivity 425
12.3.3 The median revisited 426

12.4 Linear reductions 427
12.4.1 Formal definitions 430
12.4.2 Reductions among matrix problems 433
12.4.3 Reductions among shortest path problems 438

12.5 Introduction to LMP- completeness 441
12.5.1 The classes P and -AP 441
12.5.2 Polynomial reductions 445
12.5.3 LT?- complete problems 450
12.5.4 Afew NIP-completenessproofs 453
12.5.5 LAI-hard problems 457
12.5.6 Nondeterministic algorithms 458

12.6 A menagerie of complexity classes 460

12.7 Problems 464

12.8 References and further reading 471

* 13 HEURISTIC AND APPROXIMATE ALGORITHMS 474

13.1 Heuristic algorithms 475
13.1.1 Colouring a graph 475
13.1.2 The travelling salesperson 477

xHi Contents



Contents

13.2 Approximate algorithms 478
13.2.1 The metric travelling salesperson 478
13.2.2 The knapsack problem (5) 480
13.2.3 Bin packing 482

13.3 fP-hard approximation problems 484
13.3.1 Hard absolute approximation problems 486
13.3.2 Hard relative approximation problems 487

13.4 The same, only different 489
13.5 Approximation schemes 492

13.5.1 Bin packing revisited 493
13.5.2 The knapsack problem (6) 493

13.6 Problems 496
13.7 References and further reading 500

REFERENCES 501

INDEX

ANi

5177





Preface

As soon as an Analytical Engine exists, it will necessarily guide the
future course of the science. Whenever any result is sought by its

aid, the question will then arise-By what course of calculation can
these results be arrived at by the machine in the shortest time?

- Charles Babbage, 1864

In August 1977, Scientific American challenged its readers to decipher a secret mes-
sage and win one hundred dollars. This sounded safe: it was estimated at the time
that the fastest existing computer using the most efficient known algorithm could
not earn the award until it had run without interruption for millions of times the age
of the Universe. Nevertheless, eight months of computation started sixteen years
later sufficed for the task. What happened? The increase in raw computing power
during those years cannot be discounted, but far more significant was the discov-
ery of better algorithms to solve the problem-see Sections 7.8, 7.10 and 10.7.4
for details. Additional examples of how the development of efficient algorithms
have extended the frontiers of feasible computation are given in Section 2.7 and
throughout this book.

The importance of efficient algorithms was realized well before the era of elec-
tronic computers. The best-known ancient example of a nontrivial algorithm is Eu-
clid's algorithm for the calculation of greatest common divisors; but mankind has
also witnessed the almost universal development of pencil-and-paper algorithms
for performing arithmetic operations such as multiplication. Many mathematicians
-Gauss for example-have investigated efficient algorithms for a variety of tasks
throughout history. Perhaps none was more prophetic than Charles Babbage, whose
19th century analytical engine would have been the first (mechanical) computer
had he only succeeded in building it. His strikingly modern thought, quoted at

xv



the beginning of this preface, is nowadays more valid than ever, because the faster
your computing equipment, the more you stand to gain from efficient algorithms.

Our book is not a programming manual. Still less is it a "cookbook" containing
a long catalogue of programs ready to be used directly on a machine to solve certain
specific problems, but giving at best a vague idea of the principles involved in their
design. On the contrary, it deals with algorithmics: the systematic study of the
design and analysis of algorithms. The aim of our book is to give readers some
basic tools needed to develop their own algorithms, in whatever field of application
they may be required.

We concentrate on the fundamental techniques used to design and analyse
efficient algorithms. These techniques include greedy algorithms, divide-and-
conquer, dynamic programming, graph techniques, probabilistic algorithms and
parallel algorithms. Each technique is first presented in full generality. Thereafter
it is illustrated by concrete examples of algorithms taken from such different ap-
plications as optimization, linear algebra, cryptography, computational number
theory, graph theory, operations research, artificial intelligence, and so on. We pay
special attention to integrating the design of algorithms with the analysis of their
efficiency. Although our approach is rigorous, we do not neglect the needs of
practitioners: besides illustrating the design techniques employed, most of the
algorithms presented also have real-life applications.

To profit fully from this book, you should have some previous programming
experience. However, we use no particular programming language, nor are the
examples for any particular machine. This and the general, fundamental treatment
of the material ensure that the ideas presented here will not lose their relevance.
On the other hand, you should not expect to be able to use directly the algorithms
we give: you will always be obliged to make the necessary effort to transcribe them
into some appropriate programming language. The use of Pascal or a similarly
structured language will help reduce this effort to the minimum necessary.

Our book is intended as a textbook for an undergraduate course in algorithmics.
Some 500 problems are provided to help the teacher find homework assignments.
The first chapter includes most of the required mathematical preliminaries. In par-
ticular, it features a detailed discussion of mathematical induction, a basic skill too
often neglected in undergraduate computer science education. From time to time
a passage requires more advanced mathematical knowledge, but such passages
can be skipped on the first reading with no loss of continuity. Our book can also
be used for independent study: anyone who needs to write better, more efficient
algorithms can benefit from it.

To capture the students' attention from the outset, it is particularly effective to
begin the first lecture with a discussion of several algorithms for a familiar task such
as integer multiplication. James A. Foster, who used preliminary versions of this
book at the University of Idaho, described his experience in the following terms:
"My first lecture began with a discussion of 'how do you multiply two numbers'.
This led to what constitutes the size of the input, and to an analysis of the classical
algorithm. I then showed multiplication a la russe, with which they were soon
taken. We then discussed the divide-and-conquer algorithm (Section 7.1). All of
this was done informally, but at the end of the class (a single lecture, mind you) they

xvi Preface



understood the fundamentals of creating and analysing algorithms. [. . This is the
approach of this text: It works!"

It is unrealistic to hope to cover all the material in this book in an undergradu-
ate course with 45 hours or so of classes. In making a choice of subjects, the teacher
should bear in mind that the first chapter can probably be assigned as independent
reading, with Section 1.7.4 being optional. Most of Chapter 2 can be assigned as
independent reading as well, although a one or two hour summary in class would
be useful to cover notions such as problems versus instances and average versus
worst-case analysis, and to motivate the importance of efficient algorithms. Chap-
ter 3, on asymptotic notation, is short but crucial; its first three sections must be
understood if any benefit is to be gained from this book, and the original material
on conditional asymptotic notation from Section 3.4 is often called upon. We avoid
"one-sided equalities" by using a more logical set notation. The first five sections of
Chapter 4, which give the basic ideas behind the analysis of algorithms, are impor-
tant but rather straightforward. Section 4.6 defines the notion of amortized analysis,
which is more subtle but may be skimmed on first reading. Section 4.7 gives tech-
niques for solving recurrences; though long, it is indispensable for the analysis of
many algorithms. Chapter 5 ends the preliminary material; it describes basic data
structures essential for the design of efficient algorithms. The first five sections
cover notions such as arrays, lists and graphs: this material should be well-known
already, and it can probably be assigned as independent reading. The remainder
of Chapter 5 describes more sophisticated data structures such as associative ta-
bles (hashing), ordinary and binomial heaps, and disjoint set structures. Ordinary
heaps (Section 5.7) and disjoint set structures (Section 5.9) are used several times in
the following chapters, whereas associative tables (Section 5.6) and binomial heaps
(Section 5.8) are only occasionally necessary.

The other chapters are to a great extent independent of one another. Each
one (with the exception of Chapter 12) presents a basic technique for the design
of efficient algorithms. An elementary course should certainly cover Chapters 6
(greedy algorithms), 7 (divide-and-conquer) and 8 (dynamic programming). It is
not necessary to go over each and every example given there of how the techniques
can be applied; the choice depends on the teacher's preferences and inclinations.
Many students find Section 7.8 particularly appealing: it illustrates how the notions
introduced so far can be used to produce secret messages. Chapter 9 describes basic
techniques for searching graphs; this includes searching implicit graphs with the
help of techniques such as backtracking and branch-and-bound. Sections 9.7 and
9.8 should probably be skipped in an introductory course.

The last four chapters are more advanced and it is not possible to cover them
in detail in a first undergraduate algorithmics class. Nevertheless, it would be a
pity not to include some material from each of them. The teacher may find it inter-
esting to discuss these topics briefly in an undergraduate class, perhaps to lay the
ground for a subsequent graduate class. Chapter 10 deals with probabilistic algo-
rithms; Sections 10.6.2 and 10.7.1 provide the most striking examples of how useful
randomness can be for computational purposes. Chapter 11 gives an introduction
to the increasingly important topic of parallel algorithms. Chapter 12 introduces
computational complexity. JW -completeness, the topic of Section 12.5, must be

Preface xvii



covered in any self-respecting undergraduate computer science programme, but
not necessarily in an algorithmics course; the notion of reductions is introduced in-
dependently of NJP- completeness. Finally, Chapter 13 tells you what you can do
and what you should not even dream about when you are faced with an intractable
problem that you must nevertheless solve.

Each chapter ends with suggestions for further reading. The references from
each chapter are combined at the end of the book in an extensive bibliography
including well over 300 items. Although we give the origin of a number of algo-
rithms and ideas, our primary aim is not historical. You should therefore not be
surprised if information of this kind is sometimes missing. Our goal is to suggest
supplementary reading that can help you deepen your understanding of the ideas
we introduce. In addition, pointers to the solution of many of the more challenging
problems are given there.

Readers familiar with our 1988 graduate-level text Algorithmics: Theory and
Practice will notice similarities between both books. In particular, our strong con-
viction that algorithmics should be taught according to design techniques rather
than application domains pervades them both, which explains why the tables of
contents are similar. Furthermore, some material was lifted almost verbatim from
the former text. Nevertheless, no effort was spared to make this new book easier,
both for the undergraduate student and the teacher. We benefited greatly from
feedback from some of the professors who taught from our former text in well over
100 universities in the United States alone. In particular, problems are now collected
at the end of each chapter, and the first chapter on mathematical preliminaries is
entirely new. Chapter 4 provides more background material on the analysis of al-
gorithms, and introduces the notion of amortized analysis. The review of simple
data structures in Chapter 5 is more extensive than before. Each chapter on design
techniques was revised to present easier, more relevant and more interesting algo-
rithms. Chapter 10 on probabilistic algorithms, already one of the strong points
of the previous text, was made crisper. Most importantly, an entire new chapter
was added to cover the increasingly popular topic of parallel algorithms, whose
omission from our earlier text was the most frequent source of criticism. Chap-
ter 12 on computational complexity has new sections on adversary arguments and
on complexity classes more exotic than P and NP. Chapter 13 is new: it covers
heuristic and approximate algorithms. Finally, the bibliography was updated and
significantly expanded, and the problem set was completely revised.

Writing this book would have been impossible without the help of many peo-
ple. Our thanks go first to the students who have followed our courses in algo-
rithmics over more than 15 years at the Universit6 de Montreal, the University of
California in Berkeley, the cole polytechnique federale in Lausanne, and on the oc-
casion of several international short courses. The experience we gained from writ-
ing our previous 1988 text, as well as its 1987 predecessor Algorithmique: conception
et analyse (in French), was invaluable in improving this book; our gratitude extends
therefore to all those people acknowledged in our earlier works. Our main source of
encouragement and of constructive suggestions was friends and colleagues such as
Manuel Blum, who used one of our earlier texts. Equally important were the com-
ments provided on a regular basis by reviewers sponsored by Prentice-Hall: these

xviii Preface



included Michael Atkinson, James A. Foster, Richard Newman-Wolfe, Clifford
Shaffer, Doug Tygar and Steve Hoover. Our colleagues Pierre L'Ucuyer, Christian
L6ger and Pierre McKenzie helped us straighten up some of the chapters. The ma-
terial on adversary arguments in Chapter 12 was inspired by course notes written
by Faith Fich.

We are also grateful to those who made it possible for us to work intensively on
our book during long periods spent away from Montreal. Parts of this book were
written while Paul Bratley was on sabbatical at the Universities of Strasbourg, Fri-
bourg and Nice, and while Gilles Brassard was on sabbatical at the Ecole normale
superieure in Paris and the University of Wollongong in Australia. We particu-
larly wish to thank Jean-Francois Dufourd, Jurg Kohlas, Olivier Lecarme, Jacques
Stern and Jennifer Seberry for their kindness and hospitality. Earlier parts of this
book were written while Gilles Brassard was enjoying the freedom offered by his
E. W. R. Steacie Memorial Fellowship, for which he is grateful to the Natural Sci-
ences and Engineering Research Council of Canada. He also thanks Lise DuPlessis
who made her country house available; its sylvan serenity provided once again the
setting and the inspiration for writing many a chapter.

We thank the team at Prentice-Hall for their support and enthusiasm. It was
Tom McElwee, then Editor for computer science, who first suggested that we should
follow up our earlier text with an easier one targeted specifically toward undergrad-
uate students. Once launched, our project of course took longer than expected-
longer, in fact, than writing the first book. It was overseen by several computer
science editors; we are grateful to Bill Zobrist and Irwin Zucker for their continued
support. Continuity was assured by Phyllis Morgan. The final typesetting was
taken care of by Paul Mailhot, working from our original LATEX files. The head
of the laboratories at the Universit6 de Montreal's Departement d'informatique et
de recherche operationnelle, Robert Gerin-Lajoie, and his team of technicians and
analysts, provided unstinting support throughout the project.

Last but not least, we owe a considerable debt of gratitude to our wives, Isabelle
and Pat, for their encouragement, understanding, and exemplary patience-in
short, for putting up with us-while we were working together on another book.
Gilles Brassard is also grateful for the patience of his wonderful daughters Alice
and L6onore who were not even born on the previous occasion. Paul Bratley is just
grateful that his cats are elegant, sensual, and utterly indifferent to algorithmics.

Gilles Brassard, Fairy Meadow
Paul Bratley, Pointe-Claire

Preface Axi



0



Chapter 1

Preliminaries

1.1 Introduction

In this book we shall be talking about algorithms and about algorithmics. This
introductory chapter begins by defining what we mean by these two words. We
illustrate this informal discussion by showing several ways to do a straightforward
multiplication. Even such an everyday task has hidden depths! We also take the
opportunity to explain why we think that the study of algorithms is both useful
and interesting.

Next we explain the notation we shall use throughout the book for describing
algorithms. The rest of the chapter consists essentially of reminders of things we
expect the reader to have seen already elsewhere. After a brief review of some
standard mathematical notation, we recall two useful proof techniques: proof by
contradiction and proof by mathematical induction. Next we list some results
concerning limits, the sums of series, elementary combinatorics and probability.

A reader familiar with these topics should read Sections 1.2 and 1.3, then sim-
ply glance through the rest of the chapter, skipping material that is already known.
Special attention should be paid to Section 1.6.4. Those whose basic maths and com-
puter science are rusty should at least read through the main results we present
to refresh their memories. Our presentation is succinct and informal, and is not
intended to take the place of courses on elementary analysis, calculus or program-
ming. Most of the results we give are needed later in the book; conversely, we try in
later chapters not to use results that go beyond the basics catalogued in this chapter.

1.2 What is an algorithm?
An algorithm, named for the ninth-century Persian mathematician al-KhowArizmi,
is simply a set of rules for carrying out some calculation, either by hand or, more
usually, on a machine. In this book we are mainly concerned with algorithms for

1



Preliminaries Chapter 1

use on a computer. However, other systematic methods for calculating a result
could be included. The methods we learn at school for adding, multiplying and
dividing numbers are algorithms, for instance. Many an English choirboy, bored by
a dull sermon, has whiled away the time by calculating the date of Easter using the
algorithm explained in the Book of Common Prayer. The most famous algorithm
in history dates from well before the time of the ancient Greeks: this is Euclid's
algorithm for calculating the greatest common divisor of two integers.

The execution of an algorithm must not normally involve any subjective deci-
sions, nor must it call for the use of intuition or creativity. Hence a cooking recipe
can be considered to be an algorithm if it describes precisely how to make a certain
dish, giving exact quantities to use and detailed instructions for how long to cook it.
On the other hand, if it includes such vague notions as "add salt to taste" or "cook
until tender" then we would no longer call it an algorithm.

One apparent exception to this rule is that we shall accept as algorithms some
procedures that make random choices about what to do in a given situation. Chap-
ter 10 in particular deals with these probabilistic algorithms. The important point
here is that "random" does not mean arbitrary; on the contrary, we use values
chosen in such a way that the probability of choosing each value is known and
controlled. An instruction such as "choose a number between 1 and 6", with no
further details given, is not acceptable in an algorithm. However it would be ac-
ceptable to say "choose a number between 1 and 6 in such a way that each value has
the same probability of being chosen". In this case, when executing the algorithm
by hand, we might perhaps decide to obey this instruction by throwing a fair dice;
on a computer, we could implement it using a pseudorandom number generator.

When we use an algorithm to calculate the answer to a particular problem, we
usually assume that the rules will, if applied correctly, indeed give us the correct
answer. A set of rules that calculate that 23 times 51 is 1170 is not generally useful
in practice. However in some circumstances such approximate algorithms can be
useful. If we want to calculate the square root of 2, for instance, no algorithm
can give us an exact answer in decimal notation, since the representation of /2 is
infinitely long and nonrepeating. In this case, we shall be content if an algorithm
can give us an answer that is as precise as we choose: 4 figures accuracy, or 10
figures, or whatever we want.

More importantly, we shall see in Chapter 12 that there are problems for which
no practical algorithms are known. For such problems, using one of the available
algorithms to find the exact answer will in most cases take far too long: several
centuries, for instance. When this happens, we are obliged, if we must have some
kind of solution to the problem, to look for a set of rules that we believe give us a
good approximation to the correct answer, and that we can execute in a reasonable
time. If we can prove that the answer computed by this set of rules is not too
badly in error, so much the better. Sometimes even this is not possible, and we can
rely only on good luck. This kind of procedure, based largely on optimism and
often with minimal theoretical support, is called a heuristic algorithm, or simply
a heuristic. Notice one crucial difference between approximate algorithms and
heuristics: with the former we can specify the error we are willing to accept; with
the latter, we cannot control the error, but we may be able to estimate how large it is.

2



Section 1.2 What is an algorithm?

In the first twelve chapters of this book, unless the context clearly indicates
the contrary, we assume that an algorithm is a set of rules for calculating the cor-
rect answer to some problem. Chapter 13, on the other hand, deals entirely with
approximate algorithms and heuristics.

Algorithmics can now be defined simply as the study of algorithms. When we
set out to solve a problem, there may be a choice of algorithms available. In this
case it is important to decide which one to use. Depending on our priorities and on
the limits of the equipment available to us, we may want to choose the algorithm
that takes the least time, or that uses least storage, or that is easiest to program, and
so on. The answer can depend on many factors, such as the numbers involved, the
way the problem is presented, or the speed and storage capacity of the available
computing equipment. It may be that none of the available algorithms is entirely
suitable so that we have to design a new algorithm of our own. Algorithmics is
the science that lets us evaluate the effect of these various external factors on the
available algorithms so that we can choose the one that best suits our particular
circumstances; it is also the science that tells us how to design a new algorithm for
a particular task.

Take elementary arithmetic as an example. Suppose you have to multiply two
positive integers using only pencil and paper. If you were raised in North America,
the chances are that you will multiply the multiplicand successively by each figure
of the multiplier taken from right to left, that you will write these intermediate
results one beneath the other shifting each line one place left, and that finally you
will add all these rows to obtain your answer. Thus to multiply 981 by 1234 you
would produce an arrangement like that of Figure 1.1(a). If, on the other hand, you
went to school in England, you would be more likely to work from left to right,
producing the arrangement shown in Figure 1.1(b).

981 981
1234 1234
3924 981

2943 1962
1962 2943
981 3924

1210554 1210554

(a) (b)

Figure 1.1. Multiplication (a) American (b) English

These two algorithms for multiplication are very similar: so similar, in fact, that
we shall refer to them as the "classic" multiplication algorithm, without worrying
precisely which one we mean. A third, different algorithm for doing the same thing
is illustrated in Figure 1.2.

Write the multiplicand and the multiplier side by side. Make two columns,
one under each operand, by repeating the following rule until the number in the
left-hand column is 1: divide the number in the left-hand column by 2, ignoring

3



Preliminaries Chapter 1

981 1234 1234
490 2468
245 4936 4936
122 9872
61 19744 19744
30 39488
15 78976 78976
7 157952 157952
3 315904 315904
1 631808 631808

1210554
Figure 1.2. Multiplication i la russe

any fractions, and double the number in the right-hand column by adding it to
itself. Next cross out each row where the number in the left-hand column is even,
and finally add up the numbers that remain in the right-hand column. The figure
illustrates how to multiply 981 by 1234. The answer obtained is

1234 + 4936 + 19744 + 78976 + . ±+ 631808 = 1210554.

This algorithm, sometimes called multiplication a la russe, resembles the one
used in the hardware of a binary computer. It has the advantage that there is no
need to memorize any multiplication tables. All we need to know is how to add up,
and how to divide a number by 2. Although it is not the algorithm usually taught in
school, it certainly offers an alternative paper-and-pencil method for multiplying
two positive integers.

Still another algorithm for multiplying two positive integers is illustrated in
Figures 1.3 and 1.4. Again we illustrate the method by multiplying 981 by 1234. For
this algorithm, however, we require that both the multiplicand and the multiplier
have the same number of figures, and furthermore that this number be a power of 2,
such as 1, 2, 4, 8, 16, etc. This is easily fixed by adding zeros on the left if necessary:
in our example, we add just one 0 on the left of the multiplicand, making it into
0981, so that both operands have four figures.

Multiply Shift Result

i) 09 12 4 108....
ii) 09 34 2 306..
iii) 81 12 2 972..
iv) 81 34 0 2754

1210554
Figure 1.3. Multiplying 0981 by 1234 by divide-and-conquer

Now to multiply 0981 by 1234 we first multiply the left half of the multiplicand
(09) by the left half of the multiplier (12), and write the result (108) shifted left as

4



Section 1.2 What is an algorithm?

many places as there are figures in the multiplier: four, in our example. Next we
multiply the left half of the multiplicand (09) by the right half of the multiplier
(34), and write the result (306) shifted left by half as many places as there are
figures in the multiplier: two, in this case. Thirdly we multiply the right half of the
multiplicand (81) by the left half of the multiplier (12), and write the result (972)
also shifted left by half as many places as there are figures in the multiplier; and
fourthly we multiply the right half of the multiplicand (81) by the right half of the
multiplier (34) and write the result (2754), not shifted at all. Finally we add up the
four intermediate results as shown in Figure 1.3 to obtain the answer 1210554.

Multiply Shift Result

i) 0 1 2 0..
ii) 0 2 1 0

iii) 9 1 1 9
iv) 9 2 0 18

108
Figure 1.4. Multiplying 09 by 12 by divide-and-conquer

If you have followed the working of the algorithm so far, you will have seen that we
have reduced the multiplication of two four-figure numbers to four multiplications
of two-figure numbers (09 x 12, 09 x 34, 81 x 12 and 81 x 34) together with a
certain number of shifts and a final addition. The trick is to observe that each
of these multiplications of two-figure numbers can be carried out in exactly the
same way, except that each multiplication of two-figure numbers requires four
multiplications of one-figure numbers, some shifts, and an addition. For instance,
Figure 1.4 shows how to multiply 09 by 12. We calculate 0 x 1 = 0, shifted left
two places; 0 x 2 = 0, shifted left one place; 9 x 1 = 9, shifted left one place; and
9 x 2 = 18, not shifted. Finally we add these intermediate results to obtain the
answer 108. Using these ideas the whole of our calculation can be carried out in
such a way that the multiplications involve only one-figure operands. (Although
we described Figure 1.3 before Figure 1.4, this was only to simplify the presentation.
Of course we have to do the four multiplications of two-figure numbers first, since
we use the values thus calculated when we do the multiplication of the four-figure
numbers.)

This unusual algorithm is an example of the technique called "divide-and-
conquer", which we shall study in Chapter 7. If you think it unlikely that it could
outperform the classic algorithm, you are perfectly right. However we shall see in
Chapter 7 that it is possible to reduce the multiplication of two large numbers to
three, and not four, multiplications of numbers roughly half the size, together with
a certain number of shifts and additions. (If you are stimulated by challenges, try
to figure out how to do this!) With this improvement, the divide-and-conquer mul-
tiplication algorithm runs faster on a computer than any of the preceding methods,
provided the numbers to be multiplied are sufficiently large. (Still faster methods
are known for very large operands.) It is not absolutely necessary for the length

5



Preliminaries Chapter 1

of the operands to be a power of two, nor that they have the same length. Prob-
lem 1.6 shows one case where the algorithm can be useful in practice, even when
the operands are relatively small, and even when we use four submultiplications
instead of three.

The point of all these examples is that, even in an area as simple as elemen-
tary arithmetic, there may be several algorithms available to us for carrying out
the necessary operations. One may appeal by its familiarity, a second because of
the elementary nature of the intermediate calculations involved, or a third by its
speed on a machine. It is by making a more formal study of the properties of
the algorithms-by using algorithmics, in other words-that we can make a wise
choice of the technique to use in any given situation. As we shall see, a good choice
can save both money and time; in some cases, it can make all the difference between
success and failure when solving a large, hard problem. The aim of our book is to
teach you how to make such choices.

1.3 Notation for programs

It is important to decide how we are going to describe our algorithms. If we try
to explain them in English, we rapidly discover that natural languages are not
at all suited to this kind of thing. To avoid confusion, we shall in future specify
our algorithms by giving a corresponding program. We assume that the reader is
familiar with at least one well-structured programming language such as Pascal.
However, we shall not confine ourselves strictly to any particular programming
language: in this way, the essential points of an algorithm will not be obscured by
relatively unimportant programming details, and it does not really matter which
well-structured language the reader prefers.

A few aspects of our notation for programs deserve special attention. We use
phrases in English in our programs whenever this makes for simplicity and clarity.
Similarly, we use mathematical language, such as that of algebra and set theory,
whenever appropriate-including symbols such as . and Li introduced in Sec-
tion 1.4.7. As a consequence, a single "instruction" in our programs may have to
be translated into several instructions-perhaps a while loop-if the algorithm is to
be implemented in a conventional programming language. Therefore, you should
not expect to be able to run the algorithms we give directly: you will always be
obliged to make the necessary effort to transcribe them into a "real" programming
language. Nevertheless, this approach best serves our primary purpose, to present
as clearly as possible the basic concepts underlying our algorithms.

To simplify our programs further, we usually omit declarations of scalar quan-
tities (integer, real, or Boolean). In cases where it matters-as in recursive functions
and procedures-all variables used are implicitly understood to be local variables,
unless the context makes it clear otherwise. In the same spirit of simplification, pro-
liferation of begin and end statements, that plague programs written in Pascal,
is avoided: the range of statements such as if, while, or for, as well as that of dec-
larations such as procedure, function, or record, is shown by indenting the state-
ments affected. The statement return marks the dynamic end of a procedure or a
function, and in the latter case it also supplies the value of the function.

6



Section 1.4 Mathematical notation

We do not declare the type of parameters in procedures and functions, nor
the type of the result returned by a function, unless such declarations make the
algorithm easier to understand. Scalar parameters are passed by value, which
means they are treated as local variables within the procedure or function, unless
they are declared to be var parameters, in which case they can be used to return a
value to the calling program. In contrast, array parameters are passed by reference,
which means that any modifications made within the procedure or function are
reflected in the array actually passed in the calling statement.

Finally, we assume that the reader is familiar with the concepts of recursion,
record, and pointer. The last two are denoted exactly as in Pascal, except for the
omission of begin and end in records. In particular, pointers are denoted by the
symbol " I ".

To wrap up this section, here is a program for multiplication a la russe. Here
denotes integer division: any fraction in the answer is discarded. Compare this

program to the informal English description of the same algorithm in Section 1.2.
Which do you prefer?

function russe(m, n)
result 0
repeat

if m is odd then result - result + n
m - m . 2
m - in 2
n- n+n

until m = 1
return result

1.4 Mathematical notation
This section reviews some mathematical notation that we shall use throughout the
book. Our review is succinct, as we expect the reader to be familiar with most
of it. Nevertheless, you are encouraged to read it at least summarily because we
introduce most of the symbols that will be used, and some of them (such as [ i. . j

V, 3, 1g. Lx], .,and R° ) are not universally accepted.

1.4.1 Propositional calculus
There are two truth values, "true" and "false". A Boolean (or propositional) variable
may only take one of these two values. If p is a Boolean variable, we write "p is
true", or simply "p", to mean "p = true". This generalizes to arbitrary truth-valued
expressions. Let p and q be two Boolean variables. Their conjunction p A q, or
"up and q", is true if and only if both p and q are true. Their disjunction p v q,
or "p or q", is true if and only if at least one of p or q is true. (In particular the
disjunction of p and q is true when both p and q are true.) The negation of p, denoted
by -p or "not p", is true if and only if p is false. If the truth of p implies that of q,
we write "p => q", pronounced "if p then q". If the truth of p is equivalent to that
of q, which means that they are either both true or bothfalse, we write "p A q".
We can build up Booleanformulas from Boolean variables, constants (true and false),
connectives (A, v, -, =>', A) and parentheses in the obvious way.

7



Preliminaries Chapter 1

1.4.2 Set theory
Although we review here the main symbols used in set theory, we assume that the
reader is already familiar with the notion of a set. Therefore, no formal definition
is provided below. For all practical purposes, it is enough to think of a set as an
unordered collection of distinct elements. A set is finite if it contains a finite number
of elements; otherwise, the set is infinite. If X is a finite set, IX I, the cardinality of X,
denotes the number of elements in X. If X is an infinite set, we may write IX I o
The empty set, denoted 0, is the unique set whose cardinality is 0.

The simplest way to denote a set is to surround the enumeration of its elements
with braces. For instance, {2, 3, 5, 7} denotes the set of single-figure prime numbers.
When no ambiguity can arise, the use of ellipses is allowed, as in " N = {0, 1, 2,3,...
is the set of natural numbers".

If X is a set, x E X means that x belongs to X. We write x f X when x does not
belong to X. The vertical bar " I " is read "such that" and it is used to define a set
by describing the property that its members share. For instance, In I n c N and n
is odd } denotes the set of all odd natural numbers. Alternative simpler notations
for the same set are In c N I n is oddI or even {2n + 1'I n e IJ}.

If X and Y are two sets, X c Y means that each element of X also belongs to Y;
it is read "X is a subset of Y". The notation X c Y means that X c Y and moreover
that there is at least one element in Y that does not belong to X; it is read "X is a
proper subset of Y". Be aware that some authors use " c " to mean what we denote
by "c". The sets X and Y are equal, written X = Y, if and only if they contain
precisely the same elements. This is equivalent to saying X c Y and Y c X.

If X and Y are two sets, we denote their union by X u Y {z I z E X or z E Y},
their intersection by X n Y = {z I z E X and z c Y}, and their difference by X \ Y -
{ z I z c X but z t Y} . Note in particular that z c X u Y when z belongs to both X
and Y.

We denote by (x, y) the ordered pair that consists of the elements x and y
in that order. The Cartesian product of X and Y is the set of ordered pairs whose
first component is an element of X and whose second component is an element
of Y; that is, X x Y = {(x, y) I x E X and y E YI . Ordered n-tuples for n > 2
and the Cartesian product of more than two sets are defined similarly. We denote
X x X by X2 and similarly for Xi, i > 3.

1.4.3 Integers, reals and intervals
We denote the set of integers by Z { ...., -2, -1,0,1,2, ... .}, the set of natural numbers
by N = {0, 1,2,.. .1, and the set of positive integers by J' = {1, 2,3, ... }. We some-
times emphasize that 0 is not included in N+ by referring explicitly to the set of
strictly positive integers. We shall sometimes refer to the natural numbers as the
nonnegative integers.

We denote the set of real numbers by lR, and the set of positive real numbers by

OR+ = {x e R I x > 0f}.

We sometimes emphasize that 0 is not included in lR by referring explicitly to the
set of strictly positive real numbers. The set of nonnegative real numbers is denoted
by °>0 {x= c ER I x > 0}.

8



Section 1.4 Mathematical notation

An interval is a set of real numbers lying between two bounds. Let a and b be
two real numbers such that a < b. The open interval (a, b) denotes

{x E R I a < x < b}.

This interval is empty if a = b. The closed interval [a, b] denotes

{x E Ra I a < x < b}.

There are also semi-open intervals

(a, b] {x= fE R I a < x < b}

and
[a, b)= {x E R I a < x < b}.

Moreover, a co and b = + oo are allowed with their obvious meaning provided
they fall on the open side of an interval.

An integer interval is a set of integers lying between two bounds. Let i and j
be two integers such that i < j + 1. The integer interval [i.. j] denotes

{n e i <n <j1.

This interval is empty if i = + 1. Note that I[ i. .j] I = j - i + 1.

1.4.4 Functions and relations
Let X and Y be two sets. Any subset p of their Cartesian product X x Y is a relation.
When x e X and y E Y, we say that x is in relation with y according to p, denoted
x p y, if and only if (x, y) E p. For instance, one may think of the relation " < " over
the integers as the set of pairs of integers such that the first component of the pair
is less than or equal to the second.

Consider any relation f between X and Y. The relation is called function if,
for each x E X, there exists one and only one y E Y such that (x, y) e f. This
is denoted f: X - Y, which is read "f is a function from X to Y". Given x E X,
the unique y E Y such that (x,y)e f is denoted f(x). The set X is called the
domain of the function, Y is its image, and the set f [X]= If (x) I x E X} is its range.
In general, f [Z] denotes {f (x) I x E Z} provided that Z c X.

A function f: X - Y is infective (or one-to-one) if there do not exist two distinct
xl, x2 E X such that f (xi) = f (X2) . It is surjective (or onto) if for each y E Y there
exists at least one x E X such that f (x) = y. In other words, it is surjective if its
range is the same as its image. It is bijective if it is both invective and subjective. If f
is bijective, we denote by j 1, pronounced "f inverse" the function from Y to X
defined by f(f - 1 (y))= y forall y e Y.

Given any set X, a function P: X -{true,false} is called a predicate on X. There
is a natural equivalence between predicates on X and subsets of X: the subset
corresponding to P is {x E X I P(x)}. When P is a predicate on X, we sometimes
say that P is a property of X. For instance, oddness is a property of the integers,

9



Preliminaries Chapter 1

which is true of the odd integers and false of the even integers. There is also a
natural interpretation of Boolean formulas in terms of predicates. For instance,
one can define a predicate P: {true,false}3 

_{true,false} by

P(p,q,r)= (p A q)v(-q A r),

in which case P (true,false, true)= true.

1.4.5 Quantifiers
The symbols V and ] are pronounced "for all" and "there exists", respectively.
To illustrate this, consider an arbitrary set X and a property P on X. We write
(V x C X) [P(x)] to mean "every x in X has property P". Similarly,

(3x E X) [P(x)]

means "there exists at least one x in X that has property P". Finally, we write
(3!x C X) [P(x)] to mean "there exists exactly one x in X that has property P".
If X is the empty set, (V x E X) [P(x) ] is always vacuously true-try to find a coun-
terexample if you disagree!-whereas (3x e X) [P(x)] is always trivially false.
Consider the following three concrete examples.

(V NO) [i n(n 1)

(3! n E )Ei = n2

(nm,neN)[m>1,n>1andmn =12573]

These examples state that the well-known formula for the sum of the first n integers
is always valid (see Section 1.7.2), that this sum is also equal to n2 for exactly one
positive value of n, and that 12573 is a composite integer, respectively.

An alternation of quantifiers may be used in a single expression. For instance,

(Vn e N) (3im E N) [m > n]

says that for every natural number, there exists another natural number larger
still. When using alternation of quantifiers, the order in which the quantifiers are
presented is important. For instance, the statement (3 m ER N) (V n e RJ) [m > n]
is obviously false: it would mean that there is an integer m that is larger than every
natural number (including m itself!).

Provided the set X is infinite, it is sometimes useful to say that not only is
there an x e X such that property P (x) holds, but that there are infinitely many

of them. The appropriate quantifier in this case is 3. For instance, (B n e N)

[n is prime]. Note that B is stronger than 3 but weaker than V. Another useful

quantifier, stronger than B but still weaker than V, is V, which is used when

10



Section 1.4 Mathematical notation

a property holds in all cases except possibly for a finite number of exceptions.

For instance, (V n E M) [if n is prime, then n is odd] means that prime numbers
are always odd, except possibly for a finite number of exceptions (in this case there
is exactly one exception: 2 is both prime and even).

When we are interested in properties of the natural numbers, there is an equiv-
alent definition for these quantifiers, and it is often better to think of them accord-
ingly. A property P of the natural numbers holds infinitely often if, no matter how
large m is, there is an n > m such that P(n) holds. Similarly, property P holds on
all natural numbers except possibly for a finite number of exceptions if there is an
integer m such that P(n) holds for all integers n > m. In the latter case, we say
that "property P holdsfor all sufficiently large integers". Formally,

(3 n e A) [P(n) ] is equivalent to (V m Ec N) (3 n > m) [P(n)],

whereas

(V n E RN) [P(n)] is equivalent to (3 m E RN) (V n > m) [P(n)].

The duality principle for quantifiers says that "it is not the case that property P
holds for all x E X if and only if there exists at least one x E X for which property
P does not hold". In other words,

- (V x E X) [P(x)] is equivalent to (3 x E X) [-P(x)].

Similarly,

- (3 x E X) [P(x)] is equivalent to (V x c X) [-P(x)

The duality principle also holds between V and 3 .

1.4.6 Sums and products
Consider a function f: N - R and an integer n > 0. (This includes f: N - N as a
special case.) The sum of the values taken by f on the first n positive integers is
denoted by

E f(i)= f(1)+f(2)+* + f(n),

pronounced "the sum of f (i) as i goes from 1 to n".
In the case n = 0, the sum is defined to be 0. This is generalized in the obvious

way to denote a sum as i goes from m to n whenever m < n + 1. It is sometimes
useful to consider conditional sums. If P is a property of the integers,

E f (i)
PW

1 1



Preliminaries Chapter 1

denotes the sum of f (i) for all the integers i such that P(i) holds. This sum may
not be well-defined if it involves an infinite number of integers. We may also use
a mixed notation, such as

n

A f(i)

P(i)

which denotes the sum of the values taken by f on those integers between 1 and n
for which property P holds. If there are no such integers, the sum is 0. For example,

10

i=1+3+5+7+9=25.
i odd

More on sums can be found in Section 1.7.2.
The product of the values taken by f on the first n positive integers is denoted

by
n

f(i) = f(1) xf(2) x... x f(n),

pronounced "the product of f(i) as i goes from 1 to n". In the case n - 0, the
product is defined to be 1. This notation is generalized in the same way as the sum
notation.

1.4.7 Miscellaneous
If b X 1 and x are strictly positive real numbers, then logb x, pronounced "the log-
arithm of x in base ,". is defined as the unique real number y such that by - x.
For instance, loglo 1000 - 3. Note that although b and x must be positive, there
is no such restriction on y. For instance, log1o 0.001 = -3. When the base b is not
specified, we take it to be e = 2.7182818..., the base of the so-called natural loga-
rithm. (Some authors take the base to be 10 when it is not specified and denote the
natural logarithm by "In".) In algorithmics, the base most often used for logarithms
is 2, which deserves a notation of its own: lg x is short for log2 x. Although we
assume that the reader is familiar with logarithms, let us recall the most important
logarithmic identities:

log, (xy) = loga X + log, Y,

log xy = y loga x,

loglo a

and xlogb Y = y1Og9 X

Remember too that log log n is the logarithm of the logarithm of n, but log 2 n is
the square of the logarithm of n.

If x is a real number, Lx] denotes the largest integer that is not larger than x,
called the floor of x. For instance, [31/21 = 3. When x is positive, Lx] is the in-

12



Section 1 .5 Proof technique 1 - Contradiction

teger you obtain by discarding the fractional part of x if there is one. When x is
negative and not itself an integer, however, Lx] is smaller than this by 1. For in-
stance, [ -31/21 = -4. Similarly, we define the ceiling of x, denoted by [xl, as the
smallest integer that is not smaller than x. Note that x -1 < Lx] < x c [xl < x + 1
for all x.

If mr > 0 and n > 0 are integers, m/n denotes as always the result of dividing
m by n, which is not necessarily an integer. For instance, 7/2 = 31/2. We denote the
quotient by the symbol " . ", so that 7 . 2 = 3. Formally, mr n [ rn/n1. We also
use mod to denote the "modulo" operator defined by

mmodn=m-nx(mr .n).

In other words, m mod n is the remainder when m is divided by n.
If m is a positive integer, we denote the product of the first m positive in-

tegers by m!, which is read "m factorial". It is natural to define 0! = 1. Now
n! = n x (n - 1)! for each positive integer n. A useful approximation to the facto-
rial function is given by Stirling'sformula: n! P n/ (n/e)", where e is the base
of the natural logarithm. If n and r are integers such that 0 < r < n, we denote by
(n) the number of ways of choosing r elements from a set of cardinality n, without
regard to the order in which we make our choices; see Section 1.7.3.

1.5 Proof technique 1 - Contradiction

We have seen that there may be a choice of algorithms available when we set out
to solve a problem. To decide which is best suited to our specific application, it is
crucial to establish mathematical properties of the different algorithms, such as their
running time as a function of the size of the instance to be solved. This may involve
demonstrating these properties by way of a mathematical proof. This section and
the next review two proof techniques that are often useful in algorithmics: proof
by contradiction and proof by mathematical induction.

Proof by contradiction, also known as indirect proof, consists of demonstrating
the truth of a statement by proving that its negation yields a contradiction. In other
words, assume you wish to prove statement S. For example, S could be "there
are infinitely many prime numbers". To give an indirect proof of S, you start by
assuming that S is false (or, equivalently, by assuming that "not S " is true). What
can you conclude if, from that assumption, mathematical reasoning establishes the
truth of an obviously false statement? Naturally, it could be that the reasoning
in question was flawed. However, if the reasoning is correct, the only remaining
explanation is that the original assumption was false. Indeed, only from a false
hypothesis is it possible to mathematically "prove" the truth of another falsehood.

We illustrate this principle with two examples, the second being a striking il-
lustration that indirect proof sometimes leaves a bitter aftertaste. Our first example
is the one already mentioned, which was known to the ancient Greeks (Proposition
20 of Book IX of Euclid's Elements).

13



Preliminaries Chapter 1

Theorem 1.5.1 (Euclid) There are infinitely many prime numbers.

Proof Let P denote the set of all prime numbers. Assume for a contradiction that P is a
finite set. The set P is not empty since it contains at least the integer 2. Since P is
finite and nonempty, it makes sense to multiply all its elements. Let x denote that
product, and let y denote x + 1. Consider the smallest integer d that is larger than
1 and that is a divisor of y. Such an integer certainly exists since y is larger than 1
and we do not require that d be different from y. First note that d itself is prime, for
otherwise any proper divisor of d would also divide y and be smaller than d, which
would contradict the definition of d. (Did you notice that the previous sentence is
itself a proof by contradiction, nested in the larger scheme of things?) Therefore,
according to our assumption that P contains each and every prime, d belongs to P.
This shows that d is also a divisor of x since x is the product of a collection of
integers including d. We have reached the conclusion that d exactly divides both
x and y. But recall that y = x + 1. Therefore, we have obtained an integer d larger
than 1 that divides two consecutive integers x and y. This is clearly impossible: if
indeed d divides x, then the division of y by d will necessarily leave 1 as remainder.
The inescapable conclusion is that the original assumption was equally impossible.
But the original assumption was that the set P of all primes is finite, and therefore
its impossibility establishes that the set P is in fact infinite. U

For the constructively-minded reader (which every algorithmicist should be
at heart!), this proof of Euclid's can be turned into an algorithm-albeit not a very
efficient one-capable of finding a new prime given any finite set of primes.

function Newprime(P: set of integers)
{The argument P should be a nonempty finite set of primes}
x product of the elements in P

d-1
repeat d - d + 1 until d divides y
return d

Euclid's proof establishes that the value returned by Newprime(P) is a prime
number that does not belong to P. But who needs Euclid when writing an algorithm
for this task? What about the following, much simpler algorithm?

function DumpEuclid(P: set of integers)
{The argument P should be a nonempty finite set of primes}
x - the largest element in P
repeat x - x + 1 until x is prime
return x

It is obvious that this second algorithm returns as its result a prime that does not
belong to P. isn't it? The answer is yes, provided the algorithm terminates at all. The
trouble is that DumpEuclid would loop forever if P happened to contain the largest

14



Section 1.5 Proof technique 1 - Contradiction

prime. Naturally, this situation cannot occur because there is no such thing as "the
largest prime", but Euclid's proof is needed to establish this. In sum, DumpEuclid
does work, but the proof of its termination is not immediate. In contrast, the fact
that Newprime always terminates is obvious (in the worst case it will terminate
when d reaches the value y), but the fact that it returns a new prime requires
proof.

We have just seen that it is sometimes possible to turn a mathematical proof
into an algorithm. Unfortunately, this is not always the case when the proof is by
contradiction. We illustrate this with an elegant example.

Theorem 1.5.2 There exist two irrational numbers x and y such that xy is
rational.

Proof Assumefor a contradiction that xy is necessarily irrational whenever both x and y
are irrational. It is well known that 2 is irrational (this was known in the days
of Pythagoras, who lived even earlier than Euclid). Let z stand for 2 2. By our
assumption, z is irrational since it is the result of raising an irrational (\2) to an
irrational power (again X2). Now let w stand for z 2. Again, we have that w is
irrational by our assumption since this is so for both z and 2. But

W Z2 = (2 2) (2 = ) 2x 2).=( )2= 2.

We have arrived at the conclusion that 2 is irrational, which is clearly false. We must
therefore conclude that our assumption was false: it must be possible to obtain a
rational number when raising an irrational to an irrational power. U

Now, how would you turn this proof into an algorithm? Clearly, the algorithm's
purpose should be to exhibit two irrationals x and y such that xy is rational.
At first, you may be tempted to say that the algorithm should simply output x = z
(as defined in the proof) and y = 2 since it was proven above that z is irrational
and that z, 2 = 2. But beware! The "proof" that z is irrational depends on the false
assumption that we started with, and therefore this proof is not valid. (It is only
the proof that is not valid. It is in fact true that z is irrational, but this is difficult
to establish.) We must always be careful not to use later an intermediate result
"proved" in the middle of a proof by contradiction.

There is no direct way to extract the required pair (x, y) from the proof of the
theorem. The best you can do is to extract two pairs and claim with confidence
that one of them does the trick-but you will not know which. Such a proof is
called nonconstructive and is not unusual among indirect proofs. Although some
mathematicians do not accept nonconstructive proofs, most see them as perfectly
valid. In any case, we shall as much as possible refrain from using them in the
context of algorithmics.

15



Preliminaries Chapter 1

1.6 Proof technique 2 - Mathematical induction
Of the basic mathematical tools useful in algorithmics, perhaps none is more im-
portant than mathematical induction. Not only does it allow us to prove interesting
statements about the correctness and efficiency of algorithms, but we shall see in
Section 1.6.4 that it can even be used to determine the actual statements that need
to be proved.

Before the technique is discussed, a digression on the nature of scientific
discovery is in order. There are two contrasting fundamental approaches in
science: induction and deduction. According to the Concise Oxford Dictionary,
induction consists of "inferring of general law from particular instances", whereas
a deduction is an "inference from general to particular". We shall see that even
though induction can yield false conclusions, it is not to be sneezed at. Deduction,
on the other hand, is always valid provided it is applied properly.

We cannot in general trust the outcome of inductive reasoning. As long as
there are cases that have not been considered, it remains possible that the general
rule induced is wrong. For instance, everyday experience may have convinced
you inductively that "it is always possible to cram one more person into a trolley".
But a moment's thought shows that this rule is absurd. As a more mathematical
example, consider the polynomial p(n)= n 2 + n + 41. If you compute p(0), p(1),
p(2),... ,p(10), you find 41, 43, 47, 53, 61, 71, 83, 97, 113, 131 and 151. It is
straightforward to verify that all these integers are prime numbers. Therefore, it is
natural to infer by induction that p (n) is prime for all integer values of n. But in fact
p (40)= 1681 = 412 is composite. For a beautiful geometric example of induction
gone wrong, we encourage you to work Problem 1.19.

A more striking example of misleading induction is given by a conjecture of
Euler's, which he formulated in 1769. Is it possible for the sum of three fourth
powers to be a fourth power? Formally, can you find four positive integers A, B,
C and D such that

A4 B4 + C4 =D4?

After failing to come up with even a single example of this behaviour, Euler
conjectured that this equation can never be satisfied. (This conjecture is related
to Fermat's Last Theorem.) More than two centuries elapsed before Elkies in
1987 discovered the first counterexample, which involved seven and eight-figure
numbers. It has since been shown by Frye, using hundreds of hours of computing
time on various Connection Machines, that the only counterexample with D less
than one million is

958004 + 2175194 + 4145604 = 4224814

(not counting the solution obtained by multiplying each of these numbers by 2).
Note that 4224814 is a 23-figure number.

Pell's equation provides an even more extreme case of compelling but incorrect
inductive reasoning. Consider the polynomial p (n)= 991n2 + 1. The question is
whether there is a positive integer n such that p(n) is a perfect square. If you try
various values for n, you will find it increasingly tempting to assume inductively

16



Section 1.6 Proof technique 2 - Mathematical induction

that the answer is negative. But in fact a perfect square can be obtained with this
polynomial: the smallest solution is obtained when

n = 12 055 735 790 331 359 447 442 538 767.

In contrast, deductive reasoning is not subject to errors of this kind. Provided
that the rule invoked is correct and that it applies to the situation under discussion,
the conclusion reached is necessarily correct. Mathematically, if it is true that some
statement P(x) holds for each x in some set X, and if indeed y belongs to X,
then the fact that P(y) holds can be roundly asserted. This is not to say that we
cannot infer something false using deductive reasoning. From a false premise, we
can deductively derive a false conclusion; this is the principle underlying indirect
proofs. For instance, if it is correct that P (x) is true for all x in X, but we are careless
in applying this rule to some y that does not belong to X, we may erroneously
believe that P(y) holds. Similarly, if our belief that P(x) is true for all x in X is
based on careless inductive reasoning, then P (y) may be false even if indeed y
belongs to X. In conclusion, deductive reasoning can yield a wrong result, but only
if the rules that are followed are incorrect or if they are not followed properly.

As a computer science example, consider again multiplication a la russe, de-
scribed in Section 1.2. If you try this algorithm on several pairs of positive inte-
gers, you will find that it gives the correct answer each time. By induction, you
may formulate the conjecture that the algorithm is always correct. In this case,
the conjecture reached inductively happens to be right: we shall prove rigorously
(by deductive reasoning) the correctness of this algorithm with Theorem 1.6.4.
Once correctness has been established, if you use the algorithm to multiply 981 by
1234 and obtain 1210554, you may conclude that

981 x 1234 = 1210554.

Here, the correctness of this specific instance of integer multiplication is a spe-
cial case of the correctness of the algorithm in general. Therefore the conclusion
that 981 x 1234 = 1210554 is based on deductive reasoning. However, the proof
of correctness of the algorithm says nothing about its behaviour on negative and
fractional numbers, and therefore you cannot deduce anything about the result
given by the algorithm if run on -12 and 83.7.

You may well wonder at this point why anyone would use error-prone
induction rather than fool-proof deduction. There are two basic reasons for us-
ing induction in the process of scientific discovery. If you are a physicist whose
goal is to determine the fundamental laws that govern the Universe, you must
use an inductive approach: the rules you infer should reflect actual data obtained
from experiments. Even if you are a theoretical physicist-such as Einstein-you
still need actual experiments carried out by others. For instance, it was by induc-
tive reasoning that Halley predicted the return of his eponymous comet and that
Mendeleev predicted not only the existence of yet undiscovered chemical elements,
but their chemical properties as well.

But surely, only deduction is legitimate in mathematics and rigorous computer
science? After all, mathematical statements such as the fact that there are infinitely

17



Preliminaries Chapter 1

many prime numbers (Theorem 1.5.1) and that multiplication a la russe is a correct
algorithm (Theorem 1.6.4) can be proved in a rigorous deductive manner, without
any need for experimental data. Inductive reasonings are to be banned from math-
ematics. Right? Wrong! In reality, mathematics is often very much an experimental
science. It is not unusual that a mathematician will discover a mathematical truth
by considering several special cases and inferring from them by induction a general
rule that seems plausible. For instance, if I notice that

13 = 1 12

13 + 23 9 = 32

13 + 23+ 3 = 36 62
13 + 23 + 3 + 4 = 100 = 102

13 + 23 + 33 + 43 + 53 = 225 152,

I may begin to suspect that the sum of the cubes of the first n positive integers is
always a perfect square. It turns out in this case that inductive reasoning yields a
correct law. If I am even more perceptive, I may realize that this sum of cubes is
precisely the square of the sum of the first n positive integers; see Problem 1.21.

However, no matter how compelling the evidence becomes when more and
more values of n are tried, a general rule of this sort cannot be asserted on the
basis of inductive evidence only. The difference between mathematics and the in-
herently experimental sciences is that once a general mathematical law has been
discovered by induction, we may hope to prove it rigorously by applying the deduc-
tive approach. Nevertheless, induction has its place in the mathematical process.
Otherwise, how could you hope to prove rigorously a theorem whose statement
has not even been formulated? To sum up, induction is necessary for formulating
conjectures and deduction is equally necessary for proving them or sometimes dis-
proving them. Neither technique can take the place of the other. Deduction alone
is sufficient for "dead" or frozen mathematics, such as Euclid's Elements (perhaps
history's highest monument to deductive mathematics, although much of its mate-
rial was no doubt discovered by inductive reasoning). But induction is required to
keep mathematics alive. As P6lya once said, "mathematics presented with rigor is
a systematic deductive science but mathematics in the making is an experimental
inductive science".

Finally, the punch line of this digression: one of the most useful deductive
techniques available in mathematics has the misfortune to be called mathematical
induction. This terminology is confusing, but we must live with it.

1.6.1 The principle of mathematical induction
Consider the following algorithm.

function sq(n)
if n = 0 then return 0
else return 2n + sq(n -1)-1

If you try it on a few small inputs, you find that

sq(0)= 0, sq(1)= 1, sq(2)= 4, sq(3)= 9, sq(4)= 16.

18



Section 1.6 Proof technique 2 - Mathematical induction

By induction, it seems obvious that sq(n)= n2 for all n > 0, but how could this
be proved rigorously? Is it even true? Let us say that the algorithm succeeds on
integer n whenever sq(n) = n2 , and that it fails otherwise.

Consider any integer n > 1 and assume for the moment that the algorithm
succeeds on n -1. By definition of the algorithm, sq (n) = 2n + sq (n - 1) -1. By our
assumption sq(n -1) = (n -1)2. Therefore

sq(n)= 2n+(n -1)21 =2n+(n 2 -2n+1)- = n2 .

What have we achieved? We have proved that the algorithm must succeed on n
whenever it succeeds on n -1, provided n > 1. In addition, it clearly succeeds
on n = 0.

The principle of mathematical induction, described below, allows us to infer from
the above that the algorithm succeeds on all n > 0. There are two ways of under-
standing why this conclusion follows: constructively and by contradiction. Con-
sider any positive integer m on which you wish to prove that the algorithm suc-
ceeds. For the sake of argument, assume that m > 9 (smaller values can be proved
easily). We know already that the algorithm succeeds on 4. From the general rule
that it must succeed on n whenever it succeeds on n - 1 for n > 1, we infer that
it also succeeds on 5. Applying this rule again shows that the algorithm succeeds
on 6 as well. Since it succeeds on 6, it must also succeed on 7, and so on. This
reasoning continues as many times as necessary to arrive at the conclusion that the
algorithm succeeds on m - 1. Finally, since it succeeds on m -1, it must succeed
on m as well. It is clear that we could carry out this reasoning explicitly-with no
need for "and so on"-for any fixed positive value of m.

If we prefer a single proof that works for all n > 0 and that does not contain
and-so-on's, we must accept the axiom of the least integer, which says that every
nonempty set of positive integers contains a smallest element; see Problem 1.24.
The axiom allows us to use this smallest number as a foundation from which to
prove theorems.

Now, to prove the correctness of the algorithm, assume for a contradiction that
there exists at least one positive integer on which the algorithm fails. Let n stand
for the smallest such integer, which exists by the axiom of the least integer. Firstly,
n must be greater than or equal to 5 since we have already verified that sq ( i)= 2

when i = 1, 2, 3 or 4. Secondly, the algorithm must succeed on n - 1 for otherwise
n would not be the smallest positive integer on which it fails. But this implies
by our general rule that the algorithm also succeeds on n, which contradicts our
assumption about the choice of n. Therefore such an n cannot exist, which means
that the algorithm succeeds on every positive integer. Since we also know that the
algorithm succeeds on 0, we conclude that sq(n)= n 2 for all integers n > 0.

We now spell out a simple version of the principle of mathematical induction,
which is sufficient in many cases. A more powerful version of the principle is
given in Section 1.6.3. Consider any property P of the integers. For instance, P(n)
could be "sq(n)= n2 If, or "the sum of the cubes of the first n integers is equal to
the square of the sum of those integers", or "n3 < 2n " The first two properties

19



Preliminaries Chapter 1

hold for every n > 0, whereas the third holds provided n > 10. Consider also an
integer a, known as the basis. If

1. P(a) holds and

2. P(n) must hold whenever P(n -1) holds, for each integer n > a,

then property P(n) holds for all integers n > a. Using this principle, we could
assert that sq(n)= n2 for all n > 0, immediately after showing that sq(0)= 0 - 02
and that sq(n)= n2 whenever sq(n -1) = (n - 1)2 and n > 1.

Our first example of mathematical induction showed how it can be used to
prove rigorously the correctness of an algorithm. As a second example, let us see
how proofs by mathematical induction can sometimes be turned into algorithms.
This example is also instructive as it makes explicit the proper way to write a proof
by mathematical induction. The discussion that follows stresses the important
points common to all such proofs.

Consider the following tiling problem. You are given a board divided into
equal squares. There are m squares in each row and m squares in each column,
where m is a power of 2. One arbitrary square of the board is distinguished as
special; see Figure 1.5(a).

I

(a) Board with special square (b) One tile

(c) Placing the first tile (d) Solution

Figure 1.5. The tiling problem

You are also given a supply of tiles, each of which looks like a 2 x 2 board with one
square removed, as illustrated in Figure 1.5(b). Your puzzle is to cover the board

20

l -

- - - - - -



Section 1.6 Proof technique 2 - Mathematical induction

with these tiles so that each square is covered exactly once, with the exception of
the special square, which is not covered at all. Such a covering is called a tiling.
Figure 1.5(d) gives a solution to the instance given in Figure 1.5(a).

Theorem 1.6.1 The tiling problem can always be solved.

Proof The proof is by mathematical induction on the integer n such that m = 2n.

• Basis: The case n = 0 is trivially satisfied. Here m = 1, and the 1 x 1 "board"
is a single square, which is necessarily special. Such a board is tiled by doing
nothing! (If you do not like this argument, check the next simplest case: if n = 1,
then m = 2 and any 2 x 2 board from which you remove one square looks
exactly like a tile by definition.)

• Induction step: Consider any n > 1. Let m = 21. Assume the induction hypoth-
esis that the theorem is true for 2" 1 x 2"-1 boards. Consider an m x m board,
containing one arbitrarily placed special square. Divide the board into 4 equal
sub-boards by halving it horizontally and vertically. The original special square
now belongs to exactly one of the sub-boards. Place one tile in the middle of the
original board so as to cover exactly one square of each of the other three sub-
boards; see Figure 1.5(c). Call each of the three squares thus covered "special"
for the corresponding sub-board. We are left with four 2"-1 x 2n 1 sub-boards,
each containing one special square. By our induction hypothesis, each of these
sub-boards can be tiled. The final solution is obtained by combining the filings
of the sub-boards together with the tile placed in the middle of the original
board.

Since the theorem is true when m = 20, and since its truth for m = 2" follows
from its assumed truth for m = 2n-1 for all n > 1, it follows from the principle of
mathematical induction that the theorem is true for all m provided m is a power
of 2. U

The reader should have no difficulty in transforming this proof of a mathe-
matical theorem into an algorithm for performing the actual tiling (perhaps not a
computer algorithm, but at least an algorithm suitable for "hand processing"). This
tiling algorithm follows the general template known as divide-and-conquer, which
we encountered in Section 1.2, and which we study at length in Chapter 7. This
situation is not unusual when a theorem is proved constructively by mathematical
induction.

Let us now look in detail at all the aspects of a well-formed proof by mathe-
matical induction, such as the one above. Consider again an abstract property P
of the integers, an integer a, and assume you wish to prove that P (n) holds for all
n > a. You must begin your proof with the basis step, which consists of proving that
P(a) holds. This basis step is usually easy, sometimes even trivial, but it is crucial
that it be carried out properly; otherwise, the whole "proof" is literally without
foundation.

21



Preliminaries Chapter 1

The basis step is followed by the induction step, which is usually more sub-
stantial. This should start with "consider any n > a" (or equivalently "consider
any n > a + 1"). It should continue with an explicit statement of the induction hy-
pothesis, which essentially states that we assume P(n -1) to hold. At that point,
it remains to prove that we can infer that P(n) holds assuming the induction hy-
pothesis. Finally, an additional sentence such as the one at the end of the proof
of Theorem 1.6.1 can be inserted to conclude the reasoning, but this is generally
unnecessary.

Concerning the induction hypothesis, it is important to understand that we as-
sume that P (n - 1) holds on a provisional basis; we do not really know that it holds
until the theorem has been proved. In other words, the point of the induction step
is to prove that the truth of P(n) would follow logically from that of P(n -1), re-
gardless of whether or not P (n -1) actually holds. If in fact P (n -1) does not hold,
the induction step does not allow us to conclude anything about the truth of P (n).

For instance, consider the statement "n3 < 2n ", which we shall denote P(n).
For positive integer n, it is easy to show that n3 < 2 x (n - 1)3 if and only if n > 5.
Consider any n > 5 and provisionally assume that P(n -1) holds. Now

n3 < 2 x (n- 1)3 because n > 5
< 2 x 2n-1 by the assumption that P(n -1) holds

2n.

Thus we see that P(n) follows logically from P(n -1) whenever n > 5. Never-
theless P(4) does not hold (it would say 43 < 24, which is 64 < 16) and therefore
nothing can be inferred concerning the truth of P(5). By trial and error, we find
however that P(10) does hold (103 = 1000 < 210 = 1024). Therefore, it is legitimate
to infer that P(11) holds as well, and from the truth of P(11) it follows that P(12)
holds also, and so on. By the principle of mathematical induction, since P(10)
holds and since P(n) follows from P(n -1) whenever n > 5, we conclude that
n3 < 2n is true for all n > 10. It is instructive to note that P(n) holds also for n = 0
and n = 1, but that we cannot use these points as the basis of the mathematical
induction because the induction step does not apply for such small values of n.

It may happen that the property to be proved is not concerned with the set of
all integers not smaller than a given basis. Our tiling puzzle, for instance, concerns
only the set of integers that are powers of 2. Sometimes, the property does not
concern integers at all. For instance, it is not unusual in algorithmics to wish to
prove a property of graphs. (It could even be said that our tiling problem is not
really concerned with integers, but rather with boards and tiles, but that would be
hairsplitting.) In such cases, if simple mathematical induction is to be used, the
property to be proved should first be transformed into a property of the set of all
integers not smaller than some basis point. (An alternative approach is given in
Section 1.6.3.) In our tiling example, we proved that P(m) holds for all powers
of 2 by proving that Q(n) holds for all n > 0, where Q(n) is equivalent to P(2").
When this transformation is necessary, it is customary to begin the proof (as we
did) with the words "The proof is by mathematical induction on such-and-such a
parameter". Thus we find proofs on the number of nodes in a graph, on the length
of a character string, on the depth of a tree, and so on.

22



Section 1.6 Proof technique 2 - Mathematical induction

There is one aspect of proofs by mathematical induction that most beginners
find puzzling, if not downright paradoxical: it is sometimes easier to prove a stronger
statement than a weaker one! We illustrate this with an example that we have already
encountered. We saw that it is easy to conjecture by induction (not mathematical
induction) that the sum of the cubes of the first n integers is always a perfect
square. Proving this by mathematical induction is not easy. The difficulty is that
an induction hypothesis like "the sum of the cubes of the first n -1 integers is a
square" is not much help in proving that this is also the case for the first n integers
because it does not say which square: in general, there is no reason to believe that
a square is obtained when n3 is added to another square. In contrast, it is easier to
prove the stronger theorem that our sum of cubes is precisely the square of the sum
of the first n integers: the induction hypothesis is now much more meaningful;
see Problem 1.21.

1.6.2 A horse of a different colour
The most common pitfall in the design of proofs by mathematical induction de-
serves a subsection of its own. Consider the following absurd "theorem".

Theorem 1.6.2 All horses are the same colour.

Proof We shall prove that any set of horses contains only horses of a single colour. In par-
ticular, this will be true of the set of all horses. Let H be an arbitrary set of horses.
Let us prove by mathematical induction on the number n of horses in H4 that they
are all the same colour.

o Basis: The case n = 0 is trivially true: if there are no horses in Hf, then surely
they are all the same colour! (If you do not like this argument, check the next
simplest case: if n= 1, then there is only one horse in -, and again it is
vacuously clear that "they" are "all" the same colour.)

o Induction step: Consider any number n of horses in -f. Call these horses
hi, h2, ... , h, . Assume the induction hypothesis that any set of n -1 horses
contains only horses of a single colour (but of course the horses in one set
could a priori be a different colour from the horses in another). Let H1, be the
set obtained by removing horse hi from Hf, and let -f2 be defined similarly;
see Figure 1.6.

Hfi: h2  h3  h4  h5

H42: hi h3  h4  h5

Figure 1.6. Horses of the same colour (n = 5)

There are n -1 horses in each of these two new sets. Therefore, the induction
hypothesis applies to them. In particular, all the horses in •1f are of a single
colour, say cl, and all the horses in •2 are also of a single (possibly differ-
ent) colour, say c2. But is it really possible for colour ci to be different from

23



Preliminaries Chapter 1

colour c2 ? Surely not, since horse h, belongs to both sets and therefore both
ci and c2 must be the colour of that horse! Since all the horses in Hf belong
to either HI or f2 (or both), we conclude that they are all the same colour
c = c1 = c2. This completes the induction step and the proof by mathematical
induction. X

Before you continue, figure out the fallacy in the above "proof". If you think
the problem is that our induction hypothesis ("any set of n - 1 horses must contain
only horses of a single colour") was absurd, think again!

Solution: The problem is that "ha belongs to both sets" is not true for n = 2
since h2 does not belong to H2! Our reasoning was impeccable for the basis cases
n = 0 and n = 1. Moreover, it is true that our theorem follows for sets of n horses
assuming that it is true for n -1, but only when n > 3. We can go from 2 to 3,
from 3 to 4, and so on, but not from 1 to 2. Since the basis cases contain only 0
and 1, and since we are not allowed to go from 1 to 2, the induction step cannot get
started. This small missing link in the proof is enough to invalidate it completely.
We encountered a similar situation when we proved that n3 < 2n: the induction
step did not apply for n < 5, and thus the fact that the statement is true for n = 0
and n = 1 was irrelevant. The important difference was that n3 < 2n is true for
n = 10, and therefore also for all larger values of n.

1.6.3 Generalized mathematical induction
The principle of mathematical induction described so far is appropriate for proving
many interesting statements. There are cases, however, when a slightly more pow-
erful principle is preferable. This is known as generalized mathematical induction.
The situation is illustrated by the following example.

Suppose you wish to prove that every composite integer can be expressed as a
product of prime numbers. (The fundamental theorem of arithmetic tells us that this
decomposition is unique; this is not what we are trying to prove here.) Let us not
worry about the basis of the mathematical induction yet, but rather let us jump
right into the induction step. When trying to prove that n can be expressed as a
product of prime numbers (assuming that it is composite), the "natural" induction
hypothesis would be that n -1 can be so decomposed. However, we challenge
the reader to find anything in the prime decomposition of n - 1 that can be useful
or even relevant to the prime decomposition of n. What we really need is the
stronger induction hypothesis that every composite integer smaller than n can be
decomposed into a product of prime numbers. The correct proof of our theorem is
given below as Theorem 1.6.3, after we state formally the generalized principle of
mathematical induction.

Another useful generalization concerns the basis. It is sometimes necessary to
prove an extended basis, that is to prove the basis on more than one point. Note
that we proved extended bases for the correctness of the sq algorithm and for the
tiling problem, but it was a luxury: the induction step could really have been
applied to prove the case n = 1 from the basis n = 0. Such is not always the case:
sometimes we must prove independently the validity of several basis points before
the induction step can take off. We shall encounter examples of this behaviour later
in this book; see Problems 1.27 and 1.28 for instance.

24



Section 1.6 Proof technique 2 - Mathematical induction

We are now ready to formulate a more general principle of mathematical in-
duction. Consider any property P of the integers, and two integers a and b such
that a < b. If

1. P(n) holds for all a s n < b and

2. for any integer n> ib, the fact that P(n) holds follows from the assumption
that P(m) holds for all m such that a < m < n,

then property P(n) holds for all integers n > a.
Yet a further generalization of the principle of mathematical induction is con-

venient when we are not interested in proving a statement about every integer not
smaller than the basis. It is often the case that we wish to prove that some property
P holds, but only for those integers for which some other property Q holds as well.
We have seen two examples of this situation already: the tiling problem applies
only when m is a power of 2, and our statement about prime decomposition ap-
plies only to composite numbers (although we could extend it in a natural way
to prime numbers). When this occurs, it suffices to mention Q explicitly in the
statement of the theorem to be proved, to prove the (possibly extended) basis only
for points on which Q applies, and to prove the induction step also only on those
points. Of course, the induction hypothesis will be similarly weakened. Consider
any n beyond the basis such that Q(n) holds. To prove that P(n) holds, you are
only entitled to assume that P(m) holds when a < m < n and when Q(m) holds
as well. In our tiling example, we are allowed to use the induction hypothesis to tile
4 x 4 boards when proving that an 8 x 8 board can be tiled, but we are not allowed
to assume that a 5 x 5 board can be tiled.

Before we illustrate this principle, note that it allows the basis to be empty.
This happens when a = b because in that case there are no integers n such that
a < n < b. It can also happen when a < b if Q(n) never holds when a < n < b.
This does not invalidate the proof because in such a case the validity of P (n) for the
smallest n on which the induction step applies is proved under an empty induction
hypothesis, which is to say that it is proved without any assumptions at all. Our
first example illustrates this. The second shows how to prove the correctness of an
algorithm by generalized mathematical induction.

Proof The proof is by generalized mathematical induction. In this case, there is no need
for a basis.

o Induction step: Consider any composite integer n > 4. (Note that 4 is the small-
est positive composite integer, hence it would make no sense to consider smaller
values of n.) Assume the induction hypothesis that any positive composite in-
teger smaller than n can be expressed as a product of prime numbers. (In the

25



Preliminaries Chapter 1

smallest case n = 4, this induction hypothesis is vacuous.) Consider the small-
est integer d that is larger than 1 and that is a divisor of n. As argued in
the proof of Theorem 1.5.1, d is necessarily prime. Let m = n/d. Note that
1 < m < n because n is composite and d > 1. There are two cases.

- If m is prime, we have decomposed n as the product of two primes:
n = d x m.

- If m is composite, it is positive and smaller than n, and therefore the
induction hypothesis applies: m can be expressed as a product of prime
numbers, say m = P1 P2 * Pk. Therefore n = d x m can be expressed as
n = dp1 P2  Pk, also a product of prime numbers.

In either case, this completes the proof of the induction step and thus of the
theorem. 0

Until now, the induction hypothesis was always concerned with a finite set
of instances (exactly one for simple mathematical induction, usually many but
sometimes none for generalized mathematical induction). In our final example
of proof by generalized mathematical induction, the induction hypothesis covers
an infinity of cases even when proving the induction step on a finite instance!
This time, we shall prove that multiplication a la russe correctly multiplies any
pair of positive integers. The key observation is that the tableau produced when
multiplying 490 by 2468 is almost identical to Figure 1.2, which was used to multiply
981 by 1234. The only differences are that the first line is missing when multiplying
490 by 2468 and that consequently the term 1234 found in that first line is not added
into the final result; see Figure 1.7. What is the relationship between instances
(981 1234) and (4902468)? Of course, it is that 490 = 981 . 2 and 2468 = 2 x 1234.

981 1234 1234
490 2468 490 2468
245 4936 4936 245 4936 4936
122 9872 122 9872
61 19744 19744 61 19744 19744
30 39488 30 39488
15 78976 78976 15 78976 78976
7 157952 157952 7 157952 157952
3 315904 315904 3 315904 315904
1 631808 631808 1 631808 631808

1210554 1209320
Figure 1.7. Proving multiplication a la russe

26



Section 1.6 Proof technique 2 - Mathematical induction

Proof Suppose we wish to multiply m by n. The proof is by mathematical induction on
the value of m.

* Basis: The case m = 1 is easy: we have only one row consisting of 1 in the
left-hand column and n in the right-hand column. That row is not crossed
out since 1 is not even. When we "add up" the only number that "remains"
in the right-hand column, we obviously get n, which is the correct result of
multiplying 1 by n.

* Induction step: Consider any m > 2 and any positive integer n. Assume the
induction hypothesis that multiplication a la russe correctly multiplies s by t
for any positive integer s smaller than m and for any positive integer t. (Note
that we do not require t to be smaller than n.) There are two cases to consider.

- If m is even, the second row in the tableau obtained when multiplying m by
n contains m/2 in the left-hand column and 2n in the right-hand column.
This is identical to the first row obtained when multiplying m/2 by 2n.
Because any noninitial row in these tableaux depends only on the previous
row, the tableau obtained when multiplying m by n is therefore identical to
the tableau obtained when multiplying m/2 by 2n, except for its additional
first row, which contains m in the left-hand column and n in the right-hand
column. Since m is even, this additional row will be crossed out before
the final addition. Therefore, the final result obtained when multiplying
m by n a la russe is the same as when multiplying m/2 by 2n. But m/2 is
positive and smaller than m. Thus, the induction hypothesis applies: the
result obtained when multiplying m/2 by 2n a la russe is (m/2) x (2n) as
it should be. Therefore, the result obtained when multiplying m by n a la
russe is also equal to (m/2) x (2n) = mn as it should be.

- The case when m is odd is similar, except that m/2 must be replaced
throughout by (m -1)/2 and the first row when multiplying m by n is
not crossed out. Therefore the final result of multiplying m by n a la russe is
equal to n plus the result of multiplying (m - 1) /2 by 2n a la russe. By the
induction hypothesis, the latter is correctly computed as ((m - 1) /2) x2n,
and thus the former is computed as n + ((m - 1) /2) x2n, which is mn as
it should be.

This completes the proof of the induction step and thus of the theorem. U

1.6.4 Constructive induction
Mathematical induction is used primarily as a proof technique. Too often, it is
employed to prove assertions that seem to have been produced from nowhere like
a rabbit out of a hat. While the truth of these assertions is thus established, their
origin remains mysterious. However, mathematical induction is a tool sufficiently
powerful to allow us to discover not merely the truth of a theorem, but also its
precise statement. By applying the technique of constructive induction described in
this section, we can simultaneously prove the truth of a partially specified assertion
and discover the missing specifications thanks to which the assertion is correct.
We illustrate this technique with two examples featuring the Fibonacci sequence,

27



Preliminaries Chapter 1

defined below. The second example shows how the technique can be useful in the
analysis of algorithms.

The sequence named for Fibonacci, an Italian mathematician of the twelfth
century, is traditionally introduced in terms of rabbits (although this time not out
of a hat). This is how Fibonacci himself introduced it in his Liberabaci, published
in 1202. Suppose that every month a breeding pair of rabbits produce a pair of
offspring. The offspring will in their turn start breeding two months later, and
so on. Thus if you buy a pair of baby rabbits in month 1, you will still have just
one pair in month 2. In month 3 they will start breeding, so you now have two
pairs; in month 4 they will produce a second pair of offspring, so you now have
three pairs; in month 5 both they and their first pair of offspring will produce baby
rabbits, so you now have five pairs; and so on. If no rabbits ever die, the number
of pairs you have each month will be given by the terms of the Fibonacci sequence,
defined more formally by the following recurrence:

I fo = O;fi = 1 and
f fn =ni+fn 2 forn>2.

The sequence begins 0, 1, 1, 2, 3, 5, 8, 13, 21, 34 ... It has numerous applications
in computer science, in mathematics, and in the theory of games. De Moivre
obtained the following formula, which is easy to prove by mathematical induction
(see Problem 1.27):

An= [¢n - -()n]
5

where P = (1 + V5) /2 is the golden ratio. Since 0 < kh-1 < 1, the term ( P) n can
be neglected when n is large. Hence the value of ft is roughly (4"/\5, which is
exponential in n.

But where does de Moivre's formula come from? In Section 4.7 we shall see a
general technique for solving Fibonacci-like recurrences. In the meantime, assume
you do not know any such techniques, nor do you know de Moivre's formula,
yet you would like to have an idea of the behaviour of the Fibonacci sequence.
If you compute the sequence for a while, you soon discover that it grows quite
rapidly (fico is a 21-figure number). Thus, the conjecture "the Fibonacci sequence
grows exponentially fast" is reasonable. How would you prove it? The difficulty is
that this conjecture is too vague to be proved directly by mathematical induction:
remember that it is often easier to prove a stronger theorem than a weaker one.
Let us therefore guess that there exists a real number x > 1 such that ft > Xn for
each sufficiently large integer n. (This statement could not possibly be true for
every positive integer n since it obviously fails on n < 2.) In symbols,

Conjecture: (3 x > 1) (V n X N) [fet Xn> .

There are two unknowns in the theorem we wish to prove: the value of x and
the precise meaning of "for each sufficiently large". Let us not worry about the latter
for the time being. Let P, (n) stand for "ft > Xn ". Consider any sufficiently large
integer n. The approach by constructive induction consists of asking ourselves for
which values of x Px (n) follows from the partially specified induction hypothesis that

28



Section 1.6 Proof technique 2 - Mathematical induction

P, (m) holds for each integer m that is less than n but that is still sufficiently large.
Using the definition of the Fibonacci sequence and this hypothesis, and provided
n - 1 and n - 2 are also "sufficiently large",

f, = fn-l + fn-2 > X' 1 + Xn-2 = (X-1 + x- 2 ) Xn

To conclude that fn, > xn, we need x-1 + x-2 > 1, or equivalently x2 
- x -1 S 0.

By elementary algebra, since we are only interested in the case x > 1, solving this
quadratic equation implies that 1 < x < ¢) = (1 + f5 ) /2.

We have established that P (n) follows from P, (n -1) and Px (n - 2) provided
1 < x < 4. This corresponds to proving the induction step in a proof by mathe-
matical induction. To apply the principle of mathematical induction and conclude
that the Fibonacci sequence grows exponentially fast, we must also take care of the
basis. In this case, because the truth of Px(n) depends only on that of P,(n -1)
and Px (n - 2), it is sufficient to verify that property P, holds on two consecutive
positive integers to assert that it holds from that point on.

It turns out that there are no integers n such that fn, > 4A. However, finding
two consecutive integers on which property P holds is easy for any x strictly
smaller than 4,. Forinstance, both PX (11) and P, (12) hold when x = 3/2. Therefore,
f, Ž ( 2 ) n for all n > 11. This completes the proof that the Fibonacci sequence grows
at least exponentially. The same process can be used to prove that it grows nofaster
than exponentially: fA, < yn for every positive integer n provided y > 4,. Here
again, the condition on y is not God-given: it is obtained by constructive induction
when trying to find constraints on y that make the induction step go through.
Putting those observations together, we conclude that fA, grows exponentially;
more precisely, it grows like a power of a number close to 4,. The remarkable thing
is that we can reach this conclusion with no need for an explicit formula such as
de Moivre's.

Our second example of constructive induction concerns the analysis of the
obvious algorithm for computing the Fibonacci sequence.

function Fibonacci(n)
if n < 2 then return n
else return Fibonacci(n -1) +Fibonacci(n - 2) (*)

Let g(n) stand for the number of times instruction (*) is performed when
Fibonacci (n) is called (counting the instructions performed in recursive calls). This
function is interesting because g(n) gives a bound on the time required by a call
on Fibonacci (n).

Clearly, 9(0)= g(1)= 0. When n > 2, instruction (*) is executed once at the
top level, and g(n - 1) and g(n - 2) times by the first and second recursive calls,
respectively. Therefore,

g 9(0) =g(1)= 0 and
yg(n)= g(n -l)+g(n -2)+1 forn>2.

This formula is similar to the recurrence that defines the Fibonacci sequence
itself. It is therefore reasonable to conjecture the existence of positive real constants

29



Preliminaries Chapter 1

a and b such that af, • g (n) • bf, for each sufficiently large integer n. Using
constructive induction, it is straightforward to find that afn g (n) holds for each
sufficiently large n provided it holds on two consecutive integers, regardless of the
value of a. For instance, taking a = 1, fn < g(n) holds for all n > 2.

However when we try to prove the other part of our conjecture, namely that
there exists a b such that g (n) < bf, for each sufficiently large n, we run into
trouble. To see what happens, let Pb(n) stand for "g(n) < bf,", and consider
any sufficiently large integer n (to be made precise later). We wish to determine
conditions on the value of b that make Pb (n) follow from the hypothesis that
Pb (m) holds for each sufficiently large m < n. Using the definition of the Fibonacci
sequence and this partially specified induction hypothesis, and provided n - 1 and
n - 2 are also sufficiently large,

g(n)= g(n - l)+g(n -2)+1 < bfn1 + bfn-2 + 1 = bfn + 1,

where the last equality comes from fn = fn 1 + fn-2. Thus, we infer that
g(n)< bJn + 1, but not that g(n)< bfa. Regardless of the value of b, we can-
not make the induction step work!

Does this mean the original conjecture was false, or merely that construc-
tive induction is powerless to prove it? The answer is: neither. The trick is to
use constructive induction to prove there exist positive real constants b and c
such that g (n) < bfn - c for each sufficiently large n. This may seem odd, since
g(n) < bfn -c is a stronger statement than g(n) < bf, , which we were unable to
prove. We may hope for success, however, on the ground that if the statement to
be proved is stronger, then so too is the induction hypothesis it allows us to use;
see the end of Section 1.6.1.

Consider any sufficiently large integer n. We must determine for which values
of b and c the truth of g (n) < bfn - c follows from the partially specified induc-
tion hypothesis that g (m)) bfu - c for each sufficiently large m < n. Using the
definition of the Fibonacci sequence and this hypothesis, and provided n -1 and
n - 2 are also sufficiently large,

g(n) = g(n - 1)+g(n - 2)+1
< bfn 1- c + bfn 2 - c + 1 = bfn - 2c + 1.

To conclude that g(n) < bf, -c, it suffices that -2c + 1 < -c, or equivalently
that c > 1. We have thus established that the truth of our conjecture on any given
integer n follows from its assumed truth on the two previous integers provided
c 1, regardless of the value of b. Before we can claim the desired theorem, we
still need to determine values of b and c that make it work on two consecutive
integers. For instance, b = 2 and c = 1 make it work on n = 1 and n = 2, and
therefore g(n)< 2fn -1 for all n 2 1.

The key idea of strengthening the incompletely specified statement to be proved
when constructive induction fails may again appear to be produced like a rabbit
out of a hat. Nevertheless, this idea comes very naturally with experience. To gain
such experience, work Problems 1.31 and 1.33. Unlike the Fibonacci examples,
which could have been handled easily by the techniques of Section 4.7, the cases
tackled in these problems are best handled by constructive induction.

30



Section 1.7 Some reminders

1.7 Some reminders
In this section we remind the reader of some elementary results concerning limits,
the sums of some simple series, combinatorics, and probability. Later chapters will
use the propositions presented here. Our presentation is succinct, and most proofs
are omitted, since we expect most readers to have covered all this material already.

1.7.1 Limits
Let f(n) be any function of n. We say that f (n) tends to a limit a as n tends to
infinity if f(n) is nearly equal to a when n is large. The following formal definition
makes this notion more precise.

Definition 1.7.1 Thefunction f (n) is said to tend to the limit a as n tends to
infinity iffor any positive real number 6, no matter how small, f(n) differsfrom a
by less than 6 for all sufficiently large values of n.

In other words, however small the positive number 6, we can find a threshold no (6)
corresponding to 3, such that f(n) differs from a by less than 6 for all values of n
greater than or equal to no(6). When 6(n) tends to a limit a as n tends to infinity,
we write

lim f(n)= a
n-X

Many functions, of course, do not tend to a limit as n tends to infinity. The
function n2 , for example, can be made as large as we please by choosing a suffi-
ciently large value of in. Such a function is said to tend to infinity as n tends to
infinity. Here is the formal definition.

Definition 1.7.2 Thiefunction f(n)is said to tend to + ooiffor any number A, no
matter how large, f1(n) is greater than A for all sufficiently large values of n.

Once again this means that we can find a threshold no(A) corresponding to A,
such that f(n) is greater than A for all values of n greater than or equal to no (A).
We write

limf(n)= +o
n-OO

A similar definition takes care of functions such as -n 2 that take increasingly large
negative values as n tends to infinity. Such functions are said to tend to minus
infinity.

Finally, when f(n) does not tend to a limit, nor to + o nor to - o, we say that
f(n) oscillates as n tends to infinity. If it is possible to find a positive constant K such
that -K < f(n) < K for all values of n, then we say that f(n) oscillates finitely;
otherwise f(n) oscillates infinitely. For example, the function (- 1)" oscillates
finitely; the function (- 1) n oscillates infinitely.

The following propositions state some general properties of limits.

31



Preliminaries Chapter 1

Proposition 1.7.3 Iftwofunctions f(n) and g(n) tend to limits a and b respec-
tively as n tends to infinity, then f (n) +g (n) tends to the limit a + b.

Proposition 1.7.4 Iftwofunctions f(n) and g(n) tend to limits a and b respec |
lively as n tends to infinity, then f (n)g(n) tends to the limit ab.

Both these propositions may be extended to the sum or product of any finite number
of functions of n. An important particular case of Proposition 1.7.4 is when g (n)
is constant. The proposition then states that if the limit of f(n) is a, then the
limit of cf (n) is ca, where c is any constant. It is perfectly possible for either
f(n)+g(n) or f(n)g(n) to tend to a limit even though neither f(n) nor g(n)
does so; see Problem 1.34. Finally the following proposition deals with division.

Proposition 1.7.5 If twofunctions f (n) and g (n) tend to limits a and b respec-
tively as n tends to infinity, and b is not zero, then f(n)/g(n) tends to the limit
a/b.

These propositions, although simple, are surprisingly powerful. For instance, sup-
pose we want to know the behaviour as n tends to infinity of the most general
rational function of n, namely

S(n)= aOnP + ajnP 1 + + ap
bonq + blnq1 + .+ bq'

where neither ao nor bo is zero. Writing S (n) in the form

S(n) P ao + a,+ + +P) (bobi o+ bq

and applying the above propositions, it is easy to see that the function in braces
tends to the limit ao / bo as n tends to infinity. Furthermore nP -q tends to the limit O
if p < q; nP-q 1 and therefore nP-q tends to the limit I if p = q; and nP-q tends
to infinity if p > q. Hence

lim S(n)= O when p < q,
n-.0

lim S(n)= ao/bo when p = q,

and S(n) tends to plus or minus infinity when p > q, depending on the sign of
ao/ bo.

Proposition 1.7.6 If limn-.0 (f(n + 1)/f(n))= a, -1 < a < 1, then
lim"- 0 0 f(n)= 0. If f(n) is positive and limnnci(f(n + 1)/f(n))= a > 1,
then f (n) tends to infinity.

32



Section 1.7 Some reminders

This proposition can be used to determine the behaviour as n tends to infinity of
f(n) = nrX, where r is any positive integer. If x = 0 then f (n) = 0 for all values
of n. Otherwise

f(n + 1) (n+ 1r
f (n = J

which tends to x as n tends to infinity. (Use the propositions above.) Hence if
-1 < x < 1 then f (n) tends to 0, and if x > 1 then f(n) tends to infinity. If x = 1
then f (n) = nr, which clearly tends to infinity. Finally it is easy to see that if x < -1
then f (n) oscillates infinitely. Problem 1.35 shows that the behaviour of n-rxf is
the same, except that f (n) tends to 0 when x = 1 or x = -1.

De l'Hopital's rule can sometimes be used when it is impossible to apply Propo-
sition 1.7.5. One simple form of this rule is the following.

For a simple example, suppose f(n)= logn and g(n)= na, where a > 0 is an
arbitrary positive constant. Now both f(n) and g(n) tend to infinity as n tends
to infinity, so we cannot use Proposition 1.7.5. However if we extend f (n) to
f(x) = log x and g (n) to 4 (x) = xa, de l'H6pital's rule allows us to conclude that

lim logn/na = lim(1Ix)/(axa-1)= lim 1/(axa)= 0
n-oo x-oo X-co

whatever the positive value of a.

Finally, the following proposition is sometimes useful even though it is very
easy to prove.

Proposition 1.7.8 If twofunctions f(n) and g(n) tend to limits a and b respec-
tively as n tends to infinity, and if f (n) < g (n) for all sufficiently large n, then
a < b.

Proposition 1.7.7 (De l'Hopital) Suppose that

lim f(n) =lim g(n) 0,

or alternatively that both these limits are infinite. Supposefurther that the domains
off and g can be extended to some real interval [no, + oa) in such a way that (a) the
corresponding new functions f and g are differentiable on this interval, and also
that (b) g'(x), the derivative of 4 (x), is never zero for x e [no, + oo), then

lim f(n)/g(n)= lim f'(x)/'(x).
n-o x-.W

33



Preliminaries Chapter 1

1.7.2 Simple series
Suppose that u(n) is any function of n defined for all values of n. If we add the
values of u(i) for i = 1, 2, . . ., n, we obtain another function of n, namely

s(n)= u(l)+u(2)+ . . + u(n).

It is often convenient to change the notation slightly, and to write this equation in
the form

Sn = U1 +U2+ +Un,

or simply
n

Sn UAi,

iil

which we read as "the sum of ui as i goes from 1 to n". Now if sn tends to a limit
s when n tends to infinity, we have

s = lim Eu,
n-OO

which is usually written either as

S ZU 1
Lil

or as
S U 1 + U2 +

where the dots show that the series is continued indefinitely. In this case we say
that the series is convergent, and we call s the sum of the series.

If on the other hand s, does not tend to a limit, but s, tends to + co or to -co,
then we say that the series diverges, to + oC or - co as the case may be. Finally if s,
does not tend to a limit, nor to + oa or - oo, then we say that the series oscillates
(finitely or infinitely, as the case may be). It is evident that a series with no negative
terms must either converge, or else diverge to + Co: it cannot oscillate.

Two particularly simple kinds of series are arithmetic series and geometric series.
In an arithmetic series the difference between successive terms is constant, so we
may represent the first n terms of the series as

a, a + d, a + 2d,...,a + (n - I)d,

where a, the first term, and d, the difference between successive terms, are suitable
constants. In a geometric series, the ratio of successive terms is constant, so that
here the first n terms of the series may be represented as

a, ar, ar 2
, ... , arnl.

34



Section 1.7 Some reminders

The following propositions give the sums of these series.

Proposition 1.7.9 (Arithmetic series) Let s, be the sum of the first n terms of
the arithmetic series a, a + d, a + 2d,... Then s, = an + n(n - 1)d/2.

The series diverges unless a = d = 0, in which case sn = 0 for all n. The proposition
is easily proved. First write the sum as

Sn = a + (a + d)+ + (a + (n - 2)d) + (a + (n - I)d),

and then write it again as

s, = (a + (n - I)d) + (a + (n - 2)d) + + (a + d) +a.

Adding corresponding terms from these two equations, we get

2sn = (2a + (n - I)d) + (2a + (n - 1)d) + + (2a + (n - 1)d) + (2a + (n - 1)d),

where there are n equal terms on the right. The result follows immediately.

Proposition 1.7.10 (Geometric series) Let Sn be the sum of the first n terms of
the geometric series a, ar, ar 2 ,... Then sn a(1 - rn)/(1- r), except in the
special case in which r = 1, when s, = an.

To see this, write

Sn= a(+r+r 2 ... +rn 1),

so that
rsn = a(r + r2 + r3 + + r).

Subtracting the second equation from the first, we obtain immediately

(1- r)s, = a(1 - rY).

In the general case (that is, when r 7 1) the sum sn of a geometric series tends to a
limit if and only if rn does so. This gives us the following proposition.

Proposition 1.7.11 (Infinite geometric series) The infinite geometric series a +
ar + ar2 + . . . is convergent and has the sum a/ (1- r) if and only if -1 < r < 1.

35



Preliminaries Chapter 1

A similar technique can be used to obtain a useful result concerning yet another
series. If we write

s= r+2r2 +3r 3 +...+(n -l)r 1

we have that
rsn = r 2 + 2r3 + 3r 4 + (n -1)r'.

Subtracting the second equation from the first, we obtain

( r)s, r+r 2 +r 3 + -**+r -1 (nl 1)r'

r(l-+-r+r 2 + ±..+rrn l)-nrn

=r(l - r') M1 r) -nr'

by virtue of Proposition 1.7.10. Hence

r + 2r2 + ... + (n - 1)r'-l r(I - Y') -nrn
(1- r)2  (1- r)

The right-hand side tends to a limit as n tends to infinity if -1 < r < 1 (use
Proposition 1.7.6), giving us the following result.

Proposition 1.7.12 The infinite series r + 2r2 + 3r3 + converges when
-1 < r < 1, and in this case its sum is r/(1- r)2 .

Next we turn to series of the form 1 r, 2 r, 3r,.., where r is a positive integer.
When r = 0 the series is simply 1,1,1,..., and we have the trivial result Y'I> 1 = n.
The following proposition gives us a general way of handling the cases when r > 0.

The proposition is easily proved by mathematical induction on n. Notice that we
do not need to use induction on k, which is merely a parameter in the formula.

Using Proposition 1.7.13, it is easy to obtain the sums of various series of
interest.

Proposition 1.7.13 For any integer k > 0 we have

n

i(i +1)...(i+k)= n(n+1)...(n+k+1)/(k+2).
i=l

36



Section 1.7 Some reminders

This is simply Proposition 1.7.13 with k = 0.

To see this, take
n

I i2
i-l

n
(i (i + 1) -i)

z=1
n n

=Zi(i+1) Z'
n(n + 1)(n+2)/3 - n(n + 1)/2

n(n + 1)(2n + 1)/6

where we have used Proposition 1.7.13 twice to evaluate the two sums.
A similar line of attack may be used to evaluate any other series of this type.

In fact, as we sketch below, it is easy to prove the following general proposition.

Proposition 1.7.16 Let r be any positive integer. Then

n

ir = nr+l/(r + 1)+pr(n),

where Pr (n) is a polynomial of degree at most r.

The outline of the argument is as follows:
n n n

iir i(i +1)...(i+r-1)+1p M

n(n+1)...(n+r)/(r+1)+p'(n)

nr+1-/(r + 1)+p"(n)

where p(i) is a polynomial of degree not more than r -1, and p'(n) and p'(n)
are polynomials of degree not more than r. We leave the reader to fill in the details
of the argument.

Finally we consider briefly series of the form 1 r, 2-r, ... where r is a positive
integer. When r = 1 we obtain the series 1,1/2,1/3,... known as the harmonic
series. It is easy to show that this series diverges. The following proposition gives
us a better idea of its behaviour.

Proposition 1.7.17 (Harmonic series) Let Hn be the sum of thefirst n terms of
the harmonic series 1,1/2,1/3,... Then log(n + 1)< Hn < 1 +logn.

37



To see this, consider Figure 1.8. The area under the "staircase" gives the sum of the
harmonic series; the area under the lower curve, y = / (x + 1), is less than this
sum, while the area under the upper curve, which is y = 1 for x < 1 and y = 1 /x
thereafter, is greater than or equal to the sum. Hence

A d <Hn < 1 + --

from which the proposition follows immediately. A more precise estimate of Hn
for large n can be obtained from

lim i+I +I +.+ 1
n-.ook2 3 n

log n) = y,

where y t 0.57721 ... is Euler's constant, but the proof of this is beyond the scope
of our book.

1 2 3 n-l n

Figure 1.8. Summing the harmonic series

2

3

n

0

It is easy to show that series of the form 1, 1/2 r, 1/3r,... with r > 1 are all con-
vergent, and that the sum of such a series is less than r / (r - 1); see Problem 1.39.
For example

lirm (

1
+ 2 2 + 32 + ***+ 2) 6 1.64493...

However it is not easy to calculate the exact values of such sums.

1.7.3 Basic combinatorics
Suppose we have n objects that are sufficiently unlike that we can tell which one
is which: we say the objects are distinguishable. To make it easy to talk about them,

38 Preliminaries Chapter 1



Section 1.7 Some reminders

suppose they are labelled a, b, and so on, with each object having a distinct label.
From now on we shall simply refer to a, for example, when we mean "the object
labelled a".

Our first definition concerns the number of ways we can arrange these n objects
in order.

For example, if we have four objects a, b, c and d, we can arrange them in order
in 24 different ways:

abcd abdc acbd acdb adbc adcb
bacd badc bcad bcda bdac bdca
cabd cadb cbad cbda cdab cdba
dabc dacb dbac dbca dcab dcba

The first object in the permutation may be chosen in n ways; once the first object
has been chosen, the second may be chosen in n - 1 different ways; once the first
and second have been chosen, the third may be chosen in n - 2 different ways, and
so on. There are two possibilities when we choose last but one object, and there is
only one way of choosing the last object. The total number of permutations of n
objects is therefore

n(n - 1) (n - 2) .. 2 1 = n!

Next we consider the number of ways of choosing a certain number of these
objects, without regard to the order in which we make our choices.

Definition 1.7.19 A combination of r objects from n objects is a selection of r
objects without regard to order.

For example, if we have five objects a, b, c, d and e, we can choose three of them
in 10 different ways if order is not taken into account:

abc abd abe acd ace
ade bcd bce bde cde

A choice such as eba does not appear in this list, since it is the same as abe when the
order of the objects is disregarded.

When we make our choice of r objects from among n, there are n ways of
making the first choice. When the first object has been chosen, there remain n - 1
ways of choosing the second, and so on. When we choose the last of the r objects
we want, there remain n - r + 1 possibilities. Hence there are

n(n-)(n -2) . (n-r+1)

ways of choosing r objects from n when order is taken into account. However when
we do not take order into account, we can permute the r chosen objects any way

39



Preliminaries Chapter 1

we like, and it still counts as the same combination. In the example above, for
instance, the six ordered choices abc, acb, bac, bca, cab and cba all count as the same
combination. Since there are r! ways of permuting r objects, the number of ways
of choosing r objects from n when order is not taken into account is

(n) n(n - 1) n - 2) .. (n - r + 1)(1)

Several alternative notations are used for the number of combinations of n objects
taken r at a time: among others, you may encounter nCr and Cr'. This accounts
for the common, but illogical, habit of writing (n) but reading this symbol aloud
as "n C r".

When r > n, Equation 1.1 gives (nr) = 0, which is sensible: there are no ways of

choosing more than n objects from n. It is convenient to take (On) = 1 (there is just
one way of not choosing any objects), and when r < 0, which has no combinatorial

meaning, we define ( 0) 0. When 0 < r < n, Equation 1.1 can conveniently be
written in the form

(n) n!
(r) r!(n - r)!

A simple argument allows us to obtain an important relation. Pick any one of
the n objects, and say that this object is "special". Now when we choose r objects
from the n available, we can distinguish those choices that include the special
object, and those that do not. For instance, if we are to choose three objects among
a, b, c, d and e, and the special object is b, then the choices that include the special
object are abc, abd, abe, bcd, bce and bcd, while those that do not include the special
object are acd, ace, ade and cde. To make a selection of the first kind, we can first
choose the special object (since the order of our choices is not important), and then
complete our selection by picking r - 1 objects among the n - 1 that are left; this
can be done in ( -1) ways. To make a selection of the second kind, we must choose

our r objects among the n - 1 that are not special; this can be done in (or 1) ways.
Since every selection of r objects from among the n available is of one kind or the
other, we must have

(n) =(n - 1)+ (n - 1) I < r < n.

This formula can also be proved using Equation 1.1.
The formula gives us a simple way of tabulating the values of (n), as illustrated

in Figure 1.9.
Here each row of the table can be calculated easily from the elements of the pre-

ceding row. A table of this type displaying the values of (n) is often called Pascal's
triangle.

The values (n) are also known as the binomial coefficients because of the role
they play in the following theorem. The theorem, which we shall not attempt to
prove, is usually ascribed to Newton, although it seems to have been known to
Omar Khayyam some 600 years earlier.

40



Section 1.7 Some reminders 41

n\r 0 1 2 3 4 5
0 1
1 1 1
2 1 2 1
3 1 3 3 1
4 1 4 6 4 1
5 1 5 10 10 5 1

Figure 1.9. Combinations of n objects taken r at a time

Using this theorem it is easy to obtain interesting results concerning the binomial
coefficients. For example, on setting x = 1 we obtain immediately

In combinatorial terms, the sum on the left is the number of ways of choosing an
arbitrary number of objects (including 0 objects) from n when order is not taken
into account. Since there are 2 possibilities for each of the n objects-we can take
it or leave it-there are 2n ways this can be done. Similarly, on setting x = -1 in
Theorem 1.7.20 we find

n (n) = n (n)

r odd r even

1.7.4 Elementary probability

Probability theory is concerned with the study of random phenomena, that is, of
phenomena whose future is not predictable with certainty. To apply probability
theory, we view the phenomenon of interest as a random experiment whose result is
not certain in advance. Such an experiment might consist, for instance, of throwing
a dice and noting which face shows on top, or of counting how many cars pass a
particular point in a given period of time, or of measuring the response time of a
computer system. The result of such an experiment is called its outcome.

The set of all possible outcomes of a random experiment is called the sam-
ple space of the experiment. In the following paragraphs we denote this sample
space by S. The individual outcomes are called sample points or elementary events.
For example, when we throw an ordinary dice, there are six possible outcomes,
namely the values from 1 to 6. For this experiment, then, the sample space is
S = {1, 2,3,4,5,61. For the random experiment that consists of counting the cars

Theorem 1.7.20 (Newton) Let n be a positive integer. Then

(1 + X)n= 1 + ()X + (2)x + * + n 1 +Xn.



Preliminaries Chapter 1

passing a given point, the sample space is S = {0, 1,2, ... }. For the random ex-
periment that consists of measuring the response time of a computer system, the
sample space is S = {tIt > 01.

A sample space can be finite or infinite, and it can be discrete or continuous.
A sample space is said to be discrete if the number of sample points is finite, or
if they can be labelled 1, 2, 3, and so on using the positive integers; otherwise the
sample space is continuous. In the examples above, S is finite and therefore discrete
for the random experiment of throwing a dice; S is infinite but discrete for the
experiment of counting cars, for the possible outcomes can be made to correspond
to the positive integers; and S is continuous for the experiment of measuring a
response time. In this book we shall be concerned almost entirely with random
experiments whose sample space is finite, and therefore discrete.

An event is now defined as a collection of sample points, that is, as a subset
of the sample space. An event A is said to occur if the random experiment is
performed and the observed outcome is an element of the set A. For example,
when we throw a dice, the event described by the statement "The number shown
on the dice is odd" corresponds to the subset A = {1,3, 5} of the sample space.
When we count cars, the event described by "The observed number of cars is less
than 20" corresponds to the subset A = {0, 1, 2,...,18,191, and so on. Informally,
we use the word "event" to refer either to the statement describing it, or to the
corresponding subset of the sample space. In particular, the entire sample space
S is an event called the universal event, and the empty set 0 is an event called the
impossible event.

Since a sample space S is a set and an event A is a subset of S, we can form new
events by the usual operations of set theory. Thus to any event A there corresponds
an event A consisting of all the sample points of S that are not in A. Clearly A is the
event "A does not occur". Similarly the event A u B corresponds to the statement
"Either A or B occurs", while the event A n B corresponds to "Both A and B occur".
Two events are said to be mutually exclusive if A n B = 0.

Finally a probability measure is a function that assigns a numerical value Pr[A]
to every event A of the sample space. Obviously the probability of an event is
supposed to measure in some sense the relative likelihood that the event will occur
if the underlying random experiment is performed. The philosophical bases of
the notion of probability are controversial (What precisely does it mean to say that
the probability of rain tomorrow is 0.25?), but there is agreement that any sensible
probability measure must satisfy the following three axioms:

1. For any event A, Pr[A] > 0.

2. Pr[S]= 1.

3. If the events A and B are mutually exclusive, that is, if A n B = 0, then
Pr[A u B] = Pr[A] + Pr[B].

It follows by mathematical induction from axiom 3 that

Pr[Al u A2 U..u A]= Pr[A1 ]+Pr[A2 ]+ - -*+Pr[An]

42



Section 1.7 Some reminders

for any finite collection Al, A2 ,..., A, of mutually exclusive events. (A modified
form of axiom 3 is necessary if the sample space is infinite, but that need not concern
us here.) The axioms lead to a number of consequences, among which are

4. Pr[A]= 1 - Pr[A] for any event A; and

5. Pr[A u B] = Pr[A] + Pr[B] - Pr[A n B] for any events A and B.

The basic procedure for solving problems in probability can now be outlined:
first, identify the sample space S; second, assign probabilities to the elements in S;
third, identify the events of interest; and finally, compute the desired probabilities.
For instance, suppose we want to know the probability that a random number
generator will produce a value that is prime. We have first to identify the sample
space. Suppose we know that the generator can produce any integer value between
0 and 9999 inclusive. The sample space (that is, the set of possible outcomes) is
therefore {0, 1,2, . . ., 9999 1. Next, we must assign probabilities to the elements
of S. If the generator produces each possible elementary event with equal prob-
ability, it follows that Pr[0]= Pr[1]= =. Pr[9999]= 1/10000. Third, the inter-
esting event is "the generator produces a prime", which corresponds to the subset
A = {2,3,5,...,9967,9973}. Finally the interesting probability is Pr[A], which can
be computed as ,e eA Pr [ e], where the sum is over the elementary events that com-
pose A. Since the probability of each elementary event is 1/ 10000, and there are
1229 elementary events in A, we find Pr[A]= 0.1229.

So far we have assumed that all we know about the outcome of some random
experiment is that it must correspond to some sample point in the sample space S.
However it is often useful to calculate the probability that an event A occurs when
it is known that the outcome of the experiment is contained in some subset B of
the sample space. For example, we might wish to calculate the probability that the
random number generator of the previous paragraph has produced a prime when
we know that it has produced an odd number. The symbol for this probability is
Pr[AIB], called the conditional probability of A given B. Obviously this conditional
probability is only interesting when Pr[B] ¢ 0.

In essence, the extra information tells us that the outcome of the experiment
lies in a new sample space, namely B. Since the sum of the probabilities of the
elementary events in the sample space must be 1, we scale up the original values
to fulfill this condition. Furthermore we are only interested now in that part of A
that lies in B, namely A n B. Thus the conditional probability is given by

Pr[AIBI= Pr[A B]
Pr[A~B] Pr[B]

For our example, A is the event "the generator produces a prime" and B is the
event "the generator produces an odd number". Now B includes 5000 elementary
events, so Pr[B]= 0.5.. There are 1228 odd primes less than 10000 (only the even
prime 2 drops out), so Pr[A n B]= 0.1228. Hence the probability that the generator
has produced a prime, given that it has produced an odd number, is

Pr[AIB]= 0.1228/0.5 = 0.2456.

43



Preliminaries Chapter 1

Two events A and B are said to be independent if

Pr[A n B]= Pr[A]Pr[B].

In this case, providing Pr[B]¢ 0, we have that

Pr[AIB] Pr[A nB] Pr[A]Pr[B] Pr[A],Pr[B] PrIIB]

and hence the knowledge that event B has occurred does not change the probability
that event A will occur. In fact this condition can be used as an alternative definition
of independence.

In Chapter 10 we shall be looking at probabilistic algorithms for determining
whether or not a given integer is prime. In this context the following approximations
are useful. Suppose the sample space S contains a large number n of consecutive
integers, and that the probability of each of these outcomes is the same, namely
1/ n. For example, S might be the set {1, 2, . . ., n }. Let Di be the event "the outcome
is divisible by i". Since the number of outcomes in S that are divisible by i is ap-
proximately n/ i, we have that Pr[D 1] (n/ i) x (1 /n) = I / i. Furthermore, if p and
q are two different primes, the events Dp and Dq are approximately independent,
so that

Pr[Dp n Dqh] Pr[Dp]Pr[Dq]; 1/pq.

Of course this may not be true if either p or q is not prime: clearly the events D2 and
D4 are not independent; also when S contains only a small number of elements,
the approximations do not work very well, as Problem 1.46 illustrates. Now the
Prime Number Theorem (whose proof is well beyond the scope of this book) tells
us that the number of primes less than n is approximately n/log n, so that if S is
indeed {1, 2, . . ., n}, with equal probability for each outcome, and A is the event
"the outcome is prime", we have that Pr[A] I/logn.

Consider for instance the following problem. A random number generator
produces the value 12262409. We would like to know whether this number is prime,
but we don't have the computing power to compute the answer in a deterministic
way. (Of course this is unrealistic for such a small example.) So what can we say
with the help of a little probability theory?

The first thing to note is that a question such as "What is the probability that
12262409 is prime?" is meaningless. No random experiment is involved here, so we
have no sample space to talk about, and we cannot even begin to assign probabilities
to outcomes. On the other hand, a question such as "What is the probability that
our random number generator has produced a prime?" is meaningful and can be
answered quite easily.

As before, the first step is to identify our sample space, and the second to
assign probabilities to the elements of S. Suppose we know that the genera-
tor produces each of the values from 0 to 99999999 with equal probability: then
S = {0, 1,.. ,99999999}, and the probability of each elementary event in S is 1/108.

The Prime Number Theorem tells us that approximately 10 8 / log 108 5.43 x 106

44



Section 1.7 Some reminders

elements of S are prime. (The correct value is actually 5761455, but the approxima-
tion is good enough for our purposes.) So if A is the event "our generator produces
a prime", we have that Pr[A] 0.0543.

Now let the event Dp be "our generator produces a number that is divisible
by the prime p". Since Pr[Dp� l/p, the probability of the complementary event
"our generator produces a number that is not divisible by the prime p " is Pr[1Jp -]
1 - 1/ p. Suppose we test 12262409 by trying to divide it by 2. The attempt fails, but
now we have some additional information, and we can ask "What is the probability
that our generator produces a prime, given that it produces a number not divisible
by 2?" In symbols,

Pr[AID2 ] = Pr[A n D2 ]/ Pr[D2 ]

2Pr[A] 0.109.

Here Pr[A n D2] is essentially the same as Pr[A] because all the primes save one
are not divisible by 2. If we next try dividing 12262409 by 3, the attempt again fails,
so now we can ask "What is the probability that our generator produces a prime,
given that it produces a number divisible neither by 2 nor by 3?" This probability
is

Pr[A n~ D2 n~ D3]
Pr[AID2 n D3 ] Pr[D2 n D3 ]

Pr[A]/Pr[D2]Pr[D3]

3Pr[A]= 0.163.

Continuing in this way, each successive failure to divide 12262409 by a new prime
allows us to ask a more precise question, and to be a little more confident that our
generator has indeed produced a prime. Suppose, however, that at some stage we
try to divide 12262409 by 3121. Now the trial division succeeds, so our next question
would be "What is the probability that our generator has produced a prime, given
that it has produced a number divisible by none of 2, 3, .. ., but divisible by 3121?"
The answer is of course 0: once we have found a divisor of the number produced
by the generator, we are sure it is not prime. Symbolically, this answer is obtained
because

Pr[A n D 2 n n D31 21]= 0.

Notice that we cannot start this process of calculating a new probability after
each trial division if we are unable to estimate Pr[A], the unconditional probability
that our generator has produced a prime. In the example we did this using the
Prime Number Theorem plus our knowledge that the generator produces each
value from 0 to 99999999 with equal probability. Suppose on the other hand we are
presented with the number 12262409 and simply told that it has been selected for the
purposes of the example. Then the first question to ask is "What is the probability
that a number selected in some unspecified way for the purposes of an example
is prime?" Clearly this is impossible to answer. The sample space of the random
experiment consisting of choosing a number to serve as an example is unknown,
as are the probabilities associated with the elementary events in this sample space.
We can therefore make no meaningful statement about the probabilities associated
with a number selected in this way.

45



Preliminaries Chapter 1

In many random experiments we are interested less in the outcome itself, than
in some number associated with this outcome. In a horse-race, for instance, we may
be less interested in the name of the winning horse than in the amount we win or
lose on the race. This idea is captured by the notion of a random variable. Formally,
a random variable is a function (and not a variable at all, despite its name) that
assigns a real number to each sample point of some sample space S.

If X is a random variable defined on a sample space S, and x is a real number,
we define the event A, to be the subset of S consisting of all the sample points to
which the random variable X assigns the value x. Thus

Ax = Is E SIX(s)= x}.

The notation X = x is a convenient way to denote the event Ax. Hence we can
write

Pr[X = x] Pr[Ax] = E Pr[s].
ses

x(S) x

If we define p(x) by
p(x)= Pr[X = x]

then p(x) is a new function associated with the random variable X, called the
probability mass function of X. We define the expectation E[X] of X (also called the
mean or the average) by

EiX] = X(s)Pr[s] = xp(x).
seS X

The expectation E[X] is also commonly denoted by lx.
To pull these ideas together, consider the following example. The random

experiment concerned is a horse-race with five runners. The outcome of the ex-
periment is the name of the winner. The sample space S is the set of all possible
outcomes, so we might have, for instance

S = {Ariel, Bonbon, Coffee, Demon, Eggcup}.

We have to assign a probability measure to each possible outcome. Although the
accuracy with which we do this may make a great deal of difference to our financial
situation, probability theory gives no help about how to proceed. Suppose that in
the light of experience we assign the values shown in Figure 1.10.

bability Winnings

0.10 50
0.05 100
0.25 -30
0.50 -30
0.10 15

Figure 1.10. Probability of each outcome

46



Section 1.7 Some reminders

(Remember that the probabilities must sum to 1.) We have made a number of
wagers on the race so that, depending on the outcome, we will win or lose some
money The amount we win or lose is also shown in Figure 1.10. This amount is a
function of the outcome, that is, a random variable. Call this random variable W;
then the table shows that W(Ariel)= 50, WV(Bonbon)= 100, and so on. The random
variable W can take the values -30, 15, 50, or 100, and for instance

p(-30) Pr[W = -30]

= Pr[s]
seS

W(s) -30

Pr[Coffee]+Pr[Demon]= 0.25 + 0.50 = 0.75.

Similarly p(15)= Pr[W = 15]= 0.10, p(50)= Pr[W = 50]= 0.10 and p(100)=
Pr[W =100] 0.05. Our expected winnings can be calculated as

E[W] = Exp(x)
x

= -30p(-30) +15p (15) +50p (50) +lOOp(100)

= -11.

Once we have obtained E[X], we can calculate a second useful measure called
the variance of X, denoted by Var[X] or o-x. This is defined by

Var[X] = E[(X - E[X])2 ]= E p(x) (x - E[X])2 .
x

In words, it is the expected value of the square of the difference between X and its
expectation E[X]. The standard deviation of X, denoted by ax, is the square root of
the variance. For the horse-race example above, we have

Var[W] = Y p(x)(x - E[X])2

x

= p(-30)x192 + p(15)x262 + p(50)x612 
+ p(100)x111 2

= 1326.5,

and ow = 1326.5 36.42.
Why are the expected value and the variance of X useful? Suppose the under-

lying random experiment can be repeated many times. The i-th repetition of the
experiment will have some particular outcome oi, to which the function X assigns
a value xi. Suppose we repeat the experiment n times in all. If n is large, it is
almost always reasonable to expect that the average observed value of xi, namely
V1 xi/n, will be close to the expected value of X, namely E[X]. Only in rare cir-

cumstances is this likely not to be true. Thus E[X] allows us to predict the average
observed value of xi.

The variance serves to quantify how good this prediction is likely to be. There
exists a famous probability distribution called the normal distribution. Under very

47



Preliminaries Chapter 1

general conditions, the Central Limit Theorem suggests that when n is large, the
average observed value of xi will have a distribution that is approximately normal
with mean E[X] and variance Var[X]/n. To take advantage of this, all we need is
a table of the normal distribution. These are widely available. Such a table tells
us, among other things, that a normal deviate lies between plus or minus 1.960
standard deviations of its mean 95% of the time; 99% of the time it lies within plus
or minus 2.576 standard deviations of its mean.

For example, suppose that by some magic the horse-race described above
could be run 50 times under identical conditions. Suppose we win wi on the
i-th repetition, and let our average winnings be w wI-1 wi/50. Then we can
expect that fv will be approximately E[W]= -11. The variance of wv will be
Var[W]/50 = 1326.5/50 = 26.53, and its standard deviation will be the square
root of this, or 5.15, while the Central Limit Theorem tells us that the distribution
of w will be approximately normal. Therefore 95% of the time we can expect our
average winnings fv to lie between -11 - 1.960 x 5.15 and -11 + 1.960 x 5.15, that
is between -21.1 and -0.9. A similar calculation shows that 99% of the time w
will lie between -24.3 and +2.3; see Problem 1.47.

It is usually safe to use the Central Limit Theorem when n is greater than about
25 or so.

1.8 Problems

Problem 1.1. The word "algebra" is also connected with the mathematician
al-Khowarizmi, who gave his name to algorithms. What is the connection?

Problem 1.2. Easter Sunday is in principle the first Sunday after the first full moon
after the spring equinox. Is this rule sufficiently precise to be called an algorithm?
Justify your answer.

Problem 1.3. While executing an algorithm by hand, you have to make a random
choice. To help you, you have a fair coin, which gives the values heads and tails
with equal probability, and a fair dice, which gives each of the values 1 to 6 with
equal probability. You are required to choose each of the values red, yellow and blue
with equal probability. Give at least three different ways of doing this.
Repeat the problem with five colours instead of three.

Problem 1.4. Is it possible that there exists an algorithm for playing a perfect game
of billiards? Justify your answer.

Problem 1.5. Use multiplication a la russe to multiply (a) 63 by 123, and (b) 64
by 123.

Problem 1.6. Find a pocket calculator accurate to at least eight figures, that is,
which can multiply a four-figure number by a four-figure number and get the
correct eight-figure answer. You are required to multiply 31415975 by 8182818.
Show how the divide-and-conquer multiplication algorithm of Section 1.2 can be
used to reduce the problem to a small number of calculations that you can do on
your calculator, followed by a simple paper-and-pencil addition. Carry out the
calculation. Hint: Don't do it recursively!

48



Section 1.8 Problems

Problem 1.7. You are required to multiply two numbers given in Roman figures.
For instance, XIX times XXXIV is DCXLVI. You may not use a method that in-
volves translating the numbers into Arabic notation, multiplying them, and then
translating them back again. Devise an algorithm for this problem.
Hint: Find ways to translate back and forth between true Roman notation and
something similar that does not involve any subtractions. For instance, XIX might
become XVIIII in this "pseudo-Roman" notation. Next find easy ways to double,
halve and add figures in pseudo-Roman notation. Finally adapt multiplication a
la russe to complete the problem.

Problem 1.8. As in Problem 1.6, suppose you have available a pocket calculator
that can multiply a four-figure number by a four-figure number and get the cor-
rect eight-figure answer. Devise an algorithm for multiplying two large numbers
based on the classic algorithm, but using blocks of four figures at a time instead
of just one. (If you like, think of it as doing your calculation in base 10000 arith-
metic.) For instance, when multiplying 1234567 by 9876543, you might obtain the
arrangement shown in Figure 1.11.

0123 4567

0987 6543

0080 7777 1881

0012 1851 7629

0012 1932 5406 1881

Figure 1.11. Multiplication in base 10000

Here the first line of the calculation is obtained, from right to left, as

4567 x 6543 = 29881881

(that is, a result of 1881 and a carry of 2988), followed by 0123 x 6543 + 2988 = 807777
(that is, a result of 7777 and a carry of 0080). The second line of the calculation is
obtained similarly, and the final result is found by adding the columns. All the
necessary arithmetic can be done with your calculator.
Use your algorithm to multiply 31415975 by 8182818. Check that your answer is
the same as the one you found in Problem 1.6.

Problem 1.9. Figure 1.12 shows yet another method of multiplying two positive
integers, sometimes called Arabic multiplication.
In the figure, as before, 981 is multiplied by 1234. To use this method, draw a
rectangle with as many columns as there are figures in the multiplicand (here 3) and
as many rows as there are figures in the multiplier (here 4). Write the multiplicand
above the columns, and the multiplier down the right-hand side of the rectangle.
Draw diagonal lines as shown. Next fill in each cell of the rectangle with the product
of the figure at the top of the column and the figure at the right-hand end of the
row. The tens figure of the result (which may be 0) goes above the diagonal line,

49



Preliminaries Chapter 1

2

0

9 8 I

0 09

X 8

X 4

0

0 2

3
74

2

3

4

5 5 4

Figure 1.12. Multiplication using a rectangle

and the units figure below it. Finally add the diagonals of the rectangle starting at
the bottom right. Here the first diagonal gives 4; the second gives 2 + 0 + 3 = 5; the
third gives 6 + 3 + 4 + 0 + 2 = 15, so write down 5 and carry 1; and so on. Now the
result 1210554 can be read off down the left-hand side and along the bottom of the
rectangle.
Once again, use this algorithm to multiply 31415975 by 8182818, checking your
result against the answers to previous problems.

Problem 1.10. Are the two sets X = {1, 2, 31 and Y = {2, 1, 31 equal?

Problem 1.11. Which of the following sets are finite: 0, {0}, A, {1I}? What is
the cardinality of those among the above sets that are finite?

Problem 1.12. For which values of Boolean variables p, q and r is the Boolean
formula (p A q)v(- q A r) true?

Problem 1.13. Prove that
-(V x e X) [P(x)] is equivalent to (3 x E X) [-P(x)] and

-( x e X) [P(x) ] is equivalent to (V x e X) [ -P(x)].

Problem 1.14. Prove that
cc co

-(i x E X) [P(x)] is equivalent to (3 x E X) [L-P(x)] and
00 co

-(3 x E X) [P(x)] is equivalent to (V x E X) [-P(x)].

Problem 1.15. Prove that
log,(xy)= log, x + log, Y'
log, xY = y log, X,

l og,,
log, X =log a'

and xlogb Y = ylOgb x

Problem 1.16. Provethatx - 1 < Lx] < x < [xI < x + lforeveryrealnumberx.

50



Section 1.8 Problems

Problem 1.17. An alternative proof of Theorem 1.5.1, to the effect that there are
infinitely many primes, begins as follows. Assume for a contradiction that the
set of prime numbers is finite. Let p be the largest prime. Consider x = p! and
y = x + 1. Your problem is to complete the proof from here and to distill from your
proof an algorithm Biggerprime(p) that finds a prime larger than p. The proof of
termination for your algorithm must be obvious, as well as the fact that it returns
a value larger than p.

Problem 1.18. Modify the proof of Theorem 1.5.1 to prove that there are infinitely
many primes of the form 4k -1, where k is an integer.
Hint: Define x as in the proof of Theorem 1.5.1, but then set y = 4x - 1 rather than
y = x + 1. Even though y itself may not be prime and the smallest integer d larger
than 1 that divides y may not be of the form 4k - 1, prove by contradiction that y
has at least one prime divisor of the required form.
It is also true that there are infinitely many primes of the form 4k + 1, but this is
more involved to prove. Where does your reasoning for the case 4k - 1 break down
in trying to use the same idea to prove the case 4k + 1?

Problem 1.19. Let n be a positive integer. Draw a circle and mark n points regu-
larly spaced around the circumference. Now, draw a chord inside the circle between
each pair of these points. In the case n = 1, there are no pairs of points and thus
no chords are drawn; see Figure 1.13.

n-I n-2 n=3 n=4

Figure 1.13. Carving out a circle

Finally, denote by c(n) the number of sections thus carved inside the circle. You
should find that c(1) = 1, c(2) = 2, c (3) = 4 and c(4) = 8. By induction, what do you
think the general formula for c(n) is? Determine c(5) by drawing and counting.
Was your inductively found formula correct? Try again with c(6). What if you
allow the points to be spaced irregularly? (Optional and much harder: determine
the correct formula for c(n), and prove that it is correct.)

Problem 1.20. Why do you think that mathematical induction received this name
even though it really is a deductive technique?

Problem 1.21. Prove by mathematical induction that the sum of the cubes of the
first n positive integers is equal to the square of the sum of these integers.

51



Preliminaries Chapter 1

Problem 1.22. Following Problem 1.21, prove that the sum of the cubes of the first
n positive integers is equal to the square of the sum of these integers, but now
use Proposition 1.7.13 rather than mathematical induction. (Of course, Proposi-
tion 1.7.13 was proved by mathematical induction, too!)

Problem 1.23. Determine by induction all the positive integer values of n for
which n3 > 2'. Prove your claim by mathematical induction.

Problem 1.24. The axiom of the least integer says that every nonempty set of positive
integers contains a smallest element. (This is not true in general for sets of positive
real numbers-consider for instance the set of all reals strictly between 0 and 1.)
Using this axiom, give a rigorous proof by contradiction that the simple principle
of mathematical induction is valid. More precisely, consider any integer a and
any property P of the integers such that P(a) holds, and such that P(n) holds
whenever P(n -1) holds for any integer n > a. Assume furthermore that it is not
the case that P(n) holds for all n > a. Use the axiom of the least integer to derive
a contradiction.

Problem 1.25. Problem 1.24 asked you to prove the validity of the principle of
mathematical induction from the axiom of the least integer. In fact the principle
and the axiom are equivalent: prove the axiom of the least integer by mathematical
induction!
Hint: As a first step, prove that any nonemptyfinite set of positive integers contains
a smallest element by mathematical induction on the number of elements in the
set. Note that your proof would hold just as well for any finite set of real numbers,
which shows clearly that it does not apply directly to infinite sets. To generalize
the result to infinite sets of positive integers, consider any such set X. Let m be any
element in X (we do not need an axiom for this: any infinite set contains at least one
element by definition). Let Y be the set of elements of X that are not larger than m.
Show that Y is a nonempty finite set of positive integers, and therefore your proof
by mathematical induction applies to conclude that Y contains a smallest element,
say n. Finish the proof by arguing that n is also the smallest element in X.

Problem 1.26. Give a rigorous proof that the generalized principle of mathematical
induction is valid.
Hint: Prove it by simple mathematical induction.

Problem 1.27. Recall that the Fibonacci sequence is defined as

fo 0;fJ = 1 and
f 1 fn1 + f7 2 for n > 2.

Prove by generalized mathematical induction that

1i =-¢n - (_tsp n],
/5-

where
1+5

2

is the golden ratio. (This is known as de Moivre's formula.)

52



Section 1.8 Problems

Problem 1.28. Following Problem 1.27, prove by mathematical induction that
> (2) for all sufficiently large integer n. How large does n have to be? Do not

use de Moivre's formula.

Problem 1.29. Following Problem 1.27, prove that Zi o (i) i = fn+2k.

Problem 1.30. Following Problem 1.27, prove by generalized mathematical in-
duction that f2n+1 = f2 + fn21 for all integers n > 0.
Hint: Prove the stronger theorem that f2n = 2fnfn+l - fn2 as well.

Problem 1.31. Consider arbitrary positive real constants a and b. Define
t: lN - R' by the recurrence

lt(l)= a and
Lt(n)=bn+nt(n-1) forn>2.

This function is sufficiently similar to the recurrence n! = n x (n - 1)! that charac-
terizes the factorial that it is natural to conjecture the existence of two positive real
constants u and v such that u n! < t (n) < v n! for each sufficiently large integer n.
Prove this conjecture by constructive induction.
Hint: Prove the stronger statement that there exist three positive real constants u,
v and w such that un! < t (n) < vn! - wn for each sufficiently large integer n.
Note: This problem shows that the time taken by direct use of the recursive defini-
tion to compute the determinant of an n x n matrix is proportional to n!, which is
much worse than if the time were merely exponential. Of course, the determinant
can be computed more efficiently by Gauss-Jordan elimination. See Section 2.7.1
for more detail.

Problem 1.32. Work Problem 1.31 again, but now define t(n)= bnk + nt(n -1)
for n > 2, where k is an arbitrary positive integer constant.

Problem 1.33. Consider an arbitrary positive real constant d and a function
t : N - iR such that

2n-1
t(n)<dn +- E t(k)

n k=O

for each positive integer n. Using constructive induction, prove the existence
of a real positive constant c such that t(n)< cnlogn for each sufficiently large
integer n.

Problem 1.34. Give two functions f(n) and g (n) such that neither f(n) nor g (n)
tends to a limit as n tends to infinity, but both f (n) +g (n) and f (n) /g (n) do tend
to a limit.

Problem 1.35. Determine the behaviour as n tends to infinity of f (n) = n-rxn,
where r is any positive integer.

Problem 1.36. Use de l'Hopital's rule to find the limit as n tends to infinity of
(log log n) a / log n, where a > 0 is an arbitrary positive constant.

53



Preliminaries Chapter 1

Problem 1.37. Prove Proposition 1.7.8.

Problem 1.38. Give a simple proof, not using integrals, that the harmonic series
diverges.

Problem 1.39. Use a technique similar to the one illustrated in Figure 1.8 to show
that for r > 1 the sum

Sn =1 1 +1 + +
Sf 21 r 3r nrY

converges to a limit less than r / (r - 1).

Problem 1.40. (Alternating series) Let f(n) be a positive, strictly decreasing
function of n that tends to 0 as n tends to infinity. Show that the series
f (1) -f(2) +f(3)-f (4) + is convergent, and that its sum lies between f (1) and
f (1)-f (2). For example,

12± 3 4- + = log2 -0.69314...

Show further that the error we make if we approximate the sum of the whole series
by the sum of the first n terms is less than f (n + 1).

Problem 1.41. Show that (<n) < 2n-1 for n > 0 and 0 < r < n.

Problem 1.42. Prove that

(2n > 4n/(2n + 1).

Problem 1.43. Show that E r (n) - n2n-1 for n > 0.
nlr

Hint: Differentiate both sides of Theorem 1.7.20.

Problem 1.44. Showthat I = l-2x+3x2 -4x 3+5x 4+. for -1 < x < 1.(1 t x) 2

Hint: Use Proposition 1.7.12.

Problem 1.45. Show that two mutually exclusive events are not independent ex-
cept in the trivial case that at least one of them has probability zero.

Problem 1.46. Consider a random experiment whose sample space S is {1, 2,3,
4, 5} . Let A and B be the events "the outcome is divisible by 2" and "the outcome is
divisible by 3", respectively. What are Pr[A], Pr[B] and Pr[A n B]? Are the events
A and B independent?

Problem 1.47. Show that for the horse-race of Section 1.7.4, 99% of the time our
expected winnings fv averaged over 50 races lie between -24.3 and +2.3.

54



Section 1.9 References and further reading

1.9 References and further reading

We distinguish three kinds of books on the design and analysis of algorithms.
Specific books cover algorithms that are useful in a particular application area:
sorting and searching, graph theory, computational geometry, and so on. General
books cover several application areas: they give algorithms useful in each area.
Finally, books on algorithmics concentrate on the techniques of algorithm design
and analysis: they illustrate each technique by examples of algorithms taken from
various applications areas. The distinction between these three types of books is
necessarily fuzzy at times. Harel (1987) takes a broader view at algorithmics and
considers it as no less than "the spirit of computing".

The most ambitious collection of algorithms ever attempted is no doubt due to
Knuth (1968, 1969, 1973), originally intended to consist of seven volumes. Several
chapters of the Handbook of Theoretical Computer Science, edited by van Leeuwen
(1990), are of great interest to the study of algorithms. Many other general books
are worth mentioning: in chronological order Aho, Hopcroft and Ullman (1974),
Baase (1978), Dromey (1982), Sedgewick (1983), Gonnet and Baeza-Yates (1984),
Melhorn (1984a, 1984b, 1984c), Manber (1989), Cormen, Leiserson and Rivest (1990),
Kingston (1990), Lewis and Denenberg (1991), Kozen (1992) and Nievergelt and
Hinrichs (1993).

Specific books will be referred to in the following chapters whenever they
are relevant to our discussion; we may mention, however, Nilsson (1971),
Brigham (1974), Borodin and Munro (1975), Christofides (1975), Lawler (1976),
Reingold, Nievergelt and Deo (1977), Gondran and Minoux (1979), Even (1980),
Papadimitriou and Steiglitz (1982), Tarjan (1983), AkI (1989), Lakshmivarahan and
Dhall (1990), Ja'Ja' (1992) and Leighton (1992).

Besides our own books-this one and Brassard and Bratley (1988)-and
Harel's, we are aware of three more works on algorithmics: Horowitz and
Sahni (1978), Stinson (1985) and Moret and Shapiro (1991). For a more popular
account of algorithms, see Knuth (1977) and Lewis and Papadimitriou (1978).

Multiplication a la russe is described in Warusfel (1961), a remarkable little
French book of popular mathematics, but the basic idea was known to the an-
cient Egyptians, perhaps as early as 3500 B.C.; see Ahmes (1700bc) and Kline (1972).
Divide-and-conquer multiplication is attributed to Karatsuba and Ofman (1962),
while Arabic multiplication is described in Eves (1983). For a discussion of con-
structive mathematics and nonconstructive proofs such as that we gave for Theo-
rem 1.5.2, consult Bishop (1972). The principle of mathematical discovery is dis-
cussed by P6lya (1945, 1954). The first counterexample to Euler's conjecture to the
effect that it is not possible for the sum of three positive fourth powers to be a fourth
power was given by Elkies (1988).

Although we do not use any specific programming language in the present
book, we suggest that a reader unfamiliar with Pascal would do well to look at
one of the numerous books on this language, such as Jensen and Wirth (1985) or
Lecarme and Nebut (1985).

Rosen (1991) is a comprehensive and simple introduction to such topics as the
propositional calculus, sets, probability, mathematical reasoning and graphs.

55



56 Preliminaries Chapter 1

Leonardo Pisano (c. 1170-c. 1240), or Leonardo Fibonacci, was the first great
western mathematician of the Middle Ages. There is a brief account of his life and
an excerpt from Liberabaci in Calinger (1982). The proof that

lim 1 + ± r 2+2
n-fo( 22 + 32 + + W2 6

is due to Euler; see Eves (1983) or Scharlau and Opolka (1985). These references
also give the history of the binomial theorem.



Chapter 2

Elementary Algorithmics

2.1 Introduction

In this chapter we begin our detailed study of algorithms. First we define some
terms: we shall see that a problem, such as multiplying two positive integers, will
normally have many-usually infinitely many-instances, such as multiplying the
particular integers 981 and 1234. An algorithm must work correctly on every in-
stance of the problem it claims to solve.

Next we explain what we mean by the efficiency of an algorithm, and discuss
different ways for choosing the most efficient algorithm to solve a problem when
several competing techniques are available. We shall see that it is crucial to know
how the efficiency of an algorithm changes as the problem instances get bigger
and therefore (usually) harder to solve. We also distinguish between the average
efficiency of an algorithm when it is used on many instances of a problem and its
efficiency in the worst possible case. The pessimistic, worst-case estimate is often
appropriate when we have to be sure of solving a problem in a limited amount of
time, for instance.

Once we have defined what we mean by efficiency, we can begin to investigate
the methods used to analyse algorithms. Our line of attack is to try to count the
number of elementary operations, such as additions and multiplications, that an
algorithm performs. However we shall see that even such commonplace operations
as these are not straightforward: both addition and multiplication get slower as the
size of their operands increases. We also try to convey some notion of the practical
difference between a good and a bad algorithm in terms of computing time.

57



Elementary Algorithmics Chapter 2

One topic we shall not cover, either in this chapter or elsewhere, is how to prove
rigorously that the programs we use to represent algorithms are correct. Such an
approach requires a formal definition of programming language semantics well
beyond what we consider necessary; an adequate treatment of this subject would
deserve a book to itself. For our purposes we shall be content to rely on informal
proofs using common-sense arguments.

The chapter concludes with a number of examples of algorithms from different
areas, some good and some poor, to show how the principles we put forward apply
in practice.

2.2 Problems and instances
In Section 1.1 we presented several different ways of multiplying two positive
integers, taking as an example the multiplication of 981 by 1234. However the
algorithms outlined there do not simply provide a way of multiplying these two
particular numbers. In fact, they give a general solution to the problem of multi-
plying two positive integers. We say that (981, 1234) is an instance of this problem.
Multiplying 789 by 9742, which we can express as (789, 9742), is another instance of
the same problem. However multiplying -12 by 83.7 is not, for two reasons: -12
is not positive, and 83.7 is not an integer. (Of course, (- 12, 83.7) is an instance of
another, more general multiplication problem.) Most interesting problems have an
infinite collection of instances. However, there are exceptions. Strictly speaking,
the problem of playing a perfect game of chess has only one instance, since a unique
starting position is given. Moreover there are only a finite number of subinstances
(the legal intermediate positions). Yet this does not mean the problem is devoid of
algorithmic interest.

An algorithm must work correctly on every instance of the problem it claims
to solve. To show that an algorithm is incorrect, we need only find one instance
of the problem for which it is unable to find a correct answer. Just as a proposed
theorem can be disproved by a single counterexample, so an algorithm can be
rejected on the basis of a single wrong result. On the other hand, just as it may
be difficult to prove a theorem, it is usually difficult to prove the correctness of an
algorithm. (However, see Section 1.6.3 for one simple case.) To make this possible
at all, when we specify a problem, it is important to define its domain of definition,
that is, the set of instances to be considered. The multiplication algorithms given
in Chapter 1 will not work for negative or fractional operands, at least not without
some modification. However this does not mean that the algorithms are invalid:
instances of multiplication involving negative numbers or fractions are not in the
domain of definition we chose at the outset.

Any real computing device has a limit on the size of the instances it can handle,
either because the numbers involved get too big or because we run out of storage.
However this limit cannot be attributed to the algorithm we choose to use. Different
machines have different limits, and even different programs implementing the
same algorithm on the same machine may impose different constraints. In this
book we shall almost always be content to prove that our algorithms are correct in
the abstract, ignoring the practical limitations present in any particular program
for implementing them.

58



Section 2.3 The efficiency of algorithms

2.3 The efficiency of algorithms

When we have a problem to solve, there may be several suitable algorithms avail-
able. We would obviously like to choose the best. This raises the question of how
to decide which of several algorithms is preferable. If we have only one or two
small instances of a rather simple problem to solve, we may not care too much
which algorithm we use: in this case we might simply choose the one that is easiest
to program, or one for which a program already exists, without worrying about
their theoretical properties. However if we have lots of instances to solve, or if the
problem is hard, we may have to choose more carefully.

The empirical (or a posteriori) approach to choosing an algorithm consists of pro-
gramming the competing techniques and trying them on different instances with
the help of a computer. The theoretical (or a priori) approach, which we favour in
this book, consists of determining mathematically the quantity of resources needed
by each algorithm as a function of the size of the instances considered. The resources
of most interest are computing time and storage space, with the former usually
being the more critical. Throughout the book, therefore, we shall usually compare
algorithms on the basis of their execution times, and when we speak of the efficiency
of an algorithm, we shall simply mean how fast it runs. Only occasionally will we
also be interested by an algorithm's storage requirements, or by its need for other
resources. (Examples of other resources are the number of processors required
by a parallel algorithm, and also some artificial yet meaningful combinations: we
might be interested in minimizing the product of storage space used by the time
for which it is occupied, if that is how our bills are calculated.)

The size of an instance corresponds formally to the number of bits needed to
represent the instance on a computer, using some precisely defined and reasonably
compact coding scheme. However, to make our analyses clearer, we shall usually
be less formal than this, and use the word "size" to mean any integer that in some
way measures the number of components in an instance. For example, when
we talk about sorting, we shall usually measure the size of an instance by the
number of items to be sorted, ignoring the fact that each of these items would
take more than one bit to represent on a computer. Similarly, when we talk about
graphs, we usually measure the size of an instance by the number of nodes or edges
(or both) involved. Departing a little from this general rule, however, when we talk
about problems involving integers, we shall sometimes give the efficiency of our
algorithms in terms of the value of the instance being considered, rather than its
size (which would be the number of bits needed to represent this value in binary).

The advantage of the theoretical approach is that it depends on neither the
computer being used, nor the programming language, nor even the skill of the
programmer. It saves both the time that would have been spent needlessly pro-
gramming an inefficient algorithm and the machine time that would have been
wasted testing it. More significantly, it allows us to study the efficiency of an al-
gorithm when used on instances of any size. This is often not the case with the
empirical approach, where practical considerations may force us to test our al-
gorithms only on a small number of arbitrarily chosen instances of moderate size.
Since it is often the case that a newly discovered algorithm begins to perform better

59



Elementary Algorithmics

than its predecessor only when they are both used on large instances, this last point
is particularly important.

It is also possible to analyse algorithms using a hybrid approach, where the form
of the function describing the algorithm's efficiency is determined theoretically, and
then any required numerical parameters are determined empirically for a particular
program and machine, usually by some kind of regression. Using this approach we
can predict the time an actual implementation will take to solve an instance much
larger than those used in the tests. Beware however of making such an extrapolation
solely on the basis of a small number of empirical tests, ignoring all theoretical
considerations. Predictions made without theoretical support are likely to be very
imprecise, if not plain wrong.

If we want to measure the amount of storage an algorithm uses as a function
of the size of the instances, there is a natural unit available to us, namely the bit.
Regardless of the machine being used, the notion of one bit of storage is well
defined. If on the other hand, as is more often the case, we want to measure the
efficiency of an algorithm in terms of the time it takes to arrive at an answer, there
is no such obvious choice. Clearly there can be no question of expressing this
efficiency in seconds, say, since we do not have a standard computer to which all
measurements might refer.

An answer to this problem is given by the principle of invariance, which states
that two different implementations of the same algorithm will not differ in efficiency
by more than some multiplicative constant. If this constant happens to be 5, for
example, then we know that, if the first implementation takes 1 second to solve
instances of a particular size, then the second implementation (maybe on a different
machine, or written in a different programming language) will not take longer than
5 seconds to solve the same instances. More precisely, if two implementations of
the same algorithm take tj (n) and t2 (n) seconds, respectively, to solve an instance
of size n, then there always exist positive constants c and d such that tj (n) < ct2 (n)
and t2 (n) < dt1 (n) whenever n is sufficiently large. In other words, the running
time of either implementation is bounded by a constant multiple of the running
time of the other; the choice of which implementation we call the first, and which
we call the second, is irrelevant. The condition that n be sufficiently large is not
really necessary: see the "threshold rule" in Section 3.2. However by including it
we can often find smaller constants c and d than would otherwise be the case. This
is useful if we are trying to calculate good bounds on the running time of one
implementation when we know the running time of the other.

This principle is not something we can prove: it simply states a fact that can be
confirmed by observation. Moreover it has very wide application. The principle
remains true whatever the computer used to implement an algorithm (provided it is
of conventional design), regardless of the programming language and the compiler
employed, and regardless even of the skill of the programmer (provided he or she
does not actually modify the algorithm!). Thus a change of machine may allow us
to solve a problem 10 times or 100 times faster, giving an increase in speed by a
constant factor. A change of algorithm, on the other hand-and only a change of
algorithm-may give us an improvement that gets more and more marked as the
size of the instances increases.

60 Chapter 2



Section 2.4 Average and worst-case analyses

Returning to the question of the unit to be used to express the theoretical ef-
ficiency of an algorithm, the principle of invariance allows us to decide that there
will be no such unit. Instead, we only express the time taken by an algorithm to
within a multiplicative constant. We say that an algorithm for some problem takes
a time in the order of t (n), for a given function t, if there exist a positive constant c
and an implementation of the algorithm capable of solving every instance of size n
in not more than c t (n) seconds. (For numerical problems, as we remarked earlier,
n may sometimes be the value rather than the size of the instance.)

The use of seconds in this definition is obviously arbitrary: we only need to
change the constant to bound the time by at(n) years or bt(n) microseconds.
By the principle of invariance, if any one implementation of the algorithm has the
required property, then so do all the others, although the multiplicative constant
may change from one implementation to another. In the following chapter we
give a more rigorous treatment of this important concept known as the asymptotic
notation. It will be clear from the formal definition why we say "in the order of"
rather than the more usual "of the order of."

Certain orders occur so frequently that it is worth giving them a name. For ex-
ample, suppose the time taken by an algorithm to solve an instance of size n is
never more than en seconds, where c is some suitable constant. Then we say that
the algorithm takes a time in the order of n, or more simply that it takes linear
time. In this case we also talk about a linear algorithm. If an algorithm never takes
more than cn2 seconds to solve an instance of size n, then we say it takes time in
the order of n2 , or quadratic time, and we call it a quadratic algorithm. Similarly an
algorithm is cubic, polynomial or exponential if it takes a time in the order of n3, nk
or c 1, respectively, where k and c are appropriate constants. Section 2.6 illustrates
the important differences between these orders of magnitude.

Do not fall into the trap of completely forgetting the hidden constants, as the
multiplicative constants used in these definitions are often called. We commonly
ignore the exact values of these constants and assume that they are all of about
the same order of magnitude. This lets us say, for instance, that a linear algorithm
is faster than a quadratic one without worrying whether our statement is true in
every case. Nevertheless it is sometimes necessary to be more careful.

Consider, for example, two algorithms whose implementations on a given ma-
chine take respectively n2 days and n

3 seconds to solve an instance of size n. It is
only on instances requiring more than 20 million years to solve that the quadratic
algorithm outperforms the cubic algorithm! (See Problem 2.7.) From a theoretical
point of view, the former is asymptotically better than the latter; that is, its perfor-
mance is better on all sufficiently large instances. From a practical point of view,
however, we will certainly prefer the cubic algorithm. Although the quadratic al-
gorithm may be asymptotically better, its hidden constant is so large as to rule it
out of consideration for normal-sized instances.

2.4 Average and worst-case analyses
The time taken by an algorithm, or the storage it uses, can vary considerably be-
tween two different instances of the same size. To illustrate this, consider two
elementary sorting algorithms: sorting by insertion, and sorting by selection.

61



Elementary Algorithmics

procedure insert(T[l . n])
for i - 2 to n do

x - T[i]; j- i -1
while j > 0 and x < T[j] do T[j + 1] - T[j]

T[j + 1].- x

procedure select(T[l . . n])
for i - 1 to n - 1 do

minj - i; minx - T[i]
for j - i + 1 to n do

if T [j]< minx then = minj - j
minx - T[j]

T[minj]- T[i]
T[i]- minx

Simulate the operation of these two algorithms on a few small arrays to make
sure you understand how they work. The main loop in insertion sorting looks suc-
cessively at each element of the array from the second to the n-th, and inserts it in
the appropriate place among its predecessors in the array. Selection sorting works
by picking out the smallest element in the array and bringing it to the beginning;
then it picks out the next smallest, and puts it in the second position in the array;
and so on.

Let U and V be two arrays of n elements, such that U is already sorted in
ascending order, whereas V is sorted in descending order. Problem 2.9 shows that
both these algorithms take more time on V than on U. In fact, array V represents the
worst possible case for these two algorithms: no array of nt elements requires more
work. Nonetheless, the time required by the selection sort algorithm is not very
sensitive to the original order of the array to be sorted: the test "if T[j] < minx" is
executed exactly the same number of times in every case. The variation in execution
time is only due to the number of times the assignments in the then part of this test
are executed. When we programmed this algorithm and tested it on a machine,
we found that the time required to sort a given number of elements did not vary
by more than 15% whatever the initial order of the elements to be sorted. As we
will show in Section 4.4, the time required by select(T) is quadratic, regardless of
the initial order of the elements.

The situation is different if we compare the times taken by the insertion sort
algorithm on the same two arrays. Because the condition controlling the while
loop is always false at the outset, insert(U) is very fast, taking linear time. On the
other hand, insert (V) takes quadratic time because the while loop is executed i - 1
times for each value of i; see Section 4.4 again. The variation in time between
these two instances is therefore considerable. Moreover, this variation increases
with the number of elements to be sorted. When we implemented the insertion
sort algorithm, we found that it took less than one-fifth of a second to sort an
array of 5000 elements already in ascending order, whereas it took three and a half
minutes-that is, a thousand times longer-to sort an array with the same number
of elements, this time initially in descending order.

62 Chapter 2



Section 2.4 Average and worst-case analyses

If such large variations can occur, how can we talk about the time taken by
a algorithm solely in terms of the size of the instance to be solved? We usually
consider the worst case of the algorithm, that is, for each size of instance we only
consider those on which the algorithm requires the most time. This is why we said
in the preceding section that an algorithm must be able to solve every instance of
size n in not more than c t (n) seconds, for an appropriate constant c that depends
on the implementation, if it is to run in a time in the order of t (n): we implicitly
had the worst case in mind.

Worst-case analysis is appropriate for an algorithm whose response time is
critical. For example, if it is a question of controlling a nuclear power plant, it is
crucial to know an upper limit on the system's response time, regardless of the
particular instance to be solved. On the other hand, if an algorithm is to be used
many times on many different instances, it may be more important to know the
average execution time on instances of size n. We saw that the time taken by the
insertion sort algorithm varies between the order of n and the order of n2 . If we
can calculate the average time taken by the algorithm on the n! different ways
of initially ordering n distinct elements, we shall have an idea of the likely time
taken to sort an array initially in random order. We shall see in Section 4.5 that if
the n! initial permutations are equally likely, then this average time is also in the
order of n2 . Insertion sorting thus takes quadratic time both on the average and in
the worst case, although for some instances it can be much faster. In Section 7.4.2
we shall see another sorting algorithm that also takes quadratic time in the worst
case, but that requires only a time in the order of n log n on the average. Even
though this algorithm has a bad worst case-quadratic performance is slow for a
sorting algorithm-it is probably the fastest algorithm known on the average for
an in-place sorting method, that is, one that does not require additional storage.

It is usually harder to analyse the average behaviour of an algorithm than to
analyse its behaviour in the worst case. Furthermore, such an analysis of average
behaviour can be misleading if in fact the instances to be solved are not chosen
randomly when the algorithm is used in practice. For example, we stated above that
insertion sorting takes quadratic time on the average when all the n! possible initial
arrangements of the elements are equally probable. However in many applications
this condition may be unrealistic. If a sorting program is used to update a file, for
instance, it might mostly be asked to sort arrays whose elements are already nearly
in order, with just a few new elements out of place. In this case its average behaviour
on randomly chosen instances will be a poor guide to its real performance.

A useful analysis of the average behaviour of an algorithm therefore requires
some a priori knowledge of the distribution of the instances to be solved. This
is normally an unrealistic requirement. Especially when an algorithm is used as
an internal procedure in some more complex algorithm, it may be impractical
to estimate which instances it is most likely to encounter, and which will only
occur rarely. In Section 10.7, however, we shall see how this difficulty can be
circumvented for certain algorithms, and their behaviour made independent of
the specific instances to be solved.

In what follows we shall only be concerned with worst-case analyses unless
stated otherwise.

63



Elementary Algorithmics Chapter 2

2.5 What is an elementary operation?
An elementary operation is one whose execution time can be bounded above by a
constant depending only on the particular implementation used-the machine, the
programming language, and so on. Thus the constant does not depend on either
the size or the other parameters of the instance being considered. Because we are
concerned with execution times of algorithms defined to within a multiplicative
constant, it is only the number of elementary operations executed that matters in
the analysis, not the exact time required by each of them.

For example, suppose that when we analyse some algorithm, we find that to
solve an instance of a certain size we need to carry out a additions, m multiplica-
tions, and s assignment instructions. Suppose we also know that an addition never
takes longer than ta microseconds, a multiplication never more than tm microsec-
onds, and an assignment never more than ts microseconds, where ta, tm and t,
are constants depending on the machine used. Addition, multiplication and as-
signment can therefore all be considered as elementary operations. The total time
t required by our algorithm can by bounded by

t < ata + mtm + sts

< max(ta, tm, t,)x(a + m + s),

that is, t is bounded by a constant multiple of the number of elementary operations
to be executed.

Since the exact time required by each elementary operation is unimportant, we
simplify by saying that elementary operations can be executed at unit cost.

In the description of an algorithm, a single line of program may correspond
to a variable number of elementary operations. For example, if T is an array of n
elements (n > 0), the time required to compute

x - min {T[i] I 1 < i <n}

increases with n, since this is an abbreviation for

x- T[1]
for i - 2 to n do

if T[i] < x then x - T[i].

Similarly, some mathematical operations are too complex to be considered elemen-
tary. If we allowed ourselves to count the evaluation of a factorial and a test for
divisibility at unit cost, regardless of the size of the operands, Wilson's theorem
(which states that the integer n divides (n - 1)! + 1 if and only if n is prime for all
n > 1) would let us test an integer for primality with astonishing efficiency:

function Wilson (n)
{Returns true if and only if n is prime, n > 1}
if n divides (n - 1)! + 1 exactly then return true
else return false

64



Section 2.5 What is an elementary operation?

The example at the beginning of this section suggested that we can consider
addition and multiplication to be unit cost operations, since it assumed that the
time required for these operations could be bounded by a constant. In theory,
however, these operations are not elementary since the time needed to execute
them increases with the length of the operands. In practice, on the other hand, it
may be sensible to consider them as elementary operations so long as the operands
concerned are of a reasonable size in the instances we expect to encounter. Two
examples will illustrate what we mean.

function Sum(n)
{Calculates the sum of the integers from 1 to n}
sum - 0
for i - 1 to n do sum - sum + i
return sum

function Fibonacci(n)
{Calculates the n-th term of the Fibonacci sequence;

see Section 1.6.4}
i 1; j 0 0
for k - 1 to n do j - i + j

i- ji
return j

In the algorithm called Sum the value of sum stays reasonable for all the in-
stances that the algorithm can realistically be expected to meet in practice. If we
are using a machine with 32-bit words, all the additions can be executed directly
provided n is no greater than 65 535. In theory, however, the algorithm should
work for all possible values of n. No real machine can in fact execute these ad-
ditions at unit cost if n is chosen sufficiently large. The analysis of the algorithm
must therefore depend on its intended domain of application.

The situation is different in the case of Fibonnaci. Here it suffices to take n = 47
to have the last addition "j - i + j " cause arithmetic overflow on a 32-bit machine.
To hold the result corresponding to n = 65 535 we would need 45 496 bits, or more
than 1420 computer words. It is therefore not realistic, as a practical matter, to
consider that these additions can be carried out at unit cost. Rather, we must
attribute to them a cost proportional to the length of the operands concerned.
In Section 4.2.2 this algorithm is shown to take quadratic time, even though at
first glance its execution time appears to be linear.

In the case of multiplication it may still be reasonable to consider this an ele-
mentary operation for sufficiently small operands. However it is easier to produce
large operands by repeated multiplication than by addition, so it is even more im-
portant to ensure that arithmetic operations do not overflow. Furthermore, when
the operands do start to get large, the time required to perform an addition grows
linearly with the size of the operands, but the time required to perform a multipli-
cation is believed to grow faster than this.

A similar problem can arise when we analyse algorithms involving real num-
bers if the required precision increases with the size of the instances to be solved.

65



Elementary Algorithmics Chapter 2

One typical example of this phenomenon is the use of de Moivre's formula (see Prob-
lem 1.27) to calculate values in the Fibonacci sequence. This formula tells us
that fA, the n-th term in the sequence, is approximately equal to 0A / 5, where
4 = (1 + \5 )/2 is the golden ratio. The approximation is good enough that we
can in principle obtain the exact value of fn by simply taking the nearest integer;
see Problem 2.23. However we saw above that 45 496 bits are required to represent
f65535 accurately. This means that we would have to calculate the approximation
with the same degree of accuracy to obtain the exact answer. Ordinary single
or double precision floating-point arithmetic, using one or two computer words,
would certainly not be accurate enough. In most practical situations, however,
the use of single or double precision floating-point arithmetic proves satisfactory,
despite the inevitable loss of precision. When this is so, it is reasonable to count
such arithmetic operations at unit cost.

To sum up, even deciding whether an instruction as apparently innocuous as
- - i + j" can be considered as elementary or not calls for the use of judgement.

In what follows, we shall consider additions, subtractions, multiplications, divi-
sions, modulo operations, Boolean operations, comparisons and assignments to be
elementary operations that can be executed at unit cost unless we explicitly state
otherwise.

2.6 Why look for efficiency?
As computing equipment gets faster and faster, it may hardly seem worthwhile to
spend our time trying to design more efficient algorithms. Would it not be easier
simply to wait for the next generation of computers? The principles established
in the preceding sections show that this is not true. Suppose, to illustrate the
argument, that to solve a particular problem you have available an exponential
algorithm and a computer that can run this algorithm on instances of size n in
10 4 x 2n seconds. Your program can thus solve an instance of size 10 in 10 4 x 210

seconds, or about one-tenth of a second. Solving an instance of size 20 will take
about a thousand times as long, or nearly two minutes. To solve an instance of
size 30 would take a thousand times as long again, so that even a whole day's
computing would not be sufficient. Supposing you were able to run your computer
without interruption, and without errors, for a year, you would only just be able
to solve an instance of size 38; see Problem 2.15.

Suppose you need to solve bigger instances than this, and that with the money
available you can afford to buy a new computer one hundred times faster than the
first. With the same algorithm you can now solve an instance of size n in only
10-6 x 2n seconds. You may feel you have wasted your money, however, when you
figure out that now, when you run your new machine for a whole year, you cannot
even solve an instance of size 45. In general, if you were previously able to solve
an instance of size n in some given time, your new machine will solve instances of
size at best n + lg 100, or about n + 7, in the same time.

Suppose you decide instead to invest in algorithmics, and that, having spent
the same amount of money, you have managed to find a cubic algorithm to solve
your problem. Imagine, for example, that using the original machine and the new
algorithm you can solve an instance of size n in 10-2 x n3 seconds. Thus to solve

66



Section 2.7 Some examples

an instance of size 10 will take you 10 seconds, and an instance of size 20 will still
require between one and two minutes. But now an instance of size 30 can be solved
in four and a half minutes, and in one day you can solve instances whose size is
greater than 200; with one year's computation you can almost reach size 1500. This
is illustrated by Figure 2.1.

OILze VILr 11NWIMsCne

Figure 2.1. Algorithmics versus hardware

Not only does the new algorithm offer a much greater improvement than the pur-
chase of new hardware, it will also, supposing you are able to afford both, make
such a purchase much more profitable. If you can use both your new algorithm
and a machine one hundred times faster than the old one, then you will be able to
solve instances four or five times bigger than with the new algorithm alone, in the
same length of time-the exact factor is 100. Compare this to the situation with
the old algorithm, where you could add 7 to the size of the instance; here you can
multiply the size of the instance by four or five. Nevertheless the new algorithm
should not be used uncritically on all instances of the problem, in particular on
rather small ones. We saw above that on the original machine the new algorithm
takes 10 seconds to solve an instance of size 10, which is one hundred times slower
than the old algorithm. The new algorithm is faster only for instances of size 20 or
greater. Naturally, it is possible to combine the two algorithms into a third one that
looks at the size of the instance to be solved before deciding which method to use.

2.7 Some examples
Maybe you are wondering whether it is really possible in practice to speed up
an algorithm to the extent suggested in the previous section. In fact, there have
been cases where even more spectacular improvements have been made, even for
well-established algorithms.

67



Elementary Algorithmics

2.7.1 Calculating determinants

Determinants are important in linear algebra, and we need to know how to calculate
them efficiently. In our context, they provide the best example of the difference that
a good algorithm can make, when compared to another classic algorithm. (You do
not have to know what a determinant is to enjoy this section.)

There are two well-known algorithms to compute determinants. One is based
on the recursive definition of the determinant; the other is called Gauss-Jordan
elimination. The recursive algorithm takes a time proportional to n! to compute
the determinant of an n x n matrix; see Problem 1.31. This is even worse than
taking exponential time. In sharp contrast, Gauss-Jordan elimination takes a time
proportional to n

3 for the same task.
We programmed both algorithms on our local machine. The Gauss-Jordan

algorithm finds the determinant of a 10 x 10 matrix in one-hundredth of a second;
it takes about five and a half seconds on a 100 x 100 matrix. On the other hand,
the recursive algorithm takes more than 20 seconds on a mere 5 x 5 matrix and 10
minutes on a 10 x 10 matrix. We estimate that the recursive algorithm would need
more than 10 million years to calculate the determinant of a 20 x 20 matrix, a task
accomplished by the Gauss-Jordan algorithm in about one-twentieth of a second!

You should not conclude from this example that recursive algorithms are nec-
essarily bad. On the contrary, Chapter 7 discusses a technique where recursion
plays a fundamental role in the design of efficient algorithms. In particular, a re-
cursive algorithm that can calculate the determinant of an n x n matrix in a time
proportional to n 1

g
7

, or about n2'81 , follows from Strassen's work, thus proving
that Gauss-Jordan elimination is not optimal.

2.7.2 Sorting

The sorting problem is of major importance in computer science, and in particular
in algorithmics. We are required to arrange in order a collection of n objects on
which a total ordering is defined. By this we mean that when we compare any two
objects in the collection, we know which should come first. For many kinds of
objects, this requirement is trivial: obviously 123 comes before 456 in numerical
order, and 1 August 1991 comes before 25 December 1995 in calendar order, so that
both integers and dates are totally ordered. For other, equally common objects,
though, defining a total order may not be so easy. For example, how do you
order two complex numbers? Does "general" come before or after "General" in
alphabetical order, or are they the same word (see Problem 2.16)? Neither of these
questions has an obvious answer, but until an answer is found the corresponding
objects cannot be sorted.

Sorting problems are often found inside more complex algorithms. We have
already seen two standard sorting algorithms in Section 2.4: insertion sorting and
selection sorting. Both these algorithms, as we saw, take quadratic time both in the
worst case and on the average. Although they are excellent when n is small, other
sorting algorithms are more efficient when n is large. Among others, we might
use Williams's heapsort algorithm (see Section 5.7), mergesort (see Section 7.4.1), or
Hoare's quicksort algorithm (see Section 7.4.2). All these algorithms take a time in

Chapter 268



Section 2.7 Some examples

the order of n log n on the average; the first two take a time in the same order even
in the worst case.

To have a clearer idea of the practical difference between a time in the order of
n2 and a time in the order of n log n, we programmed the insertion sort algorithm
and quicksort on our local machine. The difference in efficiency between the two
algorithms is marginal when the number of elements to be sorted is small. Quicksort
is already almost twice as fast as insertion when sorting 50 elements, and three times
as fast when sorting 100 elements. To sort 1000 elements, insertion takes more than
three seconds, whereas quicksort requires less than one-fifth of a second. When we
have 5000 elements to sort, the inefficiency of insertion sorting becomes still more
pronounced: one and a half minutes are needed on average, compared to little more
than one second for quicksort. In 30 seconds, quicksort can handle 100 000 elements;
we estimate it would take nine and a half hours to do the same job using insertion
sorting.

We shall see in Chapter 12 that no sorting algorithm that proceeds by comparing
the elements to be sorted can be faster than the order of n log n, so that in this sense
heapsort, mergesort and quicksort are as fast as an algorithm can be (although quicksort
has a bad worst case). Of course their actual running times depend on the hidden
multiplicative constants in the definition of "the order of." Other, faster sorting
algorithms can be found in special cases, however. Suppose for instance that the
elements to be sorted are integers known to lie between 1 and 10 000. Then the
following algorithm can be used.

procedure pigeonhole (T[. . n])
{Sorts integers between 1 and 10000}
array U[1..10000]
for k - 1 to 10000 do U[kl- 0
for i - 1 to n do

k - T[i]
UIk]- U[kU-1

i - 0
for k - 1 to 10000 do

while U[k] A 0 do
i- i + 1

T[i]- k
U[kb- U[k]-1

Here U is an array of "pigeon-holes" for the elements to be sorted. There must
be a separate pigeon-hole for every possible element that might be found in T.
The first loop clears the pigeon-holes, the second puts each element of T into the
appropriate place, and the third pulls them out again in ascending order. It is
easy to show (see Problem 2.17) that this algorithm and its variants take a time
in the order of n. (The hidden multiplicative constant depends on the bound on
the value of the elements to be sorted, here 10 000.) When they are applicable they
therefore beat any algorithm that works by comparing elements; on the other hand,
the requirement that we should be able to use one pigeon-hole for every possible
key means that they are applicable far less often than the general sorting methods.

69



Elementary Algorithmics

Parallel sorting methods, which use many processors to carry out several com-
parisons simultaneously, allow us to go faster still. An example of a parallel sorting
algorithm is outlined in Chapter 11.

2.7.3 Multiplication of large integers
When a calculation requires very large integers to be manipulated, it can happen
that the operands become too long to be held in a single word of the computer in use.
Such operations thereupon cease to be elementary. When this occurs, we can use a
representation such as Fortran's "double precision", or, more generally, multiple-
precision arithmetic. Most object-oriented programming languages, such as C++
or Smalltalk, have redefined classes that make this easy. Now, however, we must
ask ourselves how the time necessary to add, subtract, multiply or divide two large
integers increases with the size of the operands. We can measure this size by either
the number of computer words needed to represent the operands on a machine or
the length of their representation in decimal or binary. Since these measures differ
only by a multiplicative constant, this choice does not alter our analysis of the order
of efficiency of the algorithms in question (but see Problem 2.18).

In this section we shall consider only the multiplication operation. Analysis of
addition and subtraction is much simpler, and is left as Problem 2.19. Suppose then
that two large integers of sizes m and n respectively are to be multiplied. (Do not
confuse the size of the integers with their value!) The classic algorithm of Section 1.1
can easily be adapted to this context. We see that it multiplies each digit of one
of the operands by each digit of the other, and that it executes approximately one
elementary addition for each of these multiplications. (There are a few more, in fact,
because of the carries that are generated.) On a machine we multiply each word
of one of the operands by each word of the other, and then do about one double-
length addition for each of these multiplications, but the principle is exactly the
same. The time required is therefore in the order of mn. Multiplication a la russe
also takes a time in the order of mn, provided we put the smaller operand in the
left-hand column and the larger on the right; see Problem 2.20. Thus there is no
reason for preferring it to the classic algorithm, particularly as the hidden constant
is likely to be larger.

More efficient algorithms exist to solve the problem of multiplying two large
integers. Divide-and-conquer, which we encountered in Section 1.2, and which
we shall study further in Section 7.1, takes a time in the order of nmlg( 3

/
2

), or
approximately nm

0 59
, where n is the size of the larger operand and m is the size

of the smaller. If both operands are of size n, the algorithm thus takes a time in the
order of n1

.
59 , which is preferable to the quadratic time taken by both the classic

algorithm and multiplication a la russe.
The difference between the order of n2 and the order of n1 59 is less spectacular

than that between the order of n2 and the order of n log n, which we saw in the case
of sorting algorithms. To verify this, we programmed the classic algorithm and the
divide-and-conquer algorithm, and tested them on operands of different sizes. The
theoretically better divide-and-conquer algorithm gives little real improvement on
600-figure numbers: it takes about 300 milliseconds, whereas the classic algorithm
takes about 400 milliseconds. For operands ten times this length, however, the fast

70 Chapter 2



Section 2.7 Some examples

algorithm is some three times more efficient than the classic algorithm: they take
about 15 seconds and 40 seconds, respectively. The gain in efficiency continues to
increase as the size of the operands goes up.

More sophisticated algorithms exist, the fastest at present taking a time in the
order of n log n log log n to multiply two integers of size n. However these more
sophisticated algorithms are largely of theoretical interest; the hidden constants
involved are such that they only become competitive for much larger operands.
For "small" instances involving operands with only a few thousand decimal digits,
they are considerably slower than the algorithms mentioned above.

2.7.4 Calculating the greatest common divisor

Let m and n be two positive integers. The greatest common divisor of m and
n, denoted by gcd(m, n), is the largest integer that divides both m and n exactly.
When gcd(m, n) = 1, we say that m and n are coprime. For example, gcd(10,21) = 1
and gcd(6,15)= 3, so 10 and 21 are coprime, but 6 and 15 are not. The obvious
algorithm for calculating gcd (m, n) is obtained directly from the definition.

function gcd(m, n)
i - min(m, n) +1
repeat i - i - 1 until i divides both m and n exactly
return i

The time taken by this algorithm is in the order of the difference between the
smaller of the two arguments and their greatest common divisor. When m and n
are of similar size and coprime, it therefore takes a time in the order of n. (Notice
that this is the value of the operand, not its size.)

A classic algorithm for calculating gcd ( m, n) consists of first factorizing m and
n, and then taking the product of the prime factors common to m and n, each prime
factor being raised to the lower of its powers in the two arguments. For example,
to calculate gcd(120,700) we first factorize 120 = 23 x 3 x 5 and 700 = 22 x 52 x 7.
The common factors of 120 and 700 are therefore 2 and 5, and their lower powers
are 2 and 1, respectively. The greatest common divisor of 120 and 700 is therefore
22 x 5 = 20.

Even though this algorithm is better than the one given previously, it requires
us to factorize m and n, an operation nobody knows how to do efficiently when
m and n are large; see Section 10.7.4. In fact there exists a much more efficient
algorithm for calculating greatest common divisors, known as Euclid's algorithm,
even though it can be traced back well before the time of the ancient Greeks.

function Euclid(m, n)
while m > 0 do

t- m
m- nmodm
n- t

return n

71



Elementary Algorithmics

If we consider the arithmetic operations involved to have unit cost, this algo-
rithm takes a time in the order of the logarithm of its arguments-that is, in the
order of their size-even in the worst case; see Section 4.4. To be historically ex-
act, Euclid's original algorithm works using successive subtractions rather than by
calculating a modulo. In this form it is more than 3500 years old.

2.7.5 Calculating the Fibonacci sequence
The Fibonacci sequence was introduced in Section 1.6.4. We remind the reader that
the terms of this sequence are defined by the following recurrence:

Ao = 0; f = I and
fn =fn1;+fn 2 forn >2.

As we saw, the sequence begins 0, 1, 1, 2, 3, 5, 8, 13, 21, 34 ... We also saw
de Moivre's formula

LI [V -[ - (-W/)n]v5

where d> = (1 + /5 )/2 is the golden ratio, and we pointed out that the term ( - <) -
can be neglected when n is large. Hence the value of fn is in the order of gqn, and
therefore the size of fn is in the order of n. However, de Moivre's formula is of little
immediate help in calculating fn exactly, since the larger n becomes, the greater is
the degree of precision required in the values of 5 and (b; see Section 2.5. On our
local machine, a single-precision computation produces an error for the first time
when calculating f66.

The recursive algorithm obtained directly from the definition of the Fibonacci
sequence was given in Section 1.6.4 under the name Fibonacci.

function Fibrec(n)
if n < 2 then return n
else return Fibrec(n - 1)+Fibrec(n - 2)

This algorithm is very inefficient because it recalculates the same values many
times. For instance, to calculate Fibrec(5) we need the values of Fibrec(4) and
Fibrec (3); but Fibrec (4) also calls for the calculation of Fibrec (3). It is simple to check
that Fibrec(3) will be calculated twice, Fibrec(2) three times, Fibrec(l) five times,
and Fibrec(O) three times. (The number of calls of Fibrec(5),Fibrec(4),...,Fibrec(l),
are thus 1, 1, 2, 3 and 5 respectively. It is no coincidence that this is the beginning
of the Fibonacci sequence; see Problem 2.24.)

In fact, the time required to calculate f, using this algorithm is in the order of
the value of fn itself, that is, in the order of k 'U To see this, note that the recursive
calls only stop when Fibrec returns a value 0 or 1. Adding these intermediate results
to obtain the final result fn must take at least f, operations, and hence the complete
algorithm certainly takes a number of elementary operations at least in the order
of fn. This was proven formally by constructive induction in Section 1.6.4, together
with a proof that the number of operations required is not more than the order of
f, provided the additions are counted at unit cost. The case when additions are

Chapter 272



Section 2.7 Some examples

not counted at unit cost yields the same conclusion, as the more precise analysis
given in Section 4.2.3 shows.

To avoid wastefully calculating the same values over and over, it is natural to
proceed as in Section 2.5, where a different algorithm Fibonacci was introduced,
which we rename Fibiter for comparison with Fibrec.

function Fibiter(n)
i-1; jo-O
fork -tondo j- i+j

i-i ii
return j

This second algorithm takes a time in the order of n, assuming we count each
addition as an elementary operation. Figure 2.2, which shows some computation
times we observed in practice, illustrates the difference. To avoid the problems
caused by ever-longer operands, the computations reported in this figure were
carried out modulo 107, which is to say that we only computed the seven least
significant figures of the answer. The times for Fibrec when n > 50 were estimated
using the hybrid approach.

n 10 20 30 50 100
Fibrec 8 msec 1 sec 2 min 21 days 109 years

Fibiter 6 msec 1 1 3 2 msec

Figure 2.2. Comparison of modulo 107 Fibonacci algorithms

If we do not make the assumption that addition is an elementary operation, Fibiter
takes a time in the order of n2 , which is still much faster than the exponential-time
Fibrec. Surprisingly, there exists a third algorithm that gives as great an improve-
ment over Fibiter as Fibiter does over Fibrec. This third algorithm takes a time in the
order of the logarithm of n, provided we count arithmetic operations at unit cost.
Otherwise the new algorithm is still faster than Fibiter, but less spectacularly so;
see Problem 7.33.

2.7.6 Fourier transforms
The Fast Fourier Transform algorithm is perhaps the one algorithmic discovery that
has had the greatest practical impact in history. Fourier transforms are of fun-
damental importance in such disparate applications as optics, acoustics, quan-
tum physics, telecommunications, systems theory and signal processing includ-
ing speech recognition. For years, progress in these areas was limited by the
fact that the known algorithms for calculating Fourier transforms all took far too
long.

The "discovery" by Cooley and Tukey in 1965 of a fast algorithm revolution-
ized the situation: problems previously considered infeasible could now at last be
tackled. In one early test of the "new" algorithm, the Fourier transform was used to
analyse data from an earthquake that had taken place in Alaska in 1964. While the

73



Elementary Algorithmics Chapter 2

classic algorithm took more than 26 minutes of computation, the "new" algorithm
was able to perform the same task in less than two and a half seconds.

Ironically it turned out that an efficient algorithm had already been published
in 1942 by Danielson and Lanczos, and all the necessary theoretical groundwork
for Danielson and Lanczos's algorithm had been published by Runge and Konig
in 1924. And if that were not sufficient, Gauss describes a similar algorithm in a
paper written around 1805 and published posthumously in 1866!

2.8 When is an algorithm specified?

At the beginning of the book we said that execution of an algorithm must not
normally involve any subjective decisions, nor must it call for the use of intuition
or creativity; later on, we said that we should almost always be content to prove
that our algorithms are correct in the abstract, ignoring practical limitations; and
later still, we proposed to consider most arithmetic operations to be elementary
unless we explicitly stated otherwise.

This is all very well, but what should we do if practical considerations force
us to abandon this convenient position, and to take account of the limitations of
the available machinery? For instance, any algorithm that is to compute the exact
value of fioo will be forced to consider that certain arithmetic operations-certainly
addition, and possibly multiplication as well (see Problem 7.33)-are not elemen-
tary (recall that floo is a number with 21 decimal digits). Most probably this will
be taken into account by using a program package that allows arithmetic opera-
tions on very large integers. If we do not specify exactly how the package should
implement multiple-precision arithmetic, then the choice of a method to use can
be considered to be a subjective decision, and the proposed algorithm will be in-
completely specified. Does this matter?

The answer is that yes, in certain cases it does. Later in the book we shall
come across algorithms whose performance does indeed depend on the method
they use to multiply large integers. For such algorithms (and formally speaking,
for any algorithm) it is not sufficient simply to write an instruction like x - y x z,
leaving the reader to choose any technique that comes to hand to implement this
multiplication. To completely specify the algorithm, we must also specify how the
necessary arithmetic operations are to be implemented.

To make life simpler, however, we shall continue to use the word algorithm
for certain incomplete descriptions of this kind. The details will be filled in later
should our analyses require them.

2.9 Problems

Problem 2.1. Find a more practical algorithm for calculating the date of Easter
than the one given in Problem 1.2. What will be the date of Easter in the year 2000?
What is the domain of definition of your algorithm?

Problem 2.2. In the game of chess, your opponent's pieces and moves are all
visible. We say that chess is a game with complete information. In games such as
bridge or poker, however, you do not know how the cards have been dealt. Does

74



Section 2.9 Problems

this make it impossible to define an algorithm for playing good bridge or poker?
Would such an algorithm necessarily be probabilistic?
What about backgammon? Here you can see your opponent's pieces and moves,
but you cannot predict how the dice will fall on future throws. Does this alter the
situation?

Problem 2.3. It is sometimes claimed that nowadays hardware is so cheap and
manpower ("liveware") so expensive that it is never worth wasting a programmer's
time to shave a few seconds off the running time of a program. Does this mean
that algorithmics is fated to be a theoretical pursuit of formal interest only, with no
practical applications? Justify your answer.

Problem 2.4. Using the technique called "virtual memory", it is possible to free
a programmer from most worries about the actual size of the storage available on
his machine. Does this mean that the quantity of storage used by an algorithm is
never of interest in practice? Justify your answer.

Problem 2.5. Suppose you measure the performance of a program, perhaps using
some kind of run-time trace, and then you optimize the heavily-used parts of the
code. However, you are careful not to change the underlying algorithm. Would
you expect to obtain (a) a gain in efficiency by a constant factor, whatever the
problem being solved, or (b) a gain in efficiency that gets proportionally greater as
the problem size increases? Justify your answer.

Problem 2.6. A sorting algorithm takes 1 second to sort 1000 items on your local
machine. How long would you expect it to take to sort 10 000 items (a) if you
believe that the algorithm takes a time roughly proportional to n2 , and (b) if you
believe that the algorithm takes a time roughly proportional to n log n?

Problem 2.7. Two algorithms take n2 days and n3 seconds respectively to solve an
instance of size n. Show that it is only on instances requiring more than 20 million
years to solve that the quadratic algorithm outperforms the cubic algorithm.

Problem 2.8. Two algorithms take n2 days and 2n seconds respectively to solve
an instance of size n. What is the size of the smallest instance on which the former
algorithm outperforms the latter? Approximately how long does such an instance
take to solve?

Problem 2.9. Simulate both the insertion sort and the selection sort algorithms of
Section 2.4 on the following two arrays: U = [1, 2,3,4,5,6] and V = [6,5,4,3,2,1].
Does insertion sorting run faster on the array U or the array V? And selection
sorting? Justify your answers.

Problem 2.10. Suppose you try to "sort" an array W - [1,1,1,1,1,1] all of whose
elements are equal, using (a) insertion sorting and (b) selection sorting. How does
this compare to sorting the arrays U and V of the previous problem?

75



Elementary Algorithmics

Problem 2.11. You are required to sort a file containing integers between 0 and
999 999. You cannot afford to use one million pigeon-holes, so you decide instead
to use one thousand pigeon-holes numbered from 0 to 999. You begin the sort by
putting each integer into the pigeon-hole corresponding to its first three figures.
Next you use insertion sorting one thousand times to sort the contents of each
pigeon-hole separately, and finally you empty the pigeon-holes in order to obtain
a completely sorted sequence.
Would you expect this technique to be faster, slower or the same as simply using
insertion sorting on the whole sequence (a) on the average, and (b) in the worst
case? Justify your answers.

Problem 2.12. Is it reasonable, as a practical matter, to consider division as an
elementary operation (a) always, (b) sometimes, or (c) never? Justify your answer.
If you think it necessary, you may treat the division of integers and the division of
real numbers separately.

Problem 2.13. Suppose n is an integer variable in a program you are writing.
Consider the instruction x - sin(n), where n may be supposed to be in radians.
As a practical matter, would you regard the execution of this instruction as an
elementary operation (a) always, (b) sometimes, or (c) never? Justify your answer.
What about the instruction x - sin(nTr) ?

Problem 2.14. In Section 2.5, we saw that Wilson's theorem could be used to
test any number for primality in constant time if factorials and tests for integer
divisibility were counted at unit cost, regardless of the size of the numbers involved.
Clearly this would be unreasonable.
Use Wilson's theorem together with Newton's binomial theorem to design an algo-
rithm capable of deciding in a time in the order of log n whether or not an integer
n is prime, provided additions, multiplications and tests for integer divisibility are
counted at unit cost, but factorials and exponentials are not. The point of this exer-
cise is not to provide a useful algorithm, but to demonstrate that it is unreasonable
to consider multiplications as elementary operations in general.

Problem 2.15. A certain algorithm takes 10-4 x 2n seconds to solve an instance of
size n. Show that in a year it could just solve an instance of size 38. What size of
instance could be solved in a year on a machine one hundred times as fast?
A second algorithm takes 10-2 x n3 seconds to solve an instance of size n. What
size instance can it solve in a year? What size instance could be solved in a year on
a machine one hundred times as fast?
Show that the second algorithm is nevertheless slower than the first for instances
of size less than 20.

Problem 2.16. Suppose for the moment that a word is defined as a string of let-
ters with no intervening spaces or punctuation, so that "can't" is considered as
two words, and "jack-in-a-box" as four. You want to sort a file of such words.
Devise an algorithm which, given any two strings of letters, decides whether or not
they represent the same word, and if not, which should come first. What would
your algorithm do with (a) "MacKay" and "Mackay," and (b) "anchorage" and

76 Chapter 2



Section 2.9 Problems

"Anchorage"? A self-respecting algorithm should certainly not put "Mackay" and
"Anchorage" before "aardvark" or after "zymurgy."
For a much harder problem, devise an algorithm for comparing entries in the
telephone book. This must deal with all kinds of odd strings, including punctuation
("E-Z Cleaners"), numbers ("A-1 Pharmacy"), accents and other diacritics ("Adele
Nufiez"), and abbreviations ("St Catherine St. Tavern"). How does the telephone
company do it?

Problem 2.17. Show that pigeon-hole sorting takes a time in the order of n to sort
n elements that are within bounds.

Problem 2.18. In Section 2.7.3 we said that the analysis of algorithms for large
integers is not affected by the choice of a measure for the size of the operands: the
number of computer words needed, or the length of their representation in decimal
or binary will do equally well. Show that this remark would in fact be false were
we considering exponential-time algorithms.

Problem 2.19. How much time is required to add or subtract two large integers
of size m and n respectively? Sketch the appropriate algorithm.

Problem 2.20. How much time is required to multiply two large integers of size
m and n, respectively, using multiplication a la russe (a) if the smaller operand is
in the left-hand column, and (b) if the larger operand is in the left-hand column?
Of course you should not take addition, doubling and halving to be elementary
operations in this problem.

Problem 2.21. How much time is required to multiply two large integers of size
m and n, respectively, using multiplication round a rectangle (see Problem 1.9).

Problem 2.22. Calculate gcd(606, 979) (a) by factorizing 606 and 979, and pick-
ing out the common factors to the appropriate power, and (b) using Euclid's
algorithm.

Problem 2.23. Use de Moivre's formula for fn to show that f, is the nearest
integer to qA !15 for all n > 1.

Problem 2.24. Show that when calculating fn using Fibrec from Section 2.7.5, there
are in all f,+i calls of Fibrec (i) for i = 1, 2, . . ., n, and fn 1 calls of Fibrec (0).

Problem 2.25. Let g(n) be the number of ways to write a string of n zeros and
ones so that there are never two successive zeros. For example, when n = 1 the
possible strings are 0 and 1, so g(1)= 2; when n = 2 the possible strings are 01, 11
and 10, so g(2)= 3; when n 3 the possible strings are 010, 011, 101, 110 and 111,
so g(3)= 5. Show that g(n) fn+2.

77



Elementary Algorithmics Chapter 2

2.10 References and further reading
To reinforce our remarks on the importance of designing efficient algorithms, we
encourage the reader to look at Bentley (1984), which offers experimental proof that
intelligent use of algorithmics may allow a TRs-80 to run rings round a CRAY-1!

An algorithm capable of calculating the determinant of an n x n matrix in a
time in the order of n2 81 follows from the work of Strassen (1969) and Bunch and
Hopcroft (1974). Several sorting algorithms are discussed in thisbook; Knuth (1973)
is much more thorough on this topic. The divide-and-conquer algorithm that can
multiply n-figure numbers in a time in the order of n1

.
59 is attributed to Karatsuba

and Ofman (1962); it is described in detail in Chapter 7. A faster large integer
multiplication algorithm, due to Schonhage and Strassen (1971), runs in a time in
the order of n log n log log n; see Brassard, Monet and Zuffellato (1986) for more
details. Euclid's algorithm can be found in Book VII of Euclid's Elements: see
Heath (1926). The fast algorithm for calculating the Fibonacci sequence alluded to
at the end of Section 2.7.5 is explained in Gries and Levin (1980) and Urbanek (1980);
see also Brassard and Bratley (1988) for a race between this fast algorithm and those
given in Section 2.7.5.

The first published algorithm for calculating discrete Fourier transforms effi-
ciently is by Danielson and Lanczos (1942). These authors mention that the source
of their method goes back to Runge and Konig (1924). In view of the great practical
importance of Fourier transforms, it is astonishing that the existence of a fast algo-
rithm remained almost entirely unknown until its rediscovery nearly a quarter of
a century later by Cooley and Tukey (1965). For a more complete account of the
history of the fast Fourier transform, read Cooley, Lewis and Welch (1967). More
details and applications to fast integer multiplication and symbolic polynomial
arithmetic are provided in Brassard and Bratley (1988).

A solution to Problem 2.1 attributed to Gauss can be found in either Larousse
(1968) or Kirkerud (1989); see also the Book of Common Prayer, available in any
Anglican church. The solution to Problem 2.14 is given by Shamir (1979).

78



Chapter 3

Asymptotic Notation

3.1 Introduction

An important aspect of this book concerns determining the efficiency of algorithms.
In Section 2.3, we saw that this may, for instance, help us choose among several
competing algorithms. Recall that we wish to determine mathematically the quan-
tity of resources needed by an algorithm as a function of the size (or occasionally
of the value) of the instances considered. Because there is no standard computer to
which all measurements of computing time might refer, we saw also in Section 2.3
that we shall be content to express the time taken by an algorithm to within a mul-
tiplicative constant. To this end, we now introduce formally the asymptotic notation
used throughout the book. In addition, this notation permits substantial simplifi-
cations even when we are interested in measuring something more tangible than
computing time, such as the number of times a given instruction in a program is
executed.

This notation is called "asymptotic" because it deals with the behaviour of func-
tions in the limit, that is for sufficiently large values of its parameter. Accordingly,
arguments based on asymptotic notation may fail to have practical value when
the parameter takes "real-life" values. Nevertheless, the teachings of asymptotic
notation are usually of significant relevance. This is because, as a rule of thumb, an
asymptotically superior algorithm is very often (albeit not always) preferable even
on instances of moderate size.

3.2 A notation for "the order of"

Let t: N - WO be an arbitrary function from the natural numbers to the nonneg-
ative reals, such as t(n)= 27n 2 

+ 355n + 12. You may think of n as representing113
the size of the instance on which a given algorithm is required to perform, and of

79



Asymptotic Notation Chapter 3

t (n) as representing the quantity of a given resource spent on that instance by a
particular implementation of this algorithm. For example, it could be that the im-
plementation spends t (n) microseconds in the worst case on an instance of size n,
or perhaps t (n) represents the amount of storage. As we have seen, the function
t(n) may well depend on the implementation rather than uniquely on the algo-
rithm. Recall however the principle of invariance, which says that the ratio of the
running times of two different implementations of the same algorithm is always
bounded above and below by fixed constants. (The constants may depend on the
implementations but not on the size of the instance.)

Now, consider another function f: N - R2 such as f(n)= n
2

. We say that
t(n) is in the order of f(n) if t(n) is bounded above by a positive real multiple
of f (n) for all sufficiently large n. Mathematically, this means that there exist a
positive real constant c and an integer threshold no such that t (n) < cf (n) whenever
n > no.

For instance, consider the functions f(n) and t(n) defined above. It is clear
that both n < n 2 and 1 < n2 whenever n > 1. Therefore, provided n > 1,

t(n) =27n2+ 3 5 5 n+12
113

< 27n2 + 355 n2 + 12n2

42 16 n2= 42 6 f(n).
113 113

Taking c = 42 16 (or anything larger) and no = 1, we therefore conclude that t (n)
is in the order of f(n) since t(n)< cf (n) whenever n > no. It is easy to see that
we could just as well have chosen c = 28 and no = 6. Such a tradeoff between the
smallest possible value for no and that for c is common.

Thus, if an implementation of an algorithm takes in the worst case
27n 2 + 3155n + 12 microseconds to solve an instance of size n, we may simplify
by saying that the time is in the order of n2 . Naturally, there is no point stating that
we are talking about the order of n2 microseconds since this differs only by a con-
stant factor from, say, n2 years. More importantly, "the order of n2 " characterizes
not only the time required by a particular implementation of the algorithm, but the
time taken by any implementation (by the principle of invariance). Therefore, we
are entitled to assert that the algorithm itself takes a time in the order of n2 or, more
simply, that it takes quadratic time.

It is convenient to have a mathematical symbol to denote the order of. Again,
let f: H - R >0 be an arbitrary function from the natural numbers to the nonneg-
ative reals. We denote by O (f (n))-pronounced "big Oh of f(n)"-the set of all
functions t : -R2>o such that t(n) < cf (n) for all n > no for some positive real
constant c and integer threshold no. In other words,

80

0(f(n)) = It: N - Wto I (:IceR')(VnE N)[t(n)-5cf(n)]J.



Section 3.2 A notation for "the order of"

Even though it is natural to use the set-theoretic symbol " E " to denote the
fact that n2 is in the order of n 3 as in " n2 e 0(n 3 )", be warned that the traditional
notation for this is n2 = 0(n 3 ). Therefore, do not be surprised if you find these so-
called "one-way equalities" (for one would never write 0(n 3 )= n 2 ) in other books
or scientific papers. Those using one-way equalities say that n2 is of (or sometimes
on) the order of n3 , or simply n 2 is 0(n 3 ). Another significant difference you may
encounter in the definition of the 0 notation is that some writers allow 0 (f (n))
to include functions from the natural numbers to the entire set of reals-including
negative reals-and define a function to be in 0 (f (n)) if its absolute value is in what
we call 0(f(n)).

For convenience, we allow ourselves to misuse the notation from time to time
(as well as other notation introduced later in this chapter). For instance, we may
say that t(n) is in the order of f(n) even if t(n) is negative or undefined for a
finite number of values of n. Similarly, we may talk about the order of f(n) even
if f(n) is negative or undefined for a finite number of values of n. We shall say
that t(n)e 0(f(n)) if there is a positive real constant c and integer threshold no
such that both t(n) and f(n) are well-defined and 0 < t(n)< cf(n) whenever
n > no, regardless of what happens to these functions when n < no. For example,
it is allowable to talk about the order of n/log n, even though this function is not
defined when n = 0 or n = 1, and it is correct to write n 3 -3n 2 - n - 8 E 0(n 3 )

even though n 3 -3n 2 - n - 8 < 0 when n < 3.
The threshold no is often useful to simplify arguments, but it is never neces-

sary when we consider strictly positive functions. Let f, t : N -i R be two func-
tions from the natural numbers to the strictly positive reals. The threshold rule
states that t (n) e 0(f (n)) if and only if there exists a positive real constant c such
that t(n) < cf(n) for each natural number n. One direction of the rule is obvious
since any property that is true for each natural number is also true for each suffi-
ciently large integer (simply take no = 0 as the threshold). Assume for the other
direction that t(n) 0(f(n)). Let c and no be the relevant constants such that
t(n)< cf(n) whenever n > no. Assume no > 0 since.otherwise there is nothing
to prove. Let b = max{t(n)/f(n) 0 < n < nol be the largest value taken by the
ratio of t and f on natural numbers smaller than no (this definition makes sense
precisely because f(n) cannot be zero and no > 0). By definition of the maxi-
mum, b > t(n)/f(n), and therefore t(n)< bf(n), whenever 0 < n < no. We al-
ready know that t(n)< cf(n) whenever n > no. Therefore t(n)< af(n) for each
natural number n, as we had to prove, provided we choose a at least as large as
both b and c, such as a = max(b, c). The threshold rule can be generalized to say
that if t(n)E 0(f(n)) and if f(n) is strictly positive for all n > no for some no,
then this no can be used as the threshold for the 0 notation: there exists a positive
real constant c such that t(n)< cf(n) for all n > no.

A useful tool for proving that one function is in the order of another is the
maximum rule. Let f,g : NR- °>

0 be two arbitrary functions from the natural
numbers to the nonnegative reals. The maximum rule says that 0 (f(n) +g(n))=
0 (max(f (n), g(n))). More specifically, let p, q : N - Rlo be defined for each nat-
ural number n by p(n)= f(n)+g(n) and q(n)= max(f(n),g(n)), and consider

81



Asymptotic Notation Chapter 3

an arbitrary function t:N -. lO. The maximum rule says that t (n)e 0(p(n)) if
and only if t(n)e 0(q(n)). This rule generalizes to any finite constant number
of functions. Before proving it, we illustrate a natural interpretation of this rule.
Consider an algorithm that proceeds in three steps: initialization, processing and
finalization. Assume for the sake of argument that these steps take time in 0 (n2 ),
0(n 3 ) and 0 (n log n), respectively. It is therefore clear (see Section 4.2) that the
complete algorithm takes a time in 0(n 2 + n 3 + nlogn). Although it would not
be hard to prove directly that this is the same as 0(n 3 ), it is immediate from the
maximum rule.

0(n 2 + n3 + nlogn) = 0(max(n 2 ,n 3 ,nlogn))

= 0(n3 )

In other words, even though the time taken by an algorithm is logically the sum of
the times taken by its disjoint parts, it is in the order of the time taken by its most
time-consuming part, provided the number of parts is a constant, independent of
input size.

We now prove the maximum rule for the case of two functions. The general
case of any fixed number of functions is left as an exercise. Observe that

f(n)+g(n)= min(f(n),g(n))+ max(f(n), g(n))

and
0 < min(f(n), g(n)) < max(f(n), g(n)).

It follows that

max(f(n),g(n)) < f(n)+g(n)< 2 max(f(n),g(n)). (3.1)

Now consider any t(n)c 0(f(n)+g(n)). Let c be an appropriate constant such
that t(n)< c (f(n)+g(n)) for all sufficiently large n. By Equation 3.1, it follows
that t(n)< 2c max(f (n),g(n)). Therefore, t(n) is bounded above by a posi-
tive real multiple-namely 2c-of max(f(n), g(n)) for all sufficiently large n,
which proves that t(n)c 0(max(f(n),g(n))). For the other direction, consider
any t(n)e 0(max(f(n), g(n))). Let c be an appropriate new constant such that
t(n)s c max(f(n), g(n)) for all sufficiently large n. By Equation 3.1 again, it
follows that t(n)s c (f(n)±+g(n)). By definition of the 0 notation, this implies
directly that t(n)e 0(f(n)+g(n)), which completes the proof of the maximum
rule. In accordance with our allowed occasional misuse of the notation, we are
entitled to invoke the maximum rule even if the functions concerned are negative
or undefined on a finite set of values. Be careful however not to use the rule if
some of the functions are negative infinitely often; otherwise you risk reasoning as
follows:

0(n)= 0(n + n2 - n2 )= 0(max(n,n2 , -n 2 )) = 0(n2 ),

where the middle equality is obtained by incorrect use of the maximum rule.

82



Section 3.2 A notation for "the order of"

The maximum rule tells us that if t(n) is a complicated function such as
t(n)= 12n 3 logn - 5n2 + log2 n + 36 and if f (n) is the most significant term of
t(n) with its coefficient discarded, here f (n)= n3 logn, then O(t(n))= O(f (n)),
which allows for dramatic yet automatic simplifications in asymptotic notation.
In other words, lower-order terms can be ignored because they are negligible com-
pared to the higher-order term for n sufficiently large. Note in this case that one
should not prove O(t(n))= O(f (n)) by reasoning along the lines of

0 (t(n)) = 0(max(12n3 logn, -5n 2 , log 2 n, 36))

= 0(12n3 logn)= 0(n3 log n)

where the second line is obtained from the maximum rule. This does not use the
maximum rule properly since the function -5n 2 is negative. Nevertheless, the
following reasoning is correct:

0(t(n)) = 0(lln3 logn + n3 logn - 5n2 + log2 n + 36)

= 0(max(Iln 3 log n, n 3 log n- 5n 2 , log2 n, 36))

= 0(11n 3logn)= O(n3 logn).

Even though n3 log n - 5n2 is negative and 36 is larger than 11n3 log n for small
values of n, all is well since this does not occur whenever n is sufficiently large.

Another useful observation is that it is usually unnecessary to specify the base of
a logarithm inside an asymptotic notation. This is because log, n = log, b x logb n
for all positive reals a, b and n such that neither a nor b is equal to 1. The point
is that loga b is a positive constant when a and b are constants larger than 1.
Therefore log, n and logb n differ only by a constant multiplicative factor. From
this, it is elementary to prove that 0 (loga n)= 0 (logb n), which we usually sim-
plify as 0 (log n). This observation also applies to more complicated functions,
such as positive polynomials involving n and log n, and ratios of such polyno-
mials. For instance, 0 (n Ig n) is the same as the more usual 0 (n log n), and

O(n 2 /(log3 nnnlgn )) is the sarne as 0((n/logn)1 5 ). However, the base of
the logarithm cannot be ignored when it is smaller than 1, when it is not a con-
stant, as in 0 (log . n) A 0 (log n), or when the logarithm is in the exponent, as in
0(21gn) 0(21ogn).

It is easy to prove that the notation "e 0" is reflexive and transitive. In
other words, f (n) 0(f (n)) for any function f: N - R2°, and it follows
from f (n)E 0(g(n)) and g(n)c O(h(n)) that f (n)e O(h(n)) for any functions

f, g, h: N - W O; see Problems 3.9 and 3.10. As a result, this notation provides a
way to define a partial order on functions and consequently on the relative efficiency
of different algorithms to solve a given problem; see Problem 3.21. However, the
induced order is not total as there exist functions f, g : RN - 0° such that neither
f (n)E 0(g(n)) nor g(n)E 0(f (n)); see Problem 3.11.

We have seen several examples of functions t (n) and f (n) for which it is easy
to prove that t(n)E 0(f (n)). For this, it suffices to exhibit the appropriate con-
stants c and no and show that the desired relation holds. How could we go about

83



Asymptotic Notation Chapter 3

proving that a given function t (n) is not in the order of another function f ( ) ? The
simplest way is to use a proof by contradiction. The following example makes the
case. Let t(n)= 1o n3 and f(n)= 1OOOn 2 . If you try several values of n smaller
than one million, you find that t (n) < f (n), which may lead you to believe by in-
duction that t(n) e 0 (f(n)), taking 1 as the multiplicative constant. If you attempt
to prove this, however, you are likely to end up with the following proof by contra-
diction that it is false. To prove that t (n)) t 0 (f (n)), assume for a contradiction that
t(n)e O(f(n)). Using the generalized threshold rule, this implies the existence of
a positive real constant c such that t(n)< cf(n) for all n > 1. But t(n)< cf(n)
means I n3 < lOOOcn2 , which implies that n < 106 c. In other words, assuming
t(n)( 0(f(n)) implies that every positive integer n is smaller than some fixed
constant, which is clearly false.

The most powerful and versatile tool both to prove that some functions are in
the order of others and to prove the opposite is the limit rule, which states that,
given arbitrary functions f and 9g: NH -. RO,

1. if lim f () R then f(n)c O(g(n))and g(n)e O(f(n)),
n--o gy(n)

2. if lim 0 then f(n) 0(g(n))but g(n) 0 (f(n)),and
fl--c g (n)

f (n)
3. if lim + oothenf(n)¢ O(g(n)) butg(n)e 0(f(n)).

n-- gy(n)

We illustrate the use of this rule before proving it. Consider the two functions
f(n)= logn and g(n)= /n. We wish to determine the relative order of these
functions. Since both f (n) and g (n) tend to infinity as n tends to infinity, we use
de l'H6pital's rule to compute

f (n) log n 1/n
lim l = lim = lim
n-co g(n) n-o VW n-co 1/(2Vn-)

= lim 2/ Ir = 0.
n-c0

Now the limit rule immediately shows that logn e 0 (/n ) whereas vi / 0 (log n).
In other words, ni grows asymptotically faster than log n. We now prove the limit
rule.

1. Assume limn -o f(n)/g(n) =? e lR+. Let 6 = f and c = 2f. By definition of
the limit, the difference in absolute value between f(n) /g (n) and 4 is no more
than 6 for all sufficiently large n. But this means that f (n)I /g(n) < 4 + 6 = c.
We have thus exhibited a positive real constant c such that f(n) < cg(n)
for all sufficiently large n, which proves that f(n)e 0(g(n)). The fact that
.g(n)C 0(f(n)) is automatic since limn-O- f(n)Ig(n)= 4 E 1R implies that
limno g(n)/f(n) 1/= I R+ and thus the above reasoning applies mutatis
mutandis with f(n) and g(n) interchanged.

84



Section 3.3 Other asymptotic notation

2. Assume lim,- O f(n)/.g(n)= 0. Arbitrarily fix 6 = 1. By definition of the
limit, the absolute value of f (n) /g(n) is no more than 6 for all sufficiently
large n. Therefore f (n) /g (n) <6, which implies that f (n) < g (n) since 6 - 1,
still for all sufficiently large n. This proves that f (n)E O(g(n)). To prove
that g(n) O(f (n)), assume for a contradiction that g(n)e O(f (n)). This
assumption implies the existence of a positive real constant c such that

g(n)< cf (n),

and therefore I/c <f (n)Ig(n), for all sufficiently large n. Since

lim f(n)/g(n)n--o

exists by assumption that it equals 0 and lim l1/c = 1/c exists as well,
Proposition 1.7.8 applies to conclude that 1/c < limn-o f (n)/g(n)= 0, which
is a contradiction since c > 0. We have contradicted the assumption that
g(n) e 0 (f (n)) and therefore established as required that g(n) ¢ 0 (f (n)).

3. Assume lim-, f (n)/g(n)= + oo. This implies that

lim g(n)/f (n)= 0

and therefore the previous case applies mutatis mutandis with f (n) and g(n)
interchanged.

The converse of the limit rule does not necessarily apply: it is not always the case
thatlim-- f (n)/.g(n)e R' whenf(n) O(g(n)) and g(n)e O(f (n)). Althoughit
does follow that the limit is strictly positive if it exists, the problem is that it may
not exist. Consider for instance f (n)= n and g(n)= 2[19g1 It is easy to see that
g(n)< f (n)< 2g(n) for all n > 1, and thus f (n) and g(n) are each in the order
of the other. However, it is equally easy to see that f (n) /g(n) oscillates between
1 and 2, and thus the limit of that ratio does not exist.

3.3 Other asymptotic notation

The Omega notation
Consider the sorting problem discussed in Section 2.7.2. We saw that most obvious
algorithms such as insertion sorting and selection sorting take a time in 0(n 2 ),
whereas more sophisticated algorithms such as heapsort are more efficient since
they make do in a time in 0(n log n). But it is easy to show that n log n e 0 (n2 ).
As a result, it is correct to say that heapsort takes a time in 0 (n2 ), or even in 0 (n3)
for that matter! This is confusing at first, but it is the unavoidable consequence of
the fact that the 0 notation is designed solely to give upper bounds on the amount
of resources required. Clearly, we need a dual notation for lower bounds. This is
the Q notation.

85



Asymptotic Notation Chapter 3

Consider again two functions f, t : - lso from the natural numbers to the
nonnegative reals. We say that t (n) is in Omega of f (n), denoted t (n) E Q(f (n)),
if t(n) is bounded below by a positive real multiple of f(n) for all sufficiently
large n. Mathematically, this means that there exist a positive real constant d and
an integer threshold no such that t(n) > df (n) whenever n > no:

Q(f (n)) = It: h - l> I (3d (=- R+) (Viin E h) [t(n)> df(n) I .

It is easy to see the duality rule: t(n)e E2(f (n)) if and only if f (n)E 0(t(n))
because t(n)> df(n) if and only if f(n) < t(n). You may therefore question the
usefulness of introducing a notation for Q when the 0 notation seems to have the
same expressive power. The reason is that it is more natural to say that a given
algorithm takes a time in Q(n 2 ) than to say the mathematically equivalent but
clumsy "n2 is in 0 of the time taken by the algorithm".

Thanks to the duality rule, we know from the previous section that +n/ E
Q(logn) whereas logn Hi ()(n_), among many examples. More importantly,
the duality rule can be used in the obvious way to turn the limit rule, the max-
imum rule and the threshold rule into rules about the Q notation.

Despite strong similarity between the 0 and the Q notation, there is one aspect
in which their duality fails. Recall that we are most often interested in the worst-
case performance of algorithms. Therefore, when we say that an implementation
of an algorithm takes t(n) microseconds, we mean that t(n) is the maximum time
taken by the implementation on all instances of size n. Let f (n) be such that
t(n)E 0(f(n)). This means that there exists a real positive constant c such that
t(n) < cf(n) for all sufficiently large n. Because no instance of size n can take
more time than the maximum time taken by instances of that size, it follows that
the implementation takes a time bounded by cf (n) microseconds on all sufficiently
large instances. Assuming only a finite number of instances of each size exist, there
can thus be only a finite number of instances, all of size less than the threshold, on
which the implementation takes a time greater than cf (n) microseconds. Assum-
ing f (n) is never zero, these can all be taken care of by using a bigger multiplicative
constant, as in the proof of the threshold rule.

In contrast, let us also assume t(n) Q(ef(n)). Again, this means that there
exists a real positive constant d such that t (n)> df(n) for all sufficiently large n.
But because t (n) denotes the worst-case behaviour of the implementation, we may
infer only that, for each sufficiently large n, there exists at least one instance of size n
such that the implementation takes at least df (n) microseconds on that instance.
This does not rule out the possibility of much faster behaviour on other instances
of the same size. Thus, there may exist infinitely many instances on which the
implementation takes less than df(n) microseconds. Insertion sort provides a
typical example of this behaviour. We saw in Section 2.4 that it takes quadratic
time in the worst case, yet there are infinitely many instances on which it runs in
linear time. We are therefore entitled to claim that its worst-case running time is
both in 0(n 2 ) and in Q(n 2 ). Yet the first claim says that every sufficiently large
instance can be sorted in quadratic time, whereas the second merely says that at

86



Section 3.3 Other asymptotic notation

least one instance of each sufficiently large size genuinely requires quadratic time:
the algorithm may be much faster on other instances of the same size.

Some authors define the Q notation in a way that is subtly but importantly
different. They say that t(n)E Q(f(n)) if there exists a real positive constant d
such that t(n)Ž> df(n) for an infinite number of values of n, whereas we require
the relation to hold for all but finitely many values of n. With this definition,
an algorithm that takes a time in Q (f (n)) in the worst case is such that there
are infinitely many instances on which it takes at least df (n) microseconds for the
appropriate real positive constant d. This corresponds more closely to our intuitive
idea of what a lower bound on the performance of an algorithm should look like.
It is more natural than what we mean by "taking a time in f2(f(n)) ". Nevertheless,
we prefer our definition because it is easier to work with. In particular, the modified
definition of Q is not transitive and the duality rule breaks down.

In this book, we use the Q notation mainly to give lower bounds on the running
time (or other resources) of algorithms. However, this notation is often used to give
lower bounds on the intrinsic difficulty of solving problems. For instance, we shall
see in Section 12.2.1 that any algorithm that successfully sorts n elements must take
a time in f2(n log n), provided the only operation carried out on the elements to be
sorted is to compare them pairwise to determine whether they are equal and, if not,
which is the greater. As a result, we say that the problem of sorting by comparisons
has running time complexity in Q (n log n). It is in general much harder to determine
the complexity of a problem than to determine a lower bound on the running time
of a given algorithm that solves it. We elaborate on this topic in Chapter 12.

The Theta notation

When we analyse the behaviour of an algorithm, we are happiest if its execu-
tion time is bounded simultaneously both above and below by possibly different
positive real multiples of the same function. For this reason, we introduce the e
notation. We say that t(n) is in Theta of f(n), or equivalently that t(n) is in the
exact order of f(n), denoted t(n)e G(f(n)), if t(n) belongs to both O (f(n)) and
Q(f(n)). The formal definition of 6) is

6(f(n))= O(f(n)) n Q(f(n)).

This is equivalent to saying that 6 (f(n)) is

{t :N - R ° I (3c,d e R+) (V n e N) [ df(n)< t(n)< cf(n)Ll.

The threshold rule and the maximum rule, which we formulated in the context
of the 0 notation, apply mutatis inutandis to the 6 notation. More interestingly,
for the 6 notation the limit rule is reformulated as follows. Consider arbitrary
functions f and g : N - W2°.

87



Asymptotic Notation Chapter 3

1. if lim f(n) c R+ then f(n) E G(.g(n)),
g (n)
f (n)

2. if lim = 0 then f (n) E 0 (g (n)) but f (n) i EO(g (n)), and
--- g(n)

3. if lim f r = ±oo thenf(n) Q(g(n)) butf(n)t E) (g(n)).
ri-o gin)

As an exercise in manipulating asymptotic notation, let us now prove a useful fact:

n

Eik E- EH) ( n k+),

for any fixed integer k > 0, where the left-hand side summation is considered as
a function of n. Of course, this is immediate from Proposition 1.7.16, but it is
instructive to prove it directly.

The "0" direction is easy to prove. For this, simply notice that ik < nk when-
ever 1 < i < n. Therefore ,n§ 1 ik < nlk = nk+l for all n > 1, which proves

y I ik E Of nk+1) using 1 as the multiplicative constant.
To prove the "Q" direction, notice that ik > (n/ 2 )k whenever i > [n/21 and

that the number of integers between [n/21 and n inclusive is greater than n/2.
Therefore, provided n > I (which implies that In/21 > 1),

k > 1 1 n X k(n

i21 i= [ [f2

Thisproves Y' I ik E Q(Wnk+l) using 1 /2 k+1 asthemultiplicativeconstant. Atighter
constant is obtained in Problem 3.23.

3.4 Conditional asymptotic notation
Many algorithms are easier to analyse if initially we restrict our attention to in-
stances whose size satisfies a certain condition, such as being a power of 2. Con-
sider for example the "divide-and-conquer" algorithm for multiplying large inte-
gers that we saw in Section 1.2. Let n be the size of the integers to be multiplied.
(We assumed them to be of the same size.) The algorithm proceeds directly if
n = 1, which requires a microseconds for an appropriate constant a. If n > 1, the
algorithm proceeds by multiplying four pairs of integers of size I n/21 (or three
pairs in the better algorithm that we shall study in Chapter 7). Moreover, it takes
a linear amount of time to carry out additional tasks. For simplicity, let us say that
the additional work takes bn microseconds for an appropriate constant b. (To be
precise, it would take a time between b1n and b2 n microseconds for appropriate
constants b1 and b2-more on this in Section 4.7.6.)

The time taken by this algorithm is therefore given by the function t : N - Wo
recursively defined by

t =n)= a ifon =w1 (3.2)
14t(nI21)±bn otherwise.

88



Section 3.4 Conditional asymptotic notation

We study techniques for solving recurrences in Section 4.7, but unfortunately Equa-
tion 3.2 cannot be handled directly by those techniques because the ceiling func-
tion [n/21 is troublesome. Nevertheless, our recurrence is easy to solve provided
we consider only the case when n is a power of 2: in this case [ n/21 = n/2 and the
ceiling vanishes. The techniques of Section 4.7 yield

t(n)= (a + b)n2  bn

provided n is a power of 2. Since the lower-order term "b n" can be neglected, it
follows that t(n) is in the exact order of n2 , still provided n is a power of 2. This
is denoted by t(n)e 6 (n 2 n is a power of 2).

More generally, let f, t : J - >O be two functions from the natural numbers
to the nonnegative reals, and let P: N-I true,false} be a property of the integers.
We say that t(n) is in O(f(n) P(n)) if t(n) is bounded above by a positive
real multiple of f(n) for all sufficiently large n such that P(n) holds. Formally,
O(f(n) P(n)) is defined as

{t: RN - R oI: ( =cE R+)(V n e (-) [P(n) = t(n)< cf(n)]I.

The sets Q(f(n) I P(n)) and O(f(n) P(n)) are defined similarly. Abusing nota-
tion in a familiar way, we write t(n)e O(f(n) P(n)) even if t(n) and f(n) are
negative or undefined on an arbitrary-perhaps infinite-number of values of n
on which P(n) does not hold.

Conditional asymptotic notation is more than a mere notational convenience:
its main interest is that it can generally be eliminated once it has been used to
facilitate the analysis of an algorithm. For this, we need a few definitions. A func-
tion f: NRI -l is eventually nondecreasing if there exists an integer threshold no
such that f(n) < f(n + 1) for all n > no. This implies by mathematical induction
that f(n)< f(m) whenever m > n > nO. Let b > 2 be any integer. Function f is
b-smooth if, in addition to being eventually nondecreasing, it satisfies the condition
f (bn) e O (f (n)). In other words, there must exist a constant c (depending on b)
such that f (bn) < cf (n) for all n > no. (There is no loss of generality in using the
same threshold no for both purposes.) A function is smooth if it is b-smooth for
every integer b > 2.

Most functions you are likely to encounter in the analysis of algorithms are
smooth, such as log n, n log n, n2 , or any polynomial whose leading coefficient
is positive. However, functions that grow too fast, such as nl1n, 2n or n!, are not
smooth because the ratio f (2n) /f (n) is unbounded. For example,

(2n)Ig (2n) = 2n2 n19 n,

which shows that (2n)'g(2 n) O(nlgn) because 2n2 cannot be bounded above by
a constant. Functions that are bounded above by some polynomial, on the other
hand, are usually smooth provided they are eventually nondecreasing; and even
if they are not eventually nondecreasing there is a good chance that they are in the
exact order of some other function that is smooth. For instance, let b (n) denote the

89



Asymptotic Notation Chapter 3

number of bits equal to 1 in the binary expansion of n-such as b(13)= 3 because
13 is written 1101 in binary-and consider f (n) = b (n) + lg n. It is easy to see that
f (n) is not eventually nondecreasing-and therefore it is not smooth-because
b(2k -1)= k whereas b(2k)= 1 for all k; nevertheless, f(n)e 0(logn), a smooth
function. (This example is not as artificial as it may seem; see Section 7.8.) Sel-
dom will you encounter slow-growing functions that are not in the exact order of
a smooth function.

A useful property of smoothness is that if f is b-smooth for any specific
integer b > 2, then it is in fact smooth. To prove this, consider any two inte-
gers a and b not smaller than 2. Assume f is b-smooth. We must show that
f is a-smooth as well. Let c and no be constants such that f (bn) < cf (n) and
f (n) < f (n + 1) for all n f no. Let i = I log9 a]. By definition of the logarithm,
a = blogb a < b [logb al = bi. Consider any n > no. It is easy to show by mathemati-
cal induction from b-smoothness of f that f (bin) < c If (n). But f (an) < f (bin)
because f is eventually nondecreasing and bin > an > no. It follows that f (an) <
Of (n) for 2 = ci, and thus f is a-smooth.

Smooth functions are interesting because of the smoothness rule. Let
f: -N - W0 be a smooth function and let t: N - Wo be an eventually non-
decreasing function. Consider any integer b > 2. The smoothness rule asserts
that t(n)s e0(f(n)) whenever t(n)c 0(f (n) I n is a power of b). The rule ap-
plies equally to 0 and Q notation. Before proving the rule, we illustrate it with the
example used at the beginning of this section.

We saw that it is easy to obtain the conditional asymptotic formula

t(n)e 0(n2 
I n is a power of 2) (3.3)

from Equation 3.2, whereas it is harder to carry out the analysis of t(n) when n is
not a power of 2. The smoothness rule allows us to infer directly from Equation 3.3
that t(n)s e 0(n 2

), provided we verify that n2 is a smooth function and t(n) is
eventually nondecreasing. The first condition is immediate since n2 is obviously
nondecreasing and (2n )2= 4n2 . The second is easily demonstrated by mathemat-
ical induction from Equation 3.2; see Problem 3.28. Thus the use of conditional
asymptotic notation as a stepping stone yields the final result that t(n)e 0(n 2

)

unconditionally.
We now prove the smoothness rule. Let f (n) be a smooth function and let t(n)

be an eventually nondecreasing function such that t (n) c 3 (f (n) I n is a power
of b) for some integer b Ž 2. Let no be the largest of the thresholds implied by the
above conditions: f(m)< f(m + 1), t(m)< tn(m + 1) and f(bnm)< cf(m) when-
ever m > no, and df(m)s t(m)< af(m) whenever m > no is a power of b, for
appropriate constants a, c and d. For any positive integer n, let n denote the largest
power of b not larger than n (formally, n = blogb ?nt) and let n = bn. By definition,
n/b < n < n < n and n is a power of b. Consider any n > max(1, bno).

t(n) < t(n) < af (n) = af (bn):< acf (n):< acf (n)

This equation uses successively the facts that t is eventually nondecreasing (and
n > n 2 no), t(m) is in the order of f(m) when m is a power of b (and n is a

90



Section 3.6 Operations on asymptotic notation

power of b no smaller than no), n = bn, f is b-smooth (and n > n/b > no), and
f is eventually nondecreasing (and n > n > no). This proves that t(n) < acf (n)
for all values of n > max(1, bno), and therefore t(n)c O(f (n)). The proof that
t(n)e Q(f (n)) is similar.

3.5 Asymptotic notation with several parameters
It may happen when we analyse an algorithm that its execution time depends
simultaneously on more than one parameter of the instance in question. This situ-
ation is typical of certain algorithms for problems involving graphs, for example,
where the time depends on both the number of vertices and the number of edges.
In such cases the notion of "size of the instance" that we have used so far may lose
much of its meaning. For this reason the asymptotic notation is generalized in a
natural way to functions of several variables.

Let f: N x N - R2°> be a function from pairs of natural numbers to the nonneg-
ative reals, such as f (m, n) = m log n. Let t: N x RI - W0 be another such func-
tion. We say that t(m,n) is in the order of f (m,n), denoted t(m,n)c
0 (f (m, n)), if t (m, n) is bounded above by a positive multiple of f (m, n) when-
ever both m and n are sufficiently large. Formally, 0 (f (m, n)) is defined as

I t: FN x N - R'o I (3ic e [R+) ( V'm,n E FN) [ t(m, n) s cf (m, n) I .

(There is no need for two distinct thresholds for m and n in V m, n e RI.) Gener-
alization to more than two parameters, of the conditional asymptotic notation and
of the Q and 0 notation, is done in the same spirit.

Asymptotic notation with several parameters is similar to what we have seen
so far, except for one essential difference: the threshold rule is no longer valid.
Indeed, the threshold is sometimes indispensable. This is explained by the fact that
while there are never more than a finite number of nonnegative integers smaller
than any given threshold, there are in general an infinite number of pairs (m, n)
of nonnegative integers such that at least one of m or n is below the threshold;
see Problem 3.32. For this reason, 0 (f (m, n)) may make sense even if f (m, n) is
negative or undefined on an infinite set of points, provided all these points can be
ruled out by an appropriate choice of threshold.

3.6 Operations on asymptotic notation
To simplify some calculations, we can manipulate the asymptotic notation us-
ing arithmetic operators. For instance, 0 (f (n)) +0 (g (n)) represents the set of
functions obtained by adding pointwise any function in 0 (f (n)) to any function
in 0 (g (n)). Intuitively this represents the order of the time taken by an algorithm
composed of a first stage taking a time in the order of f (n) followed by a second
stage taking a time in the order of g (n). Strictly speaking, the hidden constants
that multiply f (n) and g(n) may well be different, but this is of no consequence
because it is easy to prove that 0(f (n))+O(g(n)) is identical to 0(f (n)+g(n)).
By the maximum rule, we know that this is also the same as 0 (max (f (n), g (n)))
and, if you prefer, max (O (f (n)), 0 (g (n))).

91



Asymptotic Notation Chapter 3

More formally, if op is any binary operator and if X and Y are sets of functions
from N into [R'0 , in particular sets described by asymptotic notation, then "X op Y "
denotes the set of functions that can be obtained by choosing one function from
X and one function from Y, and by "oping" them together pointwise. In keeping
with the spirit of asymptotic notation, we only require the resulting function to be
the correct oped value beyond some threshold. Formally, X op Y denotes

{t:I -t o I(If E X) (:g c Y) (V n E ) [[t(n) f(n) op g(n)]}.

If g is a function from RJ into '°, we stretch the notation by writing g op X to
denote { g} op X, the set of functions that can be obtained by oping function g with
one function from X. Furthermore, if a E W2°, we use a op X to denote cst, op X,
where csta denotes the constant function costa (n)= a for every integer n. In other
words, a op X denotes the set of functions that can be obtained by oping a to the
value of a function from X. We also use the symmetrical notation X op g and
X op a, and all this theory of operations on sets is extended in the obvious way to
operators other than binary and to functions.

As an example, consider the meaning of nO(l). Here, "n" and "1" denote
the identity function Id(n)= n and the constant function cstj (n)= 1, respectively.
Thus a function t(n) belongs to n0(l) if there exists a function f(n) bounded
above by a constant c such that t(n) nf(n) for all n > no, for some no. In par-
ticular, this implies that t(n)< k + nk for all n > 0, provided k > c and k > t(n)
for all n < no. Therefore, every function in nO(I) is bounded above by a polyno-
mial. Conversely, consider any polynomial p(n) whose leading coefficient is pos-
itive and any function t (n) such that 1 < t (n) < p (n) for all sufficiently large n.
Let k be the degree of p(n). It is easy to show that p(n) < nk+I for all sufficiently
large n. Let g(n)= log, t(n), and thus t(n)= ng(Jn) Since 1 < t(n)< nk+1, it fol-
lows that 0 < g(n) < k + 1 for all sufficiently large n. Therefore, g(n) e 0(1), which
shows that t (n) e n0 (1). The conclusion is that n0 (1) denotes the set of all functions
bounded above by some polynomial, provided the function is bounded below by
the constant 1 for all sufficiently large n.

3.7 Problems

Problem 3.1. Consider an implementation of an algorithm that takes a time that
is bounded above by the unlikely function

t(n)= 3 seconds -18n milliseconds + 27n2 microseconds

to solve an instance of size n. Find the simplest possible function f: N - ' ° such
that the algorithm takes a time in the order of f (n).

Problem 3.2. Consider two algorithms A and B that take time in 0(n 2 ) and 0(n 3),
respectively, to solve the same problem. If other resources such as storage and
programming time are of no concern, is it necessarily the case that algorithm A is
always preferable to algorithm B? Justify your answer.

92



Section 3.7 Problems

Problem 3.3. Consider two algorithms A and B that take time in O(n 2 ) and o(n3 ),
respectively. Could there exist an implementation of algorithm B that would be
more efficient (in terms of computing time) than an implementation of algorithm
A on all instances? Justify your answer.

Problem 3.4. What does 0 (1) mean? 0 (1)?

Problem 3.5. Which of the following statements are true? Prove your answers.

1. n2 c O(n3)

2. n2 E Q(n)

3. 2n eE ()(2n+')

4. n! e 0((n + 1)!)

Problem 3.6. Provethatiff(n)E O(n) then [f(n)]2e O(n2 ).

Problem 3.7. In contrast with Problem 3.6, prove that 2 f (n) G 0(2n) does not
necessarily follow from f (n) C 0(n).

Problem 3.8. Consider an algorithm that takes a time in0 ( nlg3) to solve instances
of size n. Is itcorrectto saythatittakes a time in 0(n 59 )? In (2(n] 59)? In 0 (n1 5 9 )?
Justify your answers. (Note: lg 3  1.58496...)

Problem 3.9. Prove that the 0 notation is reflexive: f (n) e 0 (f (n)) for any func-
tion f hiN - Rl20

Problem 3.10. Prove that the 0 notation is transitive: it follows from

f(n)c 0(g(n)) and g(n)E 0(h(n))

thatf(n)e 0(h1(n)) for any functions f,g, h : N - RI°.

Problem 3.11. Prove that the ordering on functions induced by the 0 notation
is not total: give explicitly two functions f, y: RI - Rl2° such that f (n) t O (g (n))
and g (n) 0(f(n)). Prove your answer.

Problem 3.12. Prove that the Q notation is reflexive and transitive: for any func-

tionsf,g, h :N R- 0

1. f(n)e Q(f(n))

2. if f(n)c Q (g(n)) and g(n)E Q (h (n)) then f(n)E Q(h(n)).

Rather than proving this directly (which would be easier!), use the duality rule and
the results of Problems 3.9 and 3.10.

93



Asymptotic Notation Chapter 3

Problem 3.13. As we explained, some authors give a different definition for the
( notation. For the purpose of this problem, let us say that t (n) E Q (f (n)) if there
exists a real positive constant d such that t(n)> df (n) for an infinite number of
values of n. Formally,

(2(f (n)) = I t: N - R2° I (Id (E R+) (3 n X M) t (n) > df (n)]}

Prove that this notation is not transitive. Specifically, give an explicit example of
three functions f, g,h: NRd - such that f(n)e Q(g(n)) and g(n)c n (h(n)),yet
f (n)0 Q 2(h (n)).

Problem 3.14. Let f (n)= n2 . Find the error in the following "proof" by mathe-
matical induction that f (n) E 0 (n).

• Basis: The case n = 1 is trivially satisfied since f (1) 1 en, where c = 1.
• Induction step: Consider any n > 1. Assume by the induction hypothesis the

existence of a positive constant c such that f (n - 1) < c (n -1).

f(n) =n2= (n -1) 2 +2n -1= f(n -1)+2n -1

<c(n -1)+2n -1 = (c+2)n -c- < (c+2)n

Thus we have shown as required the existence of a constant c = c + 2 such
that f (n)s en. It follows by the principle of mathematical induction that
f (n) is bounded above by a constant times n for all n > I and therefore that
f (n) E 0 (n) by definition of the 0 notation.

Problem 3.15. Find the error in the following "proof" that 0(n)= 0(n 2 ). Let
f (n)= n2 , g(n)= n and h(n)= g(n)-f (n). It is clear that h(n)< g(n)< f (n)
for all n 2 0. Therefore, f (n)= max(f (n),h (n)). Using the maximum rule, we
conclude

0(g(n))= 0(f (n)+h(n))= O(max(f (n), h(n)))= O(f (n)).

Problem 3.16. Prove by mathematical induction that the maximum rule can be
applied to more than two functions. More precisely, let k be an integer and let
fl,f2,...,fk be functions from N to l 0 . Define g(n)f= maxi fi(n),f 2(n),...,
fk(n)) and h(n)= fi(n)+f2 (n)±+ + fk(n) for all n > 0. Prove that 0(g(n))
0 (h(n)).

Problem 3.17. Find the error in the following proof that O(n)= O(n 2 ).

0(n)= O(max(n,n,...n))= O(n+n+.*.-+n)=O(n2 ),

n times n times

where the middle equality comes from the generalized maximum rule that you
proved in Problem 3.16.

94



Section 3.7 Problems

Problem 3.18. Prove that the E notation is reflexive, symmetric and transitive: for
any functions f g, h: N - R> ,

1. f(n) c O(f(n))

2. if f(n)c 03(g(n)) then g(n)c 0 (f(n))

3. if f(n) 0(g(n)) and g(n)c 9(h(n)) then f(n) cE)(h(n)).

Problem 3.19. For any functions f, : - Rprove that

O(f (n))= O(g(n)) if and only if f (n) 0E(g(n))

if and onlyif 0 (f(n))= 0(g(n)).

Problem 3.20. For any functions f, g: - Rprove that

O(f(n))cO(g(n)) ifandonlyif f(n)cO(g(n)) but f(n)¢40(g(n)).

Recall that " c" denotes strict set inclusion.

Problem 3.21. To illustrate how the asymptotic notation can be used to rank the
efficiency of algorithms, use the relations "c" and " =" to put the orders of the
following functions into a sequence, where £ is an arbitrary real constant, 0 < E < 1.

nlogn n8 n4+E (1 + E)" n 2 / logn (n2 _ n + 1)4

Do not use the symbol s". Prove your answers.

Problem 3.22. Repeat Problem 3.21 but this time with functions

n! (n + 1)! 2n 2 n+l 2 2n nn n n nlogn

Problem 3.23. We saw at the end of Section 3.3 that Z.n=1 ik c Q(nk+1) for any fixed
integer k > 0 because Zn= 1 ik> nk+l /2 k+1 for all n. Use the idea behind Figure 1.8
in Section 1.7.2 to derive a tighter constant for the inequality: find a constant d
(depending on k) much larger than 1 /2 k+1 such that y.' I ik > dnk+l holds for
all n. Do not use Proposition 1.7.16.

Problem 3.24. Prove that log(n!)c e(nlogn). Do not use Stirling's formula.
Hint: Mimic theproof that Y i ik e g(nk+l) given at the end of Section 3.3. Resist
the temptation to improve your reasoning along the lines of Problem 3.23.

Problem 3.25. Recall that a function f: N -. lW is eventually nondecreasing
if there exists an integer threshold no such that f(n)< f(n + 1) for all n> uno.

Prove by mathematical induction that this implies that f (n) < f (m) whenever
m > n > no.

Problem 3.26. Give a function t : N -. R such that t(n)t 0 (f(n)) whenever
f (n) is an eventually nondecreasing function. Give a natural example of an algo-
rithm whose running time is in 0 (t (n)). You may consider numerical algorithms
for which n is the value of the instance rather than its size.

95



Asymptotic Notation Chapter 3

Problem 3.27. Consider any b-smooth function 1f: N - W2. Let c and no be
constants such that f (bn) < cf (n) for all n > no. Consider any positive integer i.
Prove by mathematical induction that f (bn): cif (n) for all n > no.

Problem 3.28. Consider the function t : N - R. recursively defined by

t (n) aif n 1
14t([n/21)+bn otherwise

in which a and b are arbitrary positive constants (this was Equation 3.2 in Sec-
tion 3.4). Prove by mathematical induction that t (n) is eventually nondecreasing.

Problem 3.29. Complete the proof of the smoothness rule (end of Section 3.4) by
providing details of the proof that t (n) E Q (f(n)) whenever (n) is a smooth func-
tion and t(n) is an eventually nondecreasing function such that t(n)E O (f (n) n
is a power of b).
Note that the smoothness rule applies equally well if we replace 0 by 0 or by Q
in its statement. This is because your proof that t(n)E Q(f(n)) does not use the
fact that t(n) e 0 (f(n) n is a power of b), just as the proof we gave in Section 3.4
that t(n)e 0(f(n)) did not use the fact that t(n)c Q(f(n) n is a power of b).
Hint: This is very similar to the proof that t(n)E 0(f(n)) under the same condi-
tions. Use the fact that if f (bm) < cf (m) then f (m) > c 'f (bm).

Problem 3.30. Show by explicit examples that all the preconditions to apply
the smoothness rule are necessary. Specifically, we are interested in functions
f,t: N - 12 such that t(n)E 0 ((n) I n is a power of b) for some integer b > 2,
yet t(n)(t 0((n)). You have to give three such pairs of functions, subject to the
following additional constraints:

1. f(n) is smooth but t(n) is not eventually nondecreasing;

2. f(n) and t(n) are both eventually nondecreasing but f(bn) X 0 (f(n));

3. f(bn)E 0(0(n)) and t(n) is eventuallynondecreasingbut f(n) is noteven-
tually nondecreasing.

Problem 3.31. Show by an explicit example that being eventually nondecreasing
and bounded above by a polynomial is not a guarantee of smoothness. In other
words, give two functions f, p : N - W 0 such that f (n) is eventually nondecreas-
ing, p (n) is a polynomial and f (n) < p (n) for all n, yet f (n) is not smooth.

Problem 3.32. Show that the threshold rule does not apply to functions of several
parameters. Specifically, giveanexplicitexampleof twofunctionsfg : N x N-R'
such that f (m, n)e O (g(m, n)), yet there does not exist a constant c such that
f (m, n) < cg(m, n) for every m, n E - N.

Problem 3.33. Consider any two functions f, g: N - R120. Prove that

0(f (n)) + O(g(n)) 0(f(n)+g(n))

o (max(f(n), g(n))) = max(O(f(n)),o(g(n)))

Note: We already know that 0(f(n)±+g(n))= 0(max(f(n), g(n))) by the maxi-
mum rule.

96



Section 3.8 References and further reading 97

Problem 3.34. Prove that 0(n -1) +0(n)= 0(n). Does it follow that

0(n)= 0(n)-0(n -1)?

Justify your answer.

Problem 3.35. Find a function f: N - W>0 that is bounded above by some poly-
nomial, yet f(n) no(l).

3.8 References and further reading
The asymptotic notation 0 has existed for some while in mathematics: see Bach-
mann (1894) and de Bruijn (1961). However, the notation 0 and ( is more recent:
it was invented for analysing algorithms and for the theory of computational com-
plexity. Knuth (1976) gives an account of the history of asymptotic notation and
proposes a standard form for it. Conditional asymptotic notation and the notion of
smoothness were introduced by Brassard (1985), who also suggested that "one-way
equalities" should be abandoned in favour of a notation based on sets.



Chapter 4

Analysis of Algorithms

4.1 Introduction
The primary purpose of this book is to teach you how to design your own efficient
algorithms. However, if you are faced with several different algorithms to solve
the same problem, you have to decide which one is best suited for your applica-
tion. An essential tool for this purpose is the analysis of algorithms. Only after you
have determined the efficiency of the various algorithms will you be able to make a
well-informed decision. But there is no magic formula for analysing the efficiency
of algorithms. It is largely a matter of judgement, intuition and experience. Nev-
ertheless, there are some basic techniques that are often useful, such as knowing
how to deal with control structures and recurrence equations. This chapter covers
the most commonly used techniques and illustrates them with examples. More
examples are found throughout the book.

4.2 Analysing control structures
The analysis of algorithms usually proceeds from the inside out. First, we de-
termine the time required by individual instructions (this time is often bounded
by a constant); then we combine these times according to the control structures
that combine the instructions in the program. Some control structures such as
sequencing-putting one instruction after another-are easy to analyse whereas
others such as while loops are more subtle. In this section, we give general princi-
ples that are useful in analyses involving the most frequently encountered control
structures, as well as examples of the application of these principles.

4.2.1 Sequencing
Let PI and P2 be two fragments of an algorithm. They may be single instructions
or complicated subalgorithms. Let t1 and t2 be the times taken by P1 and P2,
respectively. These times may depend on various parameters, such as the instance

98



Section 4.2 Analysing control structures

size. The sequencing rule says that the time required to compute "P1 ; P2 ", that
is first P1 and then P2, is simply t1 + t2 . By the maximum rule, this time is in
G (max(t1 , t2 )).

Despite its simplicity, applying this rule is sometimes less obvious than it may
appear. For example, it could happen that one of the parameters that control t2
depends on the result of the computation performed by PI. Thus, the analysis of
" P1 ; P2" cannot always be performed by considering P1 and P2 independently.

4.2.2 "For" loops

For loops are the easiest loops to analyse. Consider the following loop.

for i - Ito m do Pi)

Here and throughout the book, we adopt the convention that when m = 0 this is
not an error; it simply means that the controlled statement P(i) is not executed
at all. Suppose this loop is part of a larger algorithm, working on an instance
of size n. (Be careful not to confuse m and n.) The easiest case is when the
time taken by P(i) does not actually depend on i, although it could depend on
the instance size or, more generally, on the instance itself. Let t denote the time
required to compute P (i). In this case, the obvious analysis of the loop is that P (i)
is performed m times, each time at a cost of t, and thus the total time required by
the loop is simply ? = mt. Although this approach is usually adequate, there is a
potential pitfall: we did not take account of the time needed for loop control. After
all, our for loop is shorthand for something like the following while loop.

i -I
while i < m do

P(i)
i- i-i+

In most situations, it is reasonable to count at unit cost the test i < m, the in-
structions i - 1 and i - i + 1, and the sequencing operations (go to) implicit in
the while loop. Let c be an upper bound on the time required by each of these
operations. The time f taken by the loop is thus bounded above by

V P c for i - 1
+ (m + 1)c for the tests i ' m
+ mt for the executions of P(i)
+ mc for the executions of i - i + 1
± Mc for the sequencing operations

< (t+3c)m+2c.

Moreover this time is clearly bounded below by mt. If c is negligible compared
to t, our previous estimate that f is roughly equal to mt was therefore justified,
except for one crucial case: 4? mt is completely wrong when m = 0 (it is even
worse if m is negative!). We shall see in Section 4.3 that neglecting the time required
for loop control can lead to serious errors in such circumstances.

99



Analysis of Algorithms Chapter 4

Resist the temptation to say that the time taken by the loop is in 0(mt) on
the pretext that the 0 notation is only asked to be effective beyond some threshold
such as m > 1. The problem with this argument is that if we are in fact analysing
the entire algorithm rather than simply the for loop, the threshold implied by the
0 notation concerns n, the instance size, rather than m, the number of times we go
round the loop, and m = 0 could happen for arbitrarily large values of n. On the
other hand, provided t is bounded below by some constant (which is always the case
in practice), and provided there exists a threshold no such that m >1 whenever
n > no, Problem 4.3 asks you to show that X is indeed in 0(mt) when A, m and t
are considered as functions of n.

The analysis of for loops is more interesting when the time t (i) required for
PW) varies as a function of i. (In general, the time required for P(i) could depend
not only on i but also on the instance size n or even on the instance itself.) If we
neglect the time taken by the loop control, which is usually adequate provided
m > 1, the same for loop

for i - 1 to m do P(i)

takes a time given not by a multiplication but rather by a sum: it is X,=1 t (i).
The techniques of Section 1.7.2 are often useful to transform such sums into simpler
asymptotic notation.

We illustrate the analysis of for loops with a simple algorithm for computing
the Fibonacci sequence that we evaluated empirically in Section 2.7.5. We repeat
the algorithm below.

function Fibiter(n)
i - 1; j- 0
for k - 1 to n do j - i+ j

i- j
return j

If we count all arithmetic operations at unit cost, the instructions inside the for loop
take constant time. Let the time taken by these instructions be bounded above by
some constant c. Not taking loop control into account, the time taken by the for loop
is bounded above by n times this constant: nc. Since the instructions before and
after the loop take negligible time, we conclude that the algorithm takes a time in
0(n). Similar reasoning yields that this time is also in 0(n), hence it is in 0((n).

We saw however in Section 2.5 that it is not reasonable to count the additions
involved in the computation of the Fibonacci sequence at unit cost unless n is very
small. Therefore, we should take account of the fact that an instruction as simple
as "j - i + j " is increasingly expensive each time round the loop. It is easy to
program long-integer additions and subtractions so that the time needed to add
or subtract two integers is in the exact order of the number of figures in the larger
operand. To determine the time taken by the k-th trip round the loop, we need
to know the length of the integers involved. Problem 4.4 asks you to prove by
mathematical induction that the values of i and j at the end of the k-th iteration
are fk- 1 and fk, respectively. This is precisely why the algorithm works: it returns

100



Section 4.2 Analysing control structures

the value of j at the end of the n-th iteration, which is therefore f, as required.
Moreover, we saw in Section 2.7.5 that de Moivre's formula tells us that the size of
fk is in 0(k). Therefore, the k-th iteration takes a time 0 (k - 1) +±(k), which is the
same as 0((k); see Problem 3.34. Let c be a constant such that this time is bounded
above by ck for all k > 1. If we neglect the time required for the loop control and
for the instructions before and after the loop, we conclude that the time taken by
the algorithm is bounded above by

E n (n + l) 2
>I ck =c Yk =c ~~ O (n)
k-l kl 2

Similar reasoning yields that this time is in Q(n 2 ), and therefore it is in 0(n 2 ).
Thus it makes a crucial difference in the analysis of Fibrec whether or not we count
arithmetic operations at unit cost.

The analysis of for loops that start at a value other than 1 or proceed by larger
steps should be obvious at this point. Consider the following loop for example.

for i 5 to m step 2 do P(i)

Here, P(i) is executed ((m -5) : 2)+1 times provided m > 3. (For a for loop to
make sense, the endpoint should always be at least as large as the starting point
minus the step).

4.2.3 Recursive calls

The analysis of recursive algorithms is usually straightforward, at least up to a
point. Simple inspection of the algorithm often gives rise to a recurrence equation
that "mimics" the flow of control in the algorithm. Once the recurrence equation
has been obtained, general techniques covered in Section 4.7 can be applied to
transform the equation into simpler nonrecursive asymptotic notation.

As an example, consider again the problem of computing the Fibonacci se-
quence, but this time with the recursive algorithm Fibrec, which we compared to
Fibiter in Section 2.7.5.

function Fibrec(n)
if n < 2 then return n
else return Fibrec(n - 1)+Fibrec(n - 2)

Let T(n) be the time taken by a call on Fibrec(n). If n < 2, the algorithm simply
returns n, which takes some constant time a. Otherwise, most of the work is spent
in the two recursive calls, which take time T(n -1) and T(n - 2), respectively.
Moreover, one addition involving fn-1 and fn 2 (which are the values returned
by the recursive calls) must be performed, as well as the control of the recursion
and the test "if n < 2". Let h(n) stand for the work involved in this addition and

101



Analysis of Algorithms Chapter 4

control, that is the time required by a call on Fibrec (n) ignoring the time spent inside
the two recursive calls. By definition of T(n) and h(n) we obtain the following
recurrence.

T(n)= a if n =Oor n 1(4.1)
( T(n -l)+T(n -2)+h(n) otherwise

If we count the additions at unit cost, h(n) is bounded by a constant and the
recurrence equation for T (n) is very similar to that already encountered for g (n)
in Section 1.6.4. Constructive induction applies equally well to reach the same
conclusion: T (n) e O (fn). However, it is easier in this case to apply the techniques
of Section 4.7 to solve recurrence 4.1. Similar reasoning shows that T(n)E Q (fn),
hence T(n)e FJ(fn). Using de Moivre's formula, we conclude that Fibrec(n) takes
a time exponential in n. This is double exponential in the size of the instance since
the value of n is exponential in the size of n.

If we do not count the additions at unit cost, h(n) is no longer bounded by
a constant. Instead h(n) is dominated by the time required for the addition of
fn -land fn 2 for sufficiently large n. We have already seen that this addition
takes a time in the exact order of n. Therefore h(n)e 0(n). The techniques of
Section 4.7 apply again to solve recurrence 4.1. Surprisingly, the result is the same
regardless of whether h (n) is constant or linear: it is still the case that T (n) E O (fn).
In conclusion, Fibrec(n) takes a time exponential in n whether or not we count
additions at unit cost! The only difference lies in the multiplicative constant hidden
in the 6 notation.

4.2.4 "While" and "repeat" loops

While and repeat loops are usually harder to analyse than for loops because there
is no obvious a priori way to know how many times we shall have to go round
the loop. The standard technique for analysing these loops is to find a function
of the variables involved whose value decreases each time around. To conclude
that the loop will eventually terminate, it suffices to show that this value must be a
positive integer. (You cannot keep decreasing an integer indefinitely.) To determine
how many times the loop is repeated, however, we need to understand better how
the value of this function decreases. An alternative approach to the analysis of
while loops consists of treating them like recursive algorithms. We illustrate both
techniques with the same example. The analysis of repeat loops is carried out
similarly; we do not give examples in this section.

We shall study binary search in detail in Section 7.3. Nevertheless, we use it
now because it illustrates perfectly the analysis of while loops. The purpose of
binary search is to find an element x in an array Till . . n ] that is in nondecreasing
order. Assume for simplicity that x is guaranteed to appear at least once in T.
(The general case is handled in Section 7.3.) We require to find an integer i such
that 1 < i < 14 and T[i]= x. The basic idea behind binary search is to compare
x with the element y in the middle of T. The search is over if x = y; it can be
confined to the upper half of the array if x > y; otherwise, it is sufficient to search

102



Section 4.2 Analysing control structures

the lower half. We obtain the following algorithm. (A slightly better algorithm is
given in Section 7.3; see Problem 7.11.)

function Binary Search(T[l.. n], x)
{This algorithm assumes that x appears in T}
i-1; j-n
while i < j do

{ T[i]< x < T[j] }
k- (i+j).2
case x < T[k]: j - k - 1

x = T[k]: ij - k {return k}
x > T[k]: i - k + 1

return i

Recall that to analyse the running time of a while loop, we must find a function
of the variables involved whose value decreases each time round the loop. In this
case, it is natural to consider j - i + 1, which we shall call d. Thus d represents
the number of elements of T still under consideration. Initially, d = n. The loop
terminates when i > j, which is equivalent to d < 1. (In fact, d can never be smaller
than 1, but we do not use this.) Each time round the loop, there are three possi-
bilities: either j is set to k -1, i is set to k + 1, or both i and j are set to k. Let d
and d stand respectively for the value of j - i + 1 before and after the iteration
under consideration. We use i, j, I and 5 similarly If x < T[k], the instruction
"1 k - 1" is executed and thus l = i and 5 = [(i + j) . 2] -1. Therefore,

d = - i+ I = (i +j) -.2 -i< (i +j) /2 - i< (j- i +1) /2 =d/2.

Similarly, if x > T k ], the instruction "i - k + 1" is executed and thus

i= [(i+j): 2]+1andg = j.

Therefore,

d =5- i =1 j -(i+j).2<j -(i+j -1)/2 (j -i+1)/2 =d/2.

Finally, if x = T [ k], then i and j are set to the same value and thus d = 1; but d was
at least 2 since otherwise the loop would not have been reentered. We conclude
that d < d/2 whichever case happens, which means that the value of d is at least
halved each time round the loop. Since we stop when dc < 1, the process must
eventually stop, but how much time does it take?

To determine an upper bound on the running time of binary search, let de
denote the value of j - i + 1 at the end of the f -th trip round the loop for 4 > 1 and
let do = n. Since de 1 is the value of j - i + 1 before starting the 4-?th iteration, we
have proved that di s de-I /2 for all 4 > 1. It follows immediately by mathematical
induction that de < n/2e. But the loop terminates when d < 1, which happens at
the latest when ? = [ lg n] . We conclude that the loop is entered at most r lg nl
times. Since each trip round the loop takes constant time, binary search takes a

103



Analysis of Algorithms Chapter 4

time in O(logn). Similar reasoning yields a matching lower bound of Q(logn)
in the worst case, and thus binary search takes a time in 0 (logn). This is true
even though our algorithm can go much faster in the best case, when x is situated
precisely in the middle of the array; see Problem 7.11.

The alternative approach to analysing the running time of binary search begins
much the same way. The idea is to think of the while loop as if it were implemented
recursively instead of iteratively. Each time round the loop, we reduce the range
of possible locations for x in the array. Let t (d) denote the maximum time needed
to terminate the while loop when j - i + 1 < d, that is when there are at most d
elements still under consideration. We have seen already that the value of j - i + 1
is at least halved each time round the loop. In recursive terms, this means that t (d)
is at most the constant time b required to go round the loop once, plus the time
t (d . 2) sufficient to finish the loop from there. Since it takes constant time c to
determine that the loop is finished when d = 1, we obtain the following recurrence.

t (d) < 5c if d =1 (4.2)

lb+t (d . 2) otherwise

The techniques of Section 4.7 apply easily to conclude that t(n)e O(logn).

4.3 Using a barometer
The analysis of many algorithms is significantly simplified when one instruction-
or one test-can be singled out as barometer. A barometer instruction is one that
is executed at least as often as any other instruction in the algorithm. (There is
no harm if some instructions are executed up to a constant number of times more
often than the barometer since their contribution is absorbed in the asymptotic
notation). Provided the time taken by each instruction is bounded by a constant,
the time taken by the entire algorithm is in the exact order of the number of times
that the barometer instruction is executed.

This is useful because it allows us to neglect the exact times taken by each
instruction. In particular, it avoids the need to introduce constants such as those
bounding the time taken by various elementary operations, which are meaningless
since they depend on the implementation, and they are discarded when the final
result is expressed in terms of asymptotic notation. For example, consider the
analysis of Fibiter in Section 4.2.2 when we count all arithmetic operations at unit
cost. We saw that the algorithm takes a time bounded above by en for some
meaningless constant c, and therefore that it takes a time in 0(n). It would have
been simpler to say that the instruction j - i + j can be taken as barometer, that
this instruction is obviously executed exactly n times, and therefore the algorithm
takes a time in 0(n). Selection sorting will provide a more convincing example of
the usefulness of barometer instructions in the next section.

When an algorithm involves several nested loops, any instruction of the in-
nermost loop can usually be used as barometer. However, this should be done
carefully because there are cases where it is necessary to take account of the im-
plicit loop control. This happens typically when some of the loops are executed
zero times, because such loops do take time even though they entail no executions
of the barometer instruction. If this happens too often, the number of times the

104



Section 4.3 Using a barometer

barometer instruction is executed can be dwarfed by the number of times empty
loops are entered-and therefore it was an error to consider it as a barometer.
Consider for instance pigeon-hole sorting (Section 2.7.2). Here we generalize the
algorithm to handle the case where the elements to be sorted are integers known
to lie between 1 and s rather than between I and 10000. Recall that T[1. .n] is
the array to be sorted and U[1 . .s] is an array constructed so that U[k] gives the
number of times integer k appears in T. The final phase of the algorithm rebuilds
T in nondecreasing order as follows from the information available in U.

i -0
for k - 1 to s do

while U[k]iA 0 do
i- i+I

T[i]- k
U[kb- U[k]-1

To analyse the time required by this process, we use "U [ k]" to denote the value
originally stored in U[k] since all these values are set to 0 during the process. It is
tempting to choose any of the instructions in the inner loop as a barometer. For each
value of k, these instructions are executed U[k] times. The total number of times
they are executed is therefore Y.'=, U[k]. But this sum is equal to n, the number
of integers to sort, since the sum of the number of times that each element appears
gives the total number of elements. If indeed these instructions could serve as a
barometer, we would conclude that this process takes a time in the exact order
of n. A simple example is sufficient to convince us that this is not necessarily
the case. Suppose U[k]= 1 when k is a perfect square and U[k]= 0 otherwise.
This would correspond to sorting an array T containing exactly once each perfect
square between 1 and n2 , using s = n2 pigeon-holes. In this case, the process clearly
takes a time in Q (n2 ) since the outer loop is executed s times. Therefore, it cannot
be that the time taken is in E) (n). This proves that the choice of the instructions in
the inner loop as a barometer was incorrect. The problem arises because we can
only neglect the time spent initializing and controlling loops provided we make
sure to include something even if the loop is executed zero times.

The correct and detailed analysis of the process is as follows. Let a be the
time needed for the test U[k]f 0 each time round the inner loop and let b be
the time taken by one execution of the instructions in the inner loop, including
the implicit sequencing operation to go back to the test at the beginning of the
loop. To execute the inner loop completely for a given value of k takes a time
tk = (1 + U[k])a + U[k]b, where we add 1 to U[k] before multiplying by a to take
account of the fact that the test is performed each time round the loop and one
more time to determine that the loop has been completed. The crucial thing is
that this time is not zero even when U[ k]= 0. The complete process takes a time
c + =1(d + tk), where c and d are new constants to take account of the time
needed to initialize and control the outer loop, respectively. When simplified, this
expression yields c + (a + d)s + (a + b)n. We conclude that the process takes a
time in 0 (n + s). Thus the time depends on two independent parameters n and s;

105



Analysis of Algorithms Chapter 4

it cannot be expressed as a function of just one of them. It is easy to see that
the initialization phase of pigeon-hole sorting (Section 2.7.2) also takes a time in
O (n + s), unless virtual initialization is used-see the end of Section 5.1-in which
case a time in E(n) suffices for that phase. In any case, this sorting technique takes
a time in 0(n + s) in total to sort n integers between 1 and s. If you prefer, the
maximum rule can be invoked to state that this time is in 0 (max (n, s)). Hence,
pigeon-hole sorting is worthwhile but only provided s is small enough compared
to n. For instance, if we are interested in the time required as a function only of
the number of elements to sort, this technique succeeds in astonishing linear time
if s E 0(n) but it chugs along in quadratic time when s C E)0(n2 ).

Despite the above, the use of a barometer is appropriate to analyse pigeon-hole
sorting. Our problem was that we did not choose the proper barometer. Instead
of the instructions inside the inner loop, we should have used the inner-loop test
" U [ k] 0 " as a barometer. Indeed, no instructions in the process are executed more
times than this test is performed, which is the definition of a barometer. It is easy
to show that this test is performed exactly n + s times, and therefore the correct
conclusion about the running time of the process follows immediately without
need to introduce meaningless constants.

In conclusion, the use of a barometer is a handy tool to simplify the analysis of
many algorithms, but this technique should be used with care.

4.4 Supplementary examples

In this section, we study several additional examples of analyses of algorithms
involving loops, recursion, and the use of barometers.

Selection sort
Selection sorting, encountered in Section 2.4, provides a good example of the anal-
ysis of nested loops.

procedure select(T[l. .n])
for i -1 ton-1 do

minj- i; minx - T[i]
for j - i + 1 to n do

if T [j ] < minx then minj - j
minx T[j]

T[minj]- T[i]
T[i]- minx

Although the time spent by each trip round the inner loop is not constant-it takes
longer when T[j] < minx-this time is bounded above by some constant c (that
takes the loop control into account). For each value of i, the instructions in the
inner loop are executed n -(i + 1) +I = n - i times, and therefore the time taken
by the inner loop is t (i) • (n - i) c. The time taken for the i-th trip round the outer
loop is bounded above by b + t (i) for an appropriate constant b that takes account
of the elementary operations before and after the inner loop and of the loop control

106



Section 4.4 Supplementary examples

for the outer loop. Therefore, the total time spent by the algorithm is bounded
above by

n-l nil n-1

b+ (n -i)c = (b+cn)-c E i
iil iil 11

= (n - 1)(b + cn)-cn(n - 1)/2

I cn2
+ b- Ic) n-b,

which is in 0(n 2 ). Similar reasoning shows that this time is also in 0(n2 ) in all
cases, and therefore selection sort takes a time in 0 (n 2) to sort n items.

The above argument can be simplified, obviating the need to introduce explicit
constants such as b and c, once we are comfortable with the notion of a barometer
instruction. Here, it is natural to take the innermost test "if T[j]< minx" as a
barometer and count the exact number of times it is executed. This is a good
measure of the total running time of the algorithm because none of the loops can
be executed zero times (in which case loop control could have been more time-
consuming than our barometer). The number of times that the test is executed is
easily seen to be

nl1 n n-1

= k = n(n- 1)/2.
k-l

Thus the number of times the barometer instruction is executed is in 0 (n2 ), which
automatically gives the running time of the algorithm itself.

Insertion sort
We encountered insertion sorting also in Section 2.4.

procedure insert(T[1 . n])
for i - 2 to n do

x - T[i];j -- i -1
while j > 0 and x < T[j] do T[j + 1]- T[j]

T[j + 1]- x

Unlike selection sorting, we saw in Section 2.4 that the time taken to sort n items
by insertion depends significantly on the original order of the elements. Here,
we analyse this algorithm in the worst case; the average-case analysis is given in
Section 4.5. To analyse the running time of this algorithm, we choose as barometer
the number of times the while loop condition (j > 0 and x < TI jI) is tested.

Suppose for a moment that i is fixed. Let x = T[i], as in the algorithm.
The worst case arises when x is less than Tfj] for every j between 1 and i - 1,
since in this case we have to compare x to T[i -1], T[i - 2],..., T[1] before we
leave the while loop because j = 0. Thus the while loop test is performed i times

107



Analysis of Algorithms Chapter 4

in the worst case. This worst case happens for every value of i from 2 to n when
the array is initially sorted into descending order. The barometer test is thus per-
formed 1=2 i = n(n + 1)/2 1 times in total, which is in 0(n2 ). This shows that
insertion sort also takes a time in 0 (n 2) to sort n items in the worst case.

Euclid's algorithm

Recall from Section 2.7.4 that Euclid's algorithm is used to compute the greatest
common divisor of two integers.

function Euclid (m, n)
while m > 0 do

t- m
m - n mod m
n- t

return n

The analysis of this loop is slightly more subtle than those we have seen so far
because clearly measurable progress occurs not every time round the loop but
rather every other time. To see this, we first show that for any two integers m and
n such that n > m, it is always true that n mod m < n/2.

• If m > n/2, then 1 < n/m < 2, and so n . m = 1, which implies that
nmodm = n xm (n m)= n-m < n -n/2 = n/2.

• If m <n/2, then n mod m <imn<n/2.

Assume without loss of generality that n > m since otherwise the first trip round
the loop swaps m and n (because n mod m - n when n < m). This condition
is preserved each time round the loop because n mod m is never larger than m.
If we assume that arithmetic operations are elementary, which is reasonable in
many situations, the total time taken by the algorithm is in the exact order of the
number of trips round the loop. Let us determine an upper bound on this number
as a function of n. Consider what happens to m and n after we go round the
loop twice, assuming the algorithm does not stop earlier. Let mo and no denote the
original value of the parameters. After the first trip round the loop, m becomes
no mod mo. After the second trip round the loop, n takes up that value. By the
observation above, n has become smaller than no/2. In other words, the value of
n is at least halved after going round the loop twice. By then it is still the case that
n > m and therefore the same reasoning applies again: if the algorithm has not
stopped earlier, two additional trips round the loop will make the value of n at
least twice as small again. With some experience, the conclusion is now immediate:
the loop is entered at most roughly 2 lg n times.

Formally, it is best to complete the analysis of Euclid's algorithm by treating the
while loop as if it were a recursive algorithm. Let t(e) be the maximum number
of times the algorithm goes round the loop on inputs m and n when m v n < P.
If n < 2, we go round the loop either zero times (if m = 0) or one time. Otherwise,
either we go round the loop less than twice (if m = 0 or m divides n exactly),
or at least twice. In the latter case, the value of n is at least halved-and thus it

108



Section 4.4 Supplementary examples

becomes at most f . 2-and that of m becomes no larger than the new value of n.
Therefore it takes no more than t (1 . 2) additional trips round the loop to complete
the calculation. This yields the following recurrence.

t()< 2 2+ t( :2) otherwise

This is a special case of Equation 4.2 and the techniques of Section 4.7 apply equally
well to conclude that t?(f) O(log l?), which proves that Euclid's algorithm runs
in a time linear in the size of its input provided it is reasonable to consider all
arithmetic operations as elementary. It is interesting to know that this algorithm
performs least well on inputs of any given size when m and n are two consecutive
numbers from the Fibonacci sequence.

You may wonder why we used t (8) to bound the number of times the algorithm
goes round the loop on inputs m and n when m < n < T rather than defining t
directly as a function of n, the larger of the two operands. It would seem more
natural to define t (n) as the maximum number of times the algorithm goes round
the loop on inputs m and n when m < n. The problem is that this definition would
not allow us to conclude that t(n) < 2 + t(n - 2) from the fact that n is at least
halved after two trips round the loop. For example, t(13) = 5 with Euclid (8,13) as
worst case, whereas t(13 . 2)= t(6)= 2. This happens because two trips round the
loop after a call on Euclid(8, 13) leaves us not with n = 6 but with n = 5 (and m = 3),
and indeed t(13)< 2 + t(5) since t(5)= 3 (preciselywithEuclid(3,5) asworstcase).
The source of the problem is that the "more natural" definition for t does not yield a
nondecreasing function since t (5) > t (6), and thus the existence of some n' < n . 2
such that t(f)< 2 + t(f') does not imply that t(n)< 2 + t(n . 2). Instead, all we
cansayisthat t(n)< 2 +max t (n') I n' <n . 2},anawkwardrecurrencetowork
with. To summarize, we defined function t the way we did precisely so that it is
obviously nondecreasing, yet it provides an upper bound on the time taken on any
specific instance.

The Towers of Hanoi
The Towers of Hanoi provide us with another example of the analysis of recursive
algorithms. It is said that after creating the world, God set on Earth three rods made
of diamond and 64 rings of gold. These rings are all different in size. At the creation
they were threaded on the first rod in order of size, the largest at the bottom and the
smallest at the top. God also created a monastery close by the rods. The monks'
task in life is to transfer all the rings onto the second rod. The only operation
permitted is to move a single ring from one rod to another in such a way that no
ring is ever placed on top of another smaller one. When the monks have finished
their task, according to the legend, the world will come to an end. This is probably
the most reassuring prophecy ever made concerning the end of the world, for if
the monks manage to move one ring per second, working night and day without
ever resting nor ever making a mistake, their work will still not be finished 500 000
million years after they began. This is more than 25 times the estimated age of the
Universe!

109



Analysis of Algorithms Chapter 4

The problem can obviously be generalized to an arbitrary number n of rings.
For example, with n = 3, we obtain the solution given in Figure 4.1. To solve the
general problem, we need only realize that to transfer the m smallest rings from
rod i to rod j (where 1 < i < 3, 1 < j < 3, i X j and m > 1), we can first transfer
the smallest m - 1 rings from rod i to rod k = 6 - i - j, next transfer the m-th ring
from rod i to rod j, and finally retransfer the m -1 smallest rings from rod k to
rod j. Here is a formal description of this algorithm; to solve the original instance,
all you have to do (!) is to call it with the arguments (64,1,2).

procedure Hanoi(m, i, j)
{Moves the m smallest rings from rod i to rod j}
if m>OthenHanoi(m- 1,i,6 -i-j)

write i " - " j
Hanoi(m -1,6 -i-j,j)

To analyse the execution time of this algorithm, we use the instruction write as
a barometer. Let t(m) denote the number of times it is executed on a call of
Hanoi(m,, ). By inspection of the algorithm, we obtain the following recurrence:

t (M) ( 0 if M= 0 (4.3)
12t(m- 1)+1 otherwise,

from which the technique of Section 4.7 yields t(m)= 2m -1; see Example 4.7.6.
Since the number of executions of the write instruction is a good measure of the
time taken by the algorithm, we conclude that it takes a time in 0 (2n) to solve
the problem with n rings. In fact, it can be proved that the problem with n rings
cannot be solved in less than 2n - 1 moves and therefore this algorithm is optimal
if one insists on printing the entire sequence of necessary moves.

Figure 4.1. The Towers of Hanoi

Computing determinants
Yet another example of analysis of recursion concerns the recursive algorithm for
calculating a determinant. Recall that the determinant of an n x n matrix can be
computed from the determinants of n smaller (n - 1) x (n - 1) matrices obtained
by deleting the first row and some column of the original matrix. Once the n sub-
determinants are calculated, the determinant of the original matrix is obtained very

110



Section 4.5 Average-case analysis

quickly. In addition to the recursive calls, the dominant operation needed consists
of creating the n submatrices whose determinants are to be calculated. This takes a
time in 0 (n3 ) if it is implemented in a straightforward way, but a time in 0((n) suf-
fices if pointers are used instead of copying elements. Therefore, the total time t (n)
needed to calculate the determinant of an n x n matrix by the recursive algorithm is
givenby the recurrence t(n)= nt(n - 1)+h(n) forn > 2, where h(n)E 0(n). This
recurrence cannot be handled by the techniques of Section 4.7. However we saw
in Problem 1.31 that constructive induction applies to conclude that t(n)e a(n!),
which shows that this algorithm is very inefficient. The same conclusion holds if
we are less clever and need h (n)E 0(n3 ). Recall from Section 2.7.1 that the deter-
minant can be calculated in a time in 0 (n3 ) by Gauss-Jordan elimination, and even
faster by another recursive algorithm of the divide-and-conquer family. More work
is needed to analyse these algorithms if the time taken for arithmetic operations is
taken into account.

4.5 Average-case analysis
We saw that insertion sort takes quadratic time in the worst case. On the other
hand, it is easy to show that it succeeds in linear time in the best case. It is natural to
wonder about its efficiency on the average. For the question to make sense, we must
be precise about the meaning of "on the average". This requires us to assume an
a priori probability distribution on the instances that our algorithm may be asked
to solve. The conclusion of an average-case analysis may depend crucially on this
assumption, and such analysis may be misleading if in fact our assumption turns
out not to correspond with the reality of the application that uses the algorithm.
This important issue was discussed at more length in Section 2.4, and we shall come
back to it in Section 10.7. Most of the time, average-case analyses are performed
under the more or less realistic assumption that all instances of any given size
are equally likely. For sorting problems, it is simpler to assume also that all the
elements to be sorted are distinct.

Suppose we have n distinct elements to sort by insertion and all n! permuta-
tions of these elements are equally likely. To determine the time taken on average by
the algorithm, we could add the times required to sort each of the possible permu-
tations, and then divide by n! the answer thus obtained. An alternative approach,
easier in this case, is to analyse directly the time required by the algorithm, rea-
soning probabilistically as we proceed. For any i, 2 < is n, consider the subarray
T[L.. i]. The partial rank of T[i] is defined as the position it would occupy if the
subarray were sorted. For example, the partial rank of T[4] in [3,6,2,5,1,7,4] is 3
because T[L . 4] once sorted is [2,3, 5,6]. Clearly, the partial rank of T[i] does not
depend on the order of the elements in subarray T[ 1 . . i - 1]. It is easy to show that
if all n! permutations of T[l . . n] are equally likely, then the partial rank of T[i] is
equally likely to take any value between 1 and i, independently for all values of i.

Suppose now that i is fixed, 2 < i < n, and that we are about to enter the
while loop. Inspection of the algorithm shows that subarray T[1L.. i -1] contains
the same elements as before the algorithm was called, although they are now in
sorted order, and T[i] still has its original value since it has not yet been moved.
Therefore the partial rank of T[i] is equally likely to be any value between 1 and i.

ill



Analysis of Algorithms Chapter 4

Let k be this partial rank. We choose again as barometer the number of times
the while loop condition (j > 0 and x < T[j]) is tested. By definition of partial
rank, and since Till . . i - 1] is sorted, this test is performed exactly i - k + 1 times.
Because each value of k between 1 and i has probability 1/i of occurring, the
average number of times the barometer test is performed for any given value of
i is

i
t 

k= 2

These events are independent for different values of i. The total average number
of times the barometer test is performed when sorting n items is therefore

n n i + 1 (n -1) (n + 4)
Eci i 2 4
i=2 i=2

which is in e (n2 ). We conclude that insertion sorting makes on the average about
half as many comparisons as in the worst case, but this number is still quadratic.

4.6 Amortized analysis
Worst-case analysis is sometimes overly pessimistic. Consider for instance a pro-
cess P that has side effects, which means that P modifies the value of global vari-
ables. As a result of side effects, two successive identical calls on P could take a
substantially different amount of time. The easy thing to do when analysing an
algorithm that uses P as subalgorithm would be to analyse P in the worst case, and
assume the worst happens each time P is called. This approach yields a correct
answer assuming we are satisfied with an analysis in 0 notation-as opposed to 0
notation-but the answer could be pessimistic. Consider for instance the following
loop.

for i 1 to n do P

If P takes a time in O (log n) in the worst case, it is correct to conclude that the loop
takes a time in 0 (n log n), but it may be that it is much faster even in the worst case.
This could happen if P cannot take a long time ([ (log n)) unless it has been called
many times previously, each time at small cost. It could be for instance that P takes
constant time on the average, in which case the entire loop would be performed in
linear time.

The meaning of "on the average" here is entirely different from what we en-
countered in Section 4.5. Rather than taking the average over all possible inputs,
which requires an assumption on the probability distribution of instances, we take
the average over successive calls. Here the times taken by the various calls are
highly dependent, whereas we implicitly assumed in Section 4.5 that each call was
independent from the others. To prevent confusion, we shall say in this context
that each call on P takes amortized constant time rather than saying that it takes
constant time on the average.

Saying that a process takes amortized constant time means that there exists
a constant c (depending only on the implementation) such that for any positive

112



Section 4.6 Amortized analysis

n and any sequence of n calls on the process, the total time for those calls is
bounded above by cn. Therefore, excessive time is allowed for one call only if
very short times have been registered previously, not merely if further calls would
go quickly. Indeed, if a call were allowed to be expensive on the ground that it
prepares for much quicker later calls, the expense would be wasted should that
call be the final one.

Consider for instance the time needed to get a cup of coffee in a common coffee
room. Most of the time, you simply walk into the room, grab the pot, and pour
coffee into your cup. Perhaps you spill a few drops on the table. Once in a while,
however, you have the bad luck to find the pot empty, and you must start a fresh
brew, which is considerably more time-consuming. While you are at it, you may
as well clean up the table. Thus, the algorithm for getting a cup of coffee takes
substantial time in the worst case, yet it is quick in the amortized sense because a
long time is required only after several cups have been obtained quickly. (For this
analogy to work properly, we must assume somewhat unrealistically that the pot
is full when the first person walks in; otherwise the very first cup would consume
too much time.)

A classic example of this behaviour in computer science concerns storage allo-
cation with occasional need for "garbage collection". A simpler example concerns
updating a binary counter. Suppose we wish to manage the counter as an array
of bits representing the value of the counter in binary notation: array C[1 . . m]
represents EYm' 2 m- C[j]. For instance, array [0,1,1, 0,1, 1] represents 27. Since
such a counter can only count up to 2m - 1, we shall assume that we are happy to
count modulo 2". (Alternatively, we could produce an error message in case of
overflow.) Here is the algorithm for adding 1 to the counter.

procedure count(C[l .. im])

{This procedure assumes m > I
and C[j] {0, 1} for each 1 < j < m}

j- mi +I
repeat

j-gj--i
C[jP- 1 - C[j]

until C[j]= 1 or j = 1

Called on our example [0,1, 1,0, 1,1], the arraybecomes [0, 1, 1,0,1,0] the firsttime
round the loop, [0,1,1, 0, 0, 0] the second time, and [0,1,1,1, 0, 0] the third time
(which indeed represents the value 28 in binary); the loop then terminates with
j = 4 since C[4] is now equal to 1. Clearly, the algorithm's worst case occurs when
C[j] = 1 for all j, in which case it goes round the loop m times. Therefore, n calls
on count starting from an all-zero array take total time in 0 (nm). But do they take
a time in 0 (nm) ? The answer is negative, as we are about to show that count takes
constant amortized time. This implies that our n calls on count collectively take a
time in 0(n), with a hidden constant that does not depend on m. In particular,
counting from 0 to n = 2m - 1 can be achieved in a time linear in n, whereas careless
worst-case analysis of count would yield the correct but pessimistic conclusion that
it takes a time in 0 (n log n).

113



Analysis of Algorithms Chapter 4

There are two main techniques to establish amortized analysis results: the
potential function approach and the accounting trick. Both techniques apply best
to analyse the number of times a barometer instruction is executed.

Potential functions
Suppose the process to be analysed modifies a database and its efficiency each time
it is called depends on the current state of that database. We associate with the
database a notion of "cleanliness", known as the potentialfunction of the database,
Calls on the process are allowed to take more time than average provided they
clean up the database. Conversely, quick calls are allowed to mess it up. This is
precisely what happens in the coffee room! The analogy holds even further: the
faster you fill up your cup, the more likely you will spill coffee, which in turn means
that it will take longer when the time comes to clean up. Similarly, the faster the
process goes when it goes fast, the more it messes up the database, which in turn
requires more time when cleaning up becomes necessary.

Formally, we introduce an integer-valued potential function F of the state of
the database. Larger values of 4 correspond to dirtier states. Let (Po be the value
of 4 on the initial state; it represents our standard of cleanliness. Let Oi be the
value of 4F on the database after the i-th call on the process, and let t1 be the time
needed by that call (or the number of times the barometer instruction is performed).
We define the amortized time taken by that call as

ti = ti + cki - fi/;1

Thus, ii is the actual time required to carry out the i-th call on the process plus
the increase in potential caused by that call. It is sometimes better to think of it as
the actual time minus the decrease in potential, as this shows that operations that
clean up the database will be allowed to run longer without incurring a penalty in
terms of their amortized time.

Let T. denote the total time required for the first n calls on the process, and
denote the total amortized time by Tn.

n n
Tn Y. E i = (ti + Oii - OZi-l)

n n n
= ti + Y. ti - Z ' 1
i11 i~l ~I
Tn + O-n + Pn-i + + (Pi

- Pn-i i -¢ (Po

=Tn + -4). - (Po

Therefore

T. Tn - (kn - PO)

114



Section 4.6 Amortized analysis

The significance of this is that Tn < Tn holds for all n provided kn never becomes
smaller than 4 o. In other words, the total amortized time is always an upper bound
on the total actual time needed to perform a sequence of operations, as long as the
database is never allowed to become "cleaner" than it was initially. (This shows
that overcleaning can be harmful!) This approach is interesting when the actual
time varies significantly from one call to the next, whereas the amortized time is
nearly invariant. For instance, a sequence of operations takes linear time when the
amortized time per operation is constant, regardless of the actual time required for
each operation.

The challenge in applying this technique is to figure out the proper potential
function. We illustrate this with our example of the binary counter. A call on
count is increasingly expensive as the rightmost zero in the counter is farther to the
left. Therefore the potential function that immediately comes to mind would be
m minus the largest j such that C [j]= 0. It turns out, however, that this choice of
potential function is not appropriate because a single operation can mess up the
counter arbitrarily (adding 1 to the counter representing 2 k 2 causes this potential
function to jump from 0 to k). Fortunately, a simpler potential function works well:
define 4>(C) as the number of bits equal to 1 in C. Clearly, our condition that the
potential never be allowed to decrease below the initial potential holds since the
initial potential is zero.

What is the amortized cost of adding 1 to the counter, in terms of the number
of times we go round the loop? There are three cases to consider.

• If the counter represents an even integer, we go round the loop once only as we
flip the rightmost bit from 0 to 1. As a result, there is one more bit set to 1 than
there was before. Therefore, the actual cost is 1 trip round the loop, and the
increase in potential is also 1. By definition, the amortized cost of the operation
isl+1 =2.

• If all the bits in the counter are equal to 1, we go round the loop m times, flipping
all those bits to 0. As a result, the potential drops from m to 0. Therefore, the
amortized cost is m - m = 0.

• In all other cases, each time we go round the loop we decrease the potential by
1 since we flip a bit from 1 to 0, except for the last trip round the loop when we
increase the potential by 1 since we flip a bit from 0 to 1. Thus, if we go round
the loop k times, we decrease the potential k - 1 times and we increase it once,
for a net decrease of k - 2. Therefore, the amortized cost is k - (k - 2)= 2.

In conclusion, the amortized cost of adding 1 to a binary counter is always exactly
equivalent to going round the loop twice, except that it costs nothing when the
counter cycles back to zero. Since the actual cost of a sequence of operations is
never more than the amortized cost, this proves that the total number of times we
go round the loop when incrementing a counter n times in succession is at most 2n
provided the counter was initially set to zero. (This analysis would fail if the time
to initialize the counter were taken into account, much as if we had taken account
of the time to brew the first pot of coffee in the morning.)

115



Analysis of Algorithms Chapter 4

The accounting trick
This technique can be thought of as a restatement of the potential function approach,
yet it is easier to apply in some contexts. The classic use of the accounting trick
serves to analyse the efficiency of the disjoint set structures described in Section 5.9.
The actual analysis of those structures is however omitted as it reaches beyond the
scope of this book.

Suppose you have already guessed an upper bound T on the time spent in the
amortized sense whenever process P is called, and you wish to prove that your
intuition was correct (T may depend on various parameters, such as the instance
size). To use the accounting trick, you must set up a virtual bank account, which
initially contains zero tokens. Each time P is called, an allowance of T tokens is
deposited in the account; each time the barometer instruction is executed, you must
pay for it by spending one token from the account. The golden rule is never to allow
the account to become overdrawn. This insures that long operations are permitted
only if sufficiently many quick ones have already taken place. Therefore, it suffices
to show that the golden rule is obeyed to conclude that the actual time taken by
any sequence of operations never exceeds its amortized time, and in particular any
sequence of s operations takes a time that is at most TS.

To analyse our example of a binary counter, we allocate two tokens for each
call on count (this is our initial guess) and we spend one token each time count
goes round its loop. The key insight again concerns the number of bits set to I in
the counter. We leave it for the reader to verify that each call on count increases
(decreases) the amount available in the bank account precisely by the increase
(decrease) it causes in the number of bits set to 1 in the counter (unless the counter
cycles back to zero, in which case less tokens are spent). In other words, if there were
i bits set to 1 in the counter before the call and j > 0 bits afterwards, the number
of tokens available in the bank account once the call is completed has increased
by j - i (counting a negative increase as a decrease). Consequently, the number of
tokens in the account is always exactly equal to the number of bits currently set to 1
in the counter (unless the counter has cycled, in which case there are more tokens
in the account). This proves that the account is never overdrawn since the number
of bits set to 1 cannot be negative, and therefore each call on count costs at most two
tokens in the amortized sense. We shall use this technique in Section 5.8 to analyse
the amortized efficiency of binomial heaps.

4.7 Solving recurrences
The indispensable last step when analysing an algorithm is often to solve a re-
currence equation. With a little experience and intuition most recurrences can be
solved by intelligent guesswork. However, there exists a powerful technique that
can be used to solve certain classes of recurrence almost automatically. This is the
main topic of this section: the technique of the characteristic equation.

4.7.1 Intelligent guesswork
This approach generally proceeds in four stages: calculate the first few values of the
recurrence, look for regularity, guess a suitable general form, and finally prove by
mathematical induction (perhaps constructive induction) that this form is correct.

116



Section 4.7 Solving recurrences

Consider the following recurrence.

T(n) ={3T(n 2)+n otherwise

One of the first lessons experience will teach you if you try solving recurrences is
that discontinuous functions such as the floor function (implicit in n 2) are hard
to analyse. Our first step is to replace n . 2 with the better-behaved "n /2" with a
suitable restriction on the set of values of n that we consider initially. It is tempting
to restrict n to being even since in that case n . 2 = n/2, but recursively dividing
an even number by 2 may produce an odd number larger than 1. Therefore, it
is a better idea to restrict n to being an exact power of 2. Once this special case
is handled, the general case follows painlessly in asymptotic notation from the
smoothness rule of Section 3.4.

First, we tabulate the value of the recurrence on the first few powers of 2.

n 1 2 4 8 16 32
T(n) 1 5 19 65 211 665

Each term in this table but the first is computed from the previous term. For in-
stance, T(16)= 3 x T(8)+16 = 3 x 65 + 16 = 211. But is this table useful? There is
certainly no obvious pattern in this sequence! What regularity is there to look for?

The solution becomes apparent if we keep more "history" about the value
of T(n). Instead of writing T(2)= 5, it is more useful to write T(2)= 3 x 1 + 2.
Then,

T(4)= 3xT(2)+4=3x (3x1+2)+4 =3 2 x1 +3x22+ 4.

We continue in this way, writing n as an explicit power of 2.

n

1
2
22

23

24

25

T(n)

1

3 x 1 + 2
32 x1 +3x2+22

33 x1 +32 x2+3x2 2+23

34 x 1 +33 x2+32 x22 +3x23 +24
35 x1 +34 x2+33 x 22 +32 x23 +3 x24 +25

The pattern is now obvious.

T(2k )= 3 k 2 ° + 3 k- 12 1 + 3 k-2 2 2 + ... 1 k - 1 + 3 0 2k

k k

= E' 3 k i 2 = 3k E_ 2
i=o t=o

= 3kx (1- (2 /3 )k+l)/(l - 2/3) (Proposition 1.7.10)
= 3k+1 - 2 k+1 (4.5)

It is easy to check this formula against our earlier tabulation. By induction (not math-
ematical induction), we are now convinced that Equation 4.5 is correct.

117



Analysis of Algorithms Chapter 4

Nevertheless, we saw in Section 1.6 that induction is not always to be trusted.
Therefore, the analysis of our recurrence when n is a power of 2 is incomplete until
we prove Equation 4.5 by mathematical induction. This easy exercise is left to the
reader.

With hindsight, Equation 4.5 could have been guessed with just a little more
intuition. For this it would have been enough to tabulate the value of T(n) +in for
small values of i, such as 2 < i < 2.

n

T(n) -2n

T(n)- n

T(n)

T(n)2+n
T(n) +2n

1 2 4 8 16 32

-1 1 11 49 179 601

0 3 15 57 195 633

1 5 19 65 211 665

2 7 23 73 227 697
3 9 27 81 243 729

This time, it is immediately apparent that T(n)+2n is an exact power of 3, from
which Equation 4.5 is readily derived.

What happens when n is not a power of 2? Solving recurrence 4.4 exactly
is rather difficult. Fortunately, this is unnecessary if we are happy to obtain the
answer in asymptotic notation. For this, it is convenient to rewrite Equation 4.5 in
terms of T(n) rather than in terms of T(2k). Since n = 2 k it follows that k = lgn.
Therefore

T(n)= T(2lgn)= 31+1gn - 21+1gn

Using the fact that 31g n = n1g 3 (which is easily seen by taking the binary logarithm
on both sides of the equation; see Problem 1.15) it follows that

T(n)= 3n 1
g

3 - 2n (4.6)

when n is a power of 2. Using conditional asymptotic notation, we conclude that
T(n)e O (n1g3 

1 n is a power of 2). Since T(n) is a nondecreasing function (a fact
easily proven by mathematical induction) and n1g3 is a smooth function, it follows
from Section 3.4 that T(n)e (=)(n1 g3 ) unconditionally.

In practice, you will never need this kind of guesswork to solve a recurrence
such as Equation 4.4 because the techniques we are about to study can solve it
automatically in a few minutes. However, there are recurrences for which those
techniques are powerless, and intelligent guesswork can always be used as last
resort.

4.7.2 Homogeneous recurrences

We begin our study of the technique of the characteristic equation with the resolution
of homogeneous linear recurrences with constant coefficients, that is recurrences
of the form

aotn +a ta 1 + +aktn k(4 = )

118

(4.7)



Section 4.7 Solving recurrences

where the t1 are the values we are looking for. In addition to Equation 4.7, the values
of ti on k values of i (usually 0 < i < k - 1 or 1 • i < k) are needed to determine the
sequence. These initial conditions will be considered later. Until then, Equation 4.7
typically has infinitely many solutions. This recurrence is

• linear because it does not contain terms of the form t, _tn j, t2 - , and so on;

c homogeneous because the linear combination of the t,_j is equal to zero; and

c with constant coefficients because the a1 are constants.

Consider for instance our now familiar recurrence for the Fibonacci sequence.

fn = f.-1 + f.-2

This recurrence easily fits the mould of Equation 4.7 after obvious rewriting.

fn - fn 1 - fn-2 = 0

Therefore, the Fibonacci sequence corresponds to a homogeneous linear recurrence
with constant coefficients with k = 2, a= 1 and a, = a2 = -1.

Before we even start to look for solutions to Equation 4.7, it is interesting to
note that any linear combination of solutions is itself a solution. In other words,
if f, and gn satisfy Equation 4.7, so yo aifn-i = 0 and similarly for gn, and if
we set t, - cf A + dygn for arbitrary constants c and d, then t,, is also a solution to
Equation 4.7. This is true because

ao tn + al tn1 + *- + ak tn-k

= ao(cf n + dyn)±+a,(cfn 1 + dg i-)+ * + ak(c f-k + dn k)

= c (ao fn + al fn-l + + ak fn-k) +d (ao gn + al n-1 + *+ ak gn k)

=cxO+dx O=O.

This rule generalizes to linear combinations of any number of solutions.
Trying to solve a few easy examples of recurrences of the form of Equation 4.7

(not the Fibonacci sequence) by intelligent guesswork suggests looking for solutions
of the form

tn = XI

where x is a constant as yet unknown. If we try this guessed solution in Equa-
tion 4.7, we obtain

ao x' + a 1 +x * . + ak xn k = o.

This equation is satisfied if x = 0, a trivial solution of no interest. Otherwise, the
equation is satisfied if and only if

aox k+ax k- + * *. +ak =0

119



Analysis of Algorithms Chapter 4

This equation of degree k in x is called the characteristic equation of the recurrence
4.7 and

p(x)= aoxk + a, xk1+ + +ak

is called its characteristic polynomial.
Recall that the fundamental theorem of algebra states that any polynomial p (x)

of degree k has exactly k roots (not necessarily distinct), which means that it can
be factorized as a product of k monomials

k

p(x)= f(x - ri)
z=1

where the ri may be complex numbers. Moreover, these ri are the only solutions
of the equation p(x)= 0.

Consider any root r1 of the characteristic polynomial. Since p (ri) 0 0 it follows
that x = ri is a solution to the characteristic equation and therefore rin is a solution
to the recurrence. Since any linear combination of solutions is also a solution, we
conclude that

k

t' ii (4.8)

satisfies the recurrence for any choice of constants Cl, C2. Ck. The remarkable
fact, which we do not prove here, is that Equation 4.7 has only solutions of this form
provided all the ri are distinct. In this case, the k constants can be determined from
k initial conditions by solving a system of k linear equations in k unknowns.

Example 4.7.1. (Fibonacci) Consider the recurrence

n if n = Oorn = 1
Lfn- + fn 2 otherwise

First we rewrite this recurrence to fit the mould of Equation 4.7.

fn -fn-1 -fnf2 = 0

The characteristic polynomial is

X2 _ x -1

whose roots are
'i=I+~

5
A -15-r1  2 and r2  2

The general solution is therefore of the form

fnc = cI rl + C2 r2. (4.9)

It remains to use the initial conditions to determine the constants cl and c2. When
n = 0, Equation 4.9 yields o = C1 + C2. But we know that fo = 0. Therefore,

120



Section 4.7 Solving recurrences

C1 + C2 = 0. Similarly, when n = 1, Equation 4.9 together with the second initial
condition tell us that fi = cl r1 + c2 r2 = 1. Remembering that the values of r1 and
r2 are known, this gives us two linear equations in the two unknowns cl and c2.

Cl + C2 = 0
rY C1 + r2 C2 = 1

Solving these equations, we obtain

Cl I and c 2T5.

Thus

f 15 ( 2  ) ( 2 ) 11]

which is de Moivre's famous formula for the Fibonacci sequence. Notice how much
easier the technique of the characteristic equation is than the approach by construc-
tive induction that we saw in Section 1.6.4. It is also more precise since all we were
able to discover with constructive induction was that fan grows exponentially in
a number close to P)"; now we have an exact formula. D

If it surprises you that the solution of a recurrence with integer coefficients and
initial conditions involves irrational numbers, try Problem 4.31 for an even bigger
surprise!

Example 4.7.2. Consider the recurrence

0 if n=O
tn5 if n= I

3tn-I + 4tn-2 otherwise

First we rewrite the recurrence.

tn -3tn-1- 4t, 2 = 0

The characteristic polynomial is

x 2 -3x- 4= (x+1)(x -4)

whose roots are ri = -1 and r2 = 4. The general solution is therefore of the form

tn = C1(-l) '+C2 41.

The initial conditions give

Cl + C2 = n= 0
-cl + 4C2 = 5 n = 1

Solving these equations, we obtain c= -1 and C2 = 1. Therefore

tn = 4n -(-1)-.

D~

121



Analysis of Algorithms Chapter 4

The situation becomes slightly more complicated when the characteristic poly-
nomial has multiple roots, that is when the k roots are not all distinct. It is still true
that Equation 4.8 satisfies the recurrence for any values of the constants ci, but this
is no longer the most general solution. To find other solutions, let

p(x)= aoxk + alxk-l + . + ak

be the characteristic polynomial of our recurrence, and let r be a multiple root. By def-
inition of multiple roots, there exists a polynomial q (x) of degree k - 2 such that
p(x)= (x - r)2 q(x). For every n > k consider the n-th degree polynomials

un(x = ao xn + al x-l+ + +ak xn-k and

vn(x) =aonx +a,(n-1)x 1 l+ -- +ak(n -k)xn-k.

Observe that vn(x)= x x un(x), where uW(x) denotes the derivative of un(x)
with respect to x. But un (x) can be rewritten as

Un(X) = kp(x)= X-k(x- r) 2 q(x)= (X r) 2 x[x -kq(x)]

Using the rule for computing the derivative of a product of functions, we obtain
that the derivative of un (x) with respect to x is

un(x)= 2(x -r)xn-kq(x)+(x r)2 [x,-kq(x)]

Thereforeu'(r)= 0,whichimpliesthatvn(r)= r x u (r)= Oforalln > k. Another
words,

ao nrn + a1 (n -1)rn 1 + *+ ak (n - k) rn-k = O.

We conclude that tn = nrn is also a solution to the recurrence. This is a genuinely
new solution in the sense that it cannot be obtained by choosing appropriate con-
stants ci in Equation 4.8.

More generally, if root r has multiplicity m, then tn = rn, tn = nrn, tn -
n 2r",..., tn = nm lrn are all distinct solutions to the recurrence. The general
solution is a linear combination of these terms and of the terms contributed by
the other roots of the characteristic polynomial. To summarize, if rl, r2,..., rp are
the l? distinct roots of the characteristic polynomial and if their multiplicities are
Ml, m2,..., mp, respectively, then

f mi-l

tn = E' >. cij nirin
i~l j=O

is the general solution to Equation 4.7. Again, the constants cij, 1 < i < 1 and
0 < j < mi -1, are to be determined by the k initial conditions. There are k such

constants because Y e., mi = k (the sum of the multiplicities of the distinct roots
is equal to the total number of roots). For simplicity, we shall normally label the
constants cl, C2,. . ., ck rather than using two indexes.

122



Section 4.7 Solving recurrences

Example 4.7.3. Consider the recurrence

In if n = 0,1 or 2
5t, 1 - 8t,-2 + 4t,-3 otherwise

First we rewrite the recurrence.

tn-5t,_1 + 8tn-2 -4tn-3 = 0

The characteristic polynomial is

x3 -5x 2 +8x- 4= (x- 1)(x- 2)2.

The roots are therefore r1 = 1 of multiplicity ml = 1
m2 = 2, and the general solution is

and r2 = 2 of multiplicity

tn = Cll' + C2 21 + c 3 n2l.

The initial conditions give

Cl + C2

Cl + 2C2

ci + 4C2

0 n=0
+ 2C3

+ 8c3

Solving these equations, we obtain cl

-1
= 2

n = 1
n = 2

-2, C2 = 2 and C3 = - 2 . Therefore

tn = 2n+l-n2n-l - 2.

D

4.7.3 Inhomogeneous recurrences
The solution of a linear recurrence with constant coefficients becomes more difficult
when the recurrence is not homogeneous, that is when the linear combination is
not equal to zero. In particular, it is no longer true that any linear combination
of solutions is a solution. We begin with a simple case. Consider the following
recurrence.

(4.10)

The left-hand side is the same as before, but on the right-hand side we have bn p (n),
where

o b is a constant; and

o p(n) is a polynomial in n of degree d.

Example 4.7.4. Consider the recurrence

t, -2t, 1 = (1.

123

ao tn + al t.-i + - - - + ak t, -k = V p (n)

(4.11)



Analysis of Algorithms Chapter 4

In this case, b = 3 and p (n) = 1, a polynomial of degree 0. A little cunning allows us
to reduce this example to the homogeneous case with which we are now familiar.
To see this, first multiply the recurrence by 3, obtaining

3t -6t,_1 = 31 .

Now replace n by n - 1 in this recurrence to get

3t 1 -6t,-2 = 3 (4.12)

Finally, subtract Equation 4.12 from 4.11 to obtain

t' -5t,-i + 6tn-2 = 0, (4.13)

which can be solved by the method of Section 4.7.2. The characteristic polynomial
is

x 2 -5x+6= (x -2)(x -3)

and therefore all solutions are of the form

tn = cl 2' + c2 3'. (4.14)

However, it is no longer true that an arbitrary choice of constants cl and c2 in
Equation 4.14 produces a solution to the recurrence even when initial conditions
are not taken into account. Worse: even the basic solutions t, = 2n and t, = 3Y,
which are of course solutions to Equation 4.13, are not solutions to the original
recurrence given by Equation 4.11. What is going on? The explanation is that
Equations 4.11and 4.13 are not equivalent: Equation 4.13 can be solved given arbi-
trary values for to and t1 (the initial conditions), whereas our original Equation 4.11
implies that ti = 2to + 3. The general solution to the original recurrence can be de-
termined as a function of to by solving two linear equations in the unknowns cl
and c2.

C1 + C2 = to n = 0

2ci + 3c2 = 2to + 3 n =1 (4.15)

Solving these, we obtain cl = to - 3 and c2 = 3. Therefore, the general solution is

t, = (to -3) 2 + 3n1

and thus tn (- 0(31) regardless of the initial condition.
Provided to > 0, an easy proof by mathematical induction based on Equa-

tion 4.11 shows that t, > 0 for all n > 0. Therefore, it is immediate from Equa-
tion 4.14 that t, E 0(3m): there is no need to solve for the constants cl and C2
to reach this conclusion. However, this equation alone is not sufficient to con-
clude that t, E 0 (3") because it could have been a priori that c2 = 0. Nevertheless,
it turns out that the value of c2 can be obtained directly, with no need to set up
System 4.15 of linear equations. This suffices to conclude that t, E 6 (3fl) whatever
the value of to (even if it is negative). To see this, substitute Equation 4.14 into the
original recurrence.

3" t -2tn 1

(c, 1 2 +C 2 3) -2(ci2 n-1 +c23" 1)

C2 3` 1

Regardless of the initial condition, we conclude that c2 = 3.

124

CH



Section 4.7 Solving recurrences

In the examples that follow, we sometimes set up a system of linear equa-
tions to determine all the constants that appear in the general solution, whereas at
other times we determine only the necessary constants by substituting the general
solution into the original recurrence.

Example 4.7.5. We wish to find the general solution of the following recurrence.

t,, -2t,,-- = (n -5)3n n > 1 (4.16)

The manipulation needed to transform this into a homogeneous recurrence is
slightly more complicated than with Example 4.7.4. We must

a. write down the recurrence,

b. replace n in the recurrence by n - 1 and then multiply by -6, and

c. replace n in the recurrence by n - 2 and then multiply by 9, successively ob-
taining

tn - 2tn-1 (n + 5) 3n
- 6tn-1 + 12t,-2 -6 (n + 4) 3`1

9t, 2 - 18th 3 9 (n + 3) 3 2.

Adding these three equations, we obtain a homogeneous recurrence

tn -8t, -l + 21tn 2 -18t,-3 = 0.
The characteristic polynomial is

x3 _ 8x2 + 21x - 18 = (x - 2)(x - 3)2

and therefore all solutions are of the form

tn = cl 2n + c2 3 + C3 n 3n. (4.17)

Once again, any choice of values for the constants c1, C2 and C3 in Equation 4.17
provides a solution to the homogeneous recurrence, but the original recurrence
imposes restrictions on these constants because it requires that tj = 2to + 18 and
t2 = 2t, + 63 = 4to + 99. Thus, the general solution is found by solving the follow-
ing system of linear equations.

cl + c2 = to n = 0
2c 1 + 3C2 + 3C3 = 2to + 18 n = 1
4ci + 9C2 + 18C3 = 4to + 99 n = 2

This implies that cl = to - 9, C2 = 9 and C3 = 3. Therefore, the general solution to
Equation 4.16 is

t, = (to- 9) 2' + (n + 3) 3` 1

and thus tG E El(n3') regardless of the initial condition.
Alternatively, we could substitute Equation 4.17 into the original recurrence.

After simple manipulation, we obtain

(n + 5) 3' = c3 n3n 1 + (2c 3 + c2) 3n

Equating the coefficients of n 3 yields 1 = c3 /3 and thus C3 3. The fact that c3 is
strictly positive suffices to establish the exact order of t, with no need to solve for
the other constants. Once c3 is known, however, the value of c2 is just as easy to
obtain by equating the coefficients of 3n: C2 = 15 - 2c3 = 9. D

125



Analysis of Algorithms Chapter 4

Looking back on Examples 4.7.4 and 4.7.5, we see that part of the characteristic
polynomial comes from the left-hand side of Equation 4.10 and the rest from the
right-hand side. The part that comes from the left-hand side is exactly as if the
equation had been homogeneous: (x - 2) for both examples. The part that comes
from the right-hand side is a result of our manipulation.

Generalizing, we can show that to solve Equation 4.10 it is sufficient to use the
following characteristic polynomial.

(ao Xk + a xk1+ + +ak) (X - b)d+l

(Recall that d is the degree of polynomial p (n).) Once this polynomial is obtained,
proceed as in the homogeneous case, except that some of the equations needed to
determine the constants are obtained not from the initial conditions but from the
recurrence itself.

Example 4.7.6. The number of movements of a ring required in the Towers of
Hanoi problem (see Section 4.4) is given by Equation 4.3.

t (M) 0if M -0
12t(m-1)+1 otherwise

This can be written as
t(m)-2t(m -1)= 1, (4.18)

which is of the form of Equation 4.10 with b = 1 and p(n)= 1, a polynomial of
degree 0. The characteristic polynomial is therefore

(x - 2)(x - 1)

where the factor (x - 2) comes from the left-hand side of Equation 4.18 and the
factor (x -1) from its right-hand side. The roots of this polynomial are 1 and 2,
both of multiplicity 1, so all solutions of this recurrence are of the form

t(mn) = cl m + c2 2m . (4.19)

We need two initial conditions to determine the constants cl and C2. We know that
t (0) = 0; to find the second initial condition we use the recurrence itself to calculate

W()= 2t(0)+1 = 1.

This gives us two linear equations in the unknown constants.

Cl + C2 = 0 m=0

cl + 2c2  = 1 m = 1
From this, we obtain the solution cl - 1 and c2 = 1 and therefore

t(m)= 2" - 1.

If all we want is to determine the exact order of t (m), there is no need to cal-
culate the constants in Equation 4.19. This time we do not even need to substitute
Equation 4.19 into the original recurrence. Knowing that t(m)= Cl + c22m is suf-
ficient to conclude that c2 > 0 and thus t(m) GE)(2m ). For this, note that t(m),
the number of movements of a ring required, is certainly neither negative nor a
constant since clearly t(m) >i m. D

126



Section 4.7 Solving recurrences

Example 4.7.7. Consider the recurrence

t= 2t,_1 + n.

This can be rewritten
tn 2tn 1= n,

which is of the form of Equation 4.10 with b = 1 and p(n)= n, a polynomial of
degree 1. The characteristic polynomial is thus

(x - 2)(x - 1)2

with roots 2 (multiplicity 1) and 1 (multiplicity 2). All solutions are therefore of the
form

tn = cl 2' + c2 I' + c3 n In. (4.20)

Provided to > 0, and therefore tn > 0 for all n, we conclude immediately that
t, E 0(2n). Further analysis is required to assert that tn E O (2n).

If we substitute Equation 4.20 into the original recurrence, we obtain

n = -tn 12tnI

= (c, 2n + Q + C3 n)-2 (ci 2n-1 + c2 + c 3(n-1))

= (2c3 - C2) -c 3 n

from which we read directly that 2c3 - C2 = 0 and -C3 = 1, regardless of the initial
condition. This implies that C3 = -1 and c2 = -2. At first we are disappointed
because it is cl that is relevant to determining the exact order of tn as given by
Equation 4.20, and we obtained the other two constants instead. However, those
constants turn Equation 4.20 into

tn = cl 2 - n -2. (4.21)

Provided to > 0, and therefore tn > 0 for all n, Equation 4.21 implies that cl must
be strictly positive. Therefore, we are entitled to conclude that tn E) (2n) with no
need to solve explicitly for cl. Of course, c1 can now be obtained easily from the
initial condition if so desired.

Alternatively, all three constants can be determined as functions of to by setting
up and solving the appropriate system of linear equations obtained from Equa-
tion 4.20 and the value of tj and t2 computed from the original recurrence. L

By now, you may be convinced that, for all practical purposes, there is no
need to worry about the constants: the exact order of tn can always be read off
directly from the general solution. Wrong! Or perhaps you think that the constants
obtained by the simpler technique of substituting the general solution into the
original recurrence are always sufficient to determine its exact order. Wrong again!
Consider the following example.

127



Analysis of Algorithms Chapter 4

Example 4.7.8. Consider the recurrence

51 if = 0
t 14th-l - 2n otherwise

First rewrite the recurrence as

t -4t,_1 = -2n,

which is of the form of Equation 4.10 with b = 2 and p(n)= -1, a polynomial of
degree 0. The characteristic polynomial is thus

(x - 4) (x - 2)

with roots 4 and 2, both of multiplicity 1. All solutions are therefore of the form

t, = cl 4n + c2 2'. (4.22)

You may be tempted to assert without further ado that tn X 0(4n) since that is
clearly the dominant term in Equation 4.22.

If you are in less of a hurry, you may wish to substitute Equation 4.22 into the
original recurrence to see what comes out.

-2n tn -4tn-I

cl 4 + c2 2' -4(c, 4n-1 + ±c 2 2" -1)

-C22'

Therefore, c2 = 1 regardless of the initial condition. Knowledge of C2 is not directly
relevant to determining the exact order of t, as given by Equation 4.22. Unlike
the previous example, however, nothing conclusive about cl can be asserted from
the mere fact that c2 is positive. Even if we had found that c2 is negative, we still
could not immediately conclude anything concerning c1 because this time there is
no obvious reason to believe that tn must be positive.

All else having failed, we are forced to determine all the constants. We could set
up the usual system of two linear equations in two unknowns obtained from Equa-
tion 4.22 and the values of to and t1, but why throw away the knowledge we have
already acquired about the value of c2? We know that tn = cl 41n + 2n. Substituting
the initial condition to = 1 yields 1 = c1 + 1 and therefore c1 = 0. The conclusion
is that the exact solution for the recurrence is simply tn = 2", and that the previ-
ous assertion that tn EE 0(4") was incorrect! Note however that tn would be in
0(4") if any larger value of to were specified as initial condition since in general
c- = to - 1. On the other hand, with an initial condition to < 1, tn takes negative
values that grow exponentially fast. This example illustrates the importance of
the initial condition for some recurrences, whereas previous examples had shown
that the asymptotic behaviour of many recurrences is not affected by the initial
condition, at least when to ' 0. E

128



Section 4.7 Solving recurrences

A further generalization of the same type of argument allows us finally to solve
recurrences of the form

ao tn + al tn 1 + * * + ak t- k bin pi(n)+b j p 2 (n)+ * (4.23)

where the bi are distinct constants and the pi (n) are polynomials in n respec-
tively of degree di. Such recurrences are solved using the following characteristic
polynomial:

(ao xk + al xk 1+ **+ ak) (x-bl)d+1 (x -b 2 )d2+l.**,

which contains one factor corresponding to the left-hand side and one factor corre-
sponding to each term on the right-hand side. Once the characteristic polynomial
is obtained, the recurrence is solved as before.

Example 4.7.9. Consider the recurrence

t. =O if n= 0
12th 1 + n + 2" otherwise

First rewrite the recurrence as

t -2tn-1 = n + 21 ,

which is of the form of Equation 4.23 with bi = 1, pi (n) = n, b2 = 2 and P2 (n) = 1.
The degree of p1 (n) is di 1 and the degree of p2(n) is d2 = 0. The characteristic
polynomial is

(x - 2)(x - 1)2 (X - 2),
which has roots 1 and 2, both of multiplicity 2. All solutions to the recurrence
therefore have the form

tn = CI1i" + C2 n 1' + C3 2n + C4 n 2n. (4.24)

We conclude from this equation that tn e 0 (n27 r) without calculating the constants,
but we need to know whether or not C4 > 0 to determine the exact order of tn.
For this, substitute Equation 4.24 into the original recurrence, which gives

n +2n = (2c2 -C 1 )-C2n + C4 2".

Equating the coefficients of 2", we obtain immediately that c4 = 1 and therefore
tn e 6)(n2n). Constants ci and c2 are equally easy to read off if desired. Constant
C3 can then be obtained from Equation 4.24, the value of the other constants, and
the initial condition to = 0.

Alternatively, all four constants can be determined by solving four linear equa-
tions in four unknowns. Since we need four equations and we have only one initial
condition, we use the recurrence to calculate the value of three other points: tj = 3,
t2 = 12 and t3 = 35. This gives rise to the following system.

cl + C3 0 n 0=O
C1 + C2 + 2c3  + 2c4  3 n= 1
cl + 2c2 + 4c0 + 8c4 12 n = 2
cl + 3c2 + 8c3 + 24c 4  35 n = 3

Solving this system yields cl = -2, C2 = -1, C3 = 2 and c4 = 1. Thus we finally
obtain

tn = n2n + 2` - n- 2.

Cn

129



Analysis of Algorithms Chapter 4

4.7.4 Change of variable
It is sometimes possible to solve more complicated recurrences by making a change
of variable. In the following examples, we write T(n) for the term of a general
recurrence, and ti for the term of a new recurrence obtained from the first by a
change of variable. Be sure to study Example 4.7.13, which is among the most
important recurrences for algorithmic purposes.

Example 4.7.10. Reconsider the recurrence we solved by intelligent guesswork in
Section 4.7.1, but only for the case when n is a power of 2.

T(n)= I~3~/)- if n 1
=3T(n/2)+n ifnisapowerof2,n>1

To transform this into a form that we know how to solve, we replace n by 2K.
This is achieved by introducing a new recurrence ti, defined by ti = T(2i). This
transformation is useful because n/2 becomes (2i)/2 = 2i -1. In other words, our
original recurrence in which T(n) is defined as a function of T(n/2) gives way to
one in which t, is defined as a function of ti-1, precisely the type of recurrence we
have learned to solve.

t, = T(2') = 3T(2' 1)+21

= 3ti 1 + 2'

Once rewritten as
ti - 3ti-1 = 2',

this recurrence is of the form of Equation 4.10. The characteristic polynomial is

(x - 3) (x - 2)

and hence all solutions for ti are of the form

tj = cl 3' + c2 2i.

We use the fact that T(2T)= t, and thus T(n)= tlgn when n = 2i to obtain

T(n) = cl 31g n + C221g2

= c ng3 + C2n(4.25)

when n is a power of 2, which is sufficient to conclude that

T(n)c O(ntg3 
I n is a power of 2).

However, we need to show that cl is strictly positive before we can assert something
about the exact order of T(n).

We are now familiar with two techniques to determine the constants. For the
sake of the exercise, let us apply each of them to this situation. The more direct
approach, which does not always provide the desired information, is to substitute

130



Section 4.7 Solving recurrences

the solution provided by Equation 4.25 into the original recurrence. Noting that
(1/2)1g3= 1/3, this yields

n= T(n)-3T(n/2)

= (cl n g3 + C2 n) -3 (C, (n/2)g3 +C2 (n/2))

= -C2 n/2

and therefore c2 = -2. Even though we did not obtain the value of cl, which is
the more relevant constant, we are nevertheless in a position to assert that it must
be strictly positive, for otherwise Equation 4.25 would falsely imply that T(n) is
negative. The fact that

T(n)e (nlg 3 I n is a power of 2) (4.26)

is thus established. Of course, the value of c1 would now be easy to obtain from
Equation 4.25, the fact that c2 = -2, and the initial condition T(1) = 1, but this is not
necessary if we are satisfied to solve the recurrence in asymptotic notation. More-
over we have learned that Equation 4.26 holds regardless of the initial condition,
provided T(n) is positive.

The alternative approach consists of setting up two linear equations in the two
unknowns cl and c2. It is guaranteed to yield the value of both constants. For this,
we need the value of T (n) on two points. We already know that T (1) = 1. To obtain
another point, we use the recurrence itself: T(2)= 3T(1 ) +2 = 5. Substituting n = 1
and n = 2 in Equation 4.25 yields the following system.

ci + C2 = 1 n= 1
3ci + 2C2 = 5 n = 2

Solving these equations, we obtain cl = 3 and c2 = -2. Therefore

T(n)= 3nlg3 - 2n

when n is a power of 2, which is of course exactly the answer we obtained in
Section 4.7.1 by intelligent guesswork. D

Example 4.7.11. Consider the recurrence

T(n)= 4T(n/2)+n2

when n is a power of 2, n > 2. We proceed as in the previous example.

ti = T(2') = 4T(2t -1) + (21)2

= 4t-1 + 4 '

We rewrite this in the form of Equation 4.10.

t, - 4t- 1 I = 4'

131



132 Analysis of Algorithms Chapter 4

The characteristic polynomial is (x - 4)2 and hence all solutions are of the form

ti cl 4' + C2 i4'.

In terms of T(n), this is
T(n) c 1n2 

+ C2n
2 lg n. (4.27)

Substituting Equation 4.27 into the original recurrence yields

n2 = T(n) -4T(n/2)= C2 2

and thus C2 = 1. Therefore

T(n)c W(n2 logn I nisapowerof2),

regardless of initial conditions (even if T(1) is negative). C

Example 4.7.12. Consider the recurrence

T(n)= 2T(n/2)+nlgn

when n is a power of 2, n > 2. As before, we obtain

t, = T(2') 2T(2' 1)+i2

2ti-I + i2'

We rewrite this in the form of Equation 4.10.

ti - 2ti-1 = i2'

The characteristic polynomial is (x - 2) (x - 2)2= (x - 2)3 and hence all solutions
are of the form

t, = c2'C2 i2' + c3i 2 2'.

In terms of T(n), this is

T(n)= cl n + C2 nlgn + C3 nlg2 n. (4.28)

Substituting Equation 4.28 into the original recurrence yields

nlgn = T(n)-2T(n/2)= (c2 - c3) n + 2c3nlgn,

which implies that c2 = C3 and 2c3 = 1, and thus c2 = C3 = Therefore

T(n)eO (nlog2 n I n is a power of 2),

regardless of initial conditions. D



Section 4.7 Solving recurrences

Remark: In the preceding examples, the recurrence given for T(n) only applies
when n is a power of 2. It is therefore inevitable that the solution obtained should
be in conditional asymptotic notation. In each case, however, it is sufficient to add
the condition that T(n) is eventually nondecreasing to be able to conclude that
the asymptotic results obtained apply unconditionally for all values of n. This
follows from the smoothness rule (Section 3.4) since the functions nIg3, n2 log n
and n log2 n are smooth.

Example 4.7.13. We are now ready to solve one of the most important recurrences
for algorithmic purposes. This recurrence is particularly useful for the analysis
of divide-and-conquer algorithms, as we shall see in Chapter 7. The constants
no > 1, 1? :1, b > 2 and k > 0 are integers, whereas c is a strictly positive real
number. Let T: N-. R' be an eventually nondecreasing function such that

T(n)= fT(n/b)+cnk n > no (4.29)

when n/no is an exact power of b, that is when n c {bno, b2 no, b3 no,... }. This
time, the appropriate change of variable is n = b no.

t1 = T(b1 no) = T(b'-' no)-+c(bW no)k

=ti + c n bik

We rewrite this in the form of Equation 4.10.

ti-f ti-I = (cn k) (bk)i

The right-hand side is of the required form a1 p(i) where p(i)= cnois a con-
stant polynomial (of degree 0) and a = bk. Thus, the characteristic polynomial is
(x - ?) (x - bk) whose roots are 4 and bk. From this, it is tempting (but false in
general!) to conclude that all solutions are of the form

ti = cl il + c 2 (bk)L. (4.30)

To write this in terms of T(n), note that i = logb(n/no) when n is of the proper
form, and thus di = (nf/ no)l19b d for arbitrary positive values of d. Therefore,

T(n) = (c1 /no f logog) g nlgb + (C2/fl0 )fn (4.31)

= c3 nlogb e + C4 fk

for appropriate new constants C3 and C4 . To learn about these constants, we sub-
stitute Equation 4.31 into the original recurrence.

cnk = T(n) 4?T(n/b)

= C3log, i + C4 nk -e4 (C3 (n/b)logbJ+C4 (n/b)k)

(1 -4) C4 nk

133



Analysis of Algorithms Chapter 4

Therefore C4 = c/(I - 1/bk). To express T(n) in asymptotic notation, we need to
keep only the dominant term in Equation 4.31. There are three cases to consider,
depending whether V is smaller than, bigger than or equal to bk.

• If l? < bk then C4 > 0 and k > log, 1. Therefore the term C4 nk dominates Equa-
tion 4.31. We conclude that T(n)c( O(nk I (n/no) is a power of b). But nk
is a smooth function and T(n) is eventually nondecreasing by assumption.
Therefore T(n)e W(nk)

• If l > bk then C4 < 0 and logb 1 > k. The fact that C4 is negative implies that
c3 is positive, for otherwise Equation 4.31 would imply that T(n) is nega-
tive, contrary to the specification that T: N -R '. Therefore the term C3 nllogb

dominates Equation 4.31. Furthermore nlogb e is a smooth function and T(n)
is eventually nondecreasing. Therefore T(n) c- 0(nlog, e),

o If 13 = bk, however, we are in trouble because the formula for C4 involves a divi-
sion by zero! What went wrong is that in this case the characteristic polynomial
has a single root of multiplicity 2 rather than two distinct roots. Therefore Equa-
tion 4.30 does not provide the general solution to the recurrence. Rather, the
general solution in this case is

ti = C5 (b k)i+C6 i (b kni

In terms of T(n), this is

T(n)= c 7 nk + csnk logt,(n/no) (4.32)

for appropriate constants C7 and c8. Substituting this into the original recur-
rence, our usual manipulation yields a surprisingly simple c8 = c. Therefore,
c nk logb n is the dominant term in Equation 4.32 because c was assumed to
be strictly positive at the beginning of this example. Since nk log n is smooth
and T(n) is eventually nondecreasing, we conclude that T(n)E O (nk log n).

Putting it all together,

f 6(nk) if - < bk

T(n)e E(nk logn) if f = bk (4.33)

0 ( nlogb 4 ) if e > b k

Problem 4.44 gives a generalization of this example. D

Remark: It often happens in the analysis of algorithms that we derive a recurrence
in the form of an inequality. For instance, we may get

T(n)< 1T(n/b)+cnk n > nO

when n/no is an exact power of b, instead of Equation 4.29. What can we say
about the asymptotic behaviour of such a recurrence? First note that we do not
have enough information to determine the exact order of T(n) because we are given

134



Section 4.7 Solving recurrences

only an upper bound on its value. (For all we know, it could be that T(n)= 1 for
all n.) The best we can do in this case is to analyse the recurrence in terms of
the 0 notation. For this we introduce an auxiliary recurrence patterned after the
original but defined in terms of an equation (not an inequation). In this case

t(n)= |T(no) if n = no
ln -{PT(n/b) +cnk if n/no is a power of b, n > no.

This new recurrence falls under the scope of Example 4.7.13, except that we
have no evidence that T(n) is eventually nondecreasing. Therefore Equation 4.33
holds for T(n), provided we use conditional asymptotic notation to restrict n/no
to being a power of b. Now, it is easy to prove by mathematical induction that
T(n)< T(n) for all n > no such that n/no is a power of b. But clearly if

f(n) 8(t (n) I P(n))

andg(n)< f(n) forallnsuchthatP(n) holds, then g(n)e 0(t(n) I P(n)). There-
fore, our conclusion about the conditional asymptotic behaviour of T(n) holds for
T (n) as well, provided we replace 8 by 0. Finally, whenever we know that T (n) is
eventually nondecreasing, we can invoke the smoothness of the functions involved
to conclude that Equation 4.33 holds unconditionally for T(n ), provided again we
replace O by 0. The solution of our recurrence is thus

O(nk) if ? < bk

T(n)E 0(nklogn) ifl =bk
l O(n'9b r) if P > bk

We shall study further recurrences involving inequalities in Section 4.7.6.
So far, the changes of variable we have used have all been of the same logarith-

mic nature. Rather different changes of variable are sometimes useful. We illustrate
this with one example that comes from the analysis of the divide-and-conquer al-
gorithm for multiplying large integers (see Section 7.1).

Example 4.7.14. Consider an eventually nondecreasing function T(n) such that

T(n)< T([n/2)H+T([n/2])+T(1 + [n/2])+cn (4.34)

for all sufficiently large n, where c is some positive real constant. As explained in
the remark following the previous example, we have to be content here to analyse
the recurrence in terms of the 0 notation rather than the 8 notation.

Let no > 1 be large enough that T(m)> T(n) for all m > n > no/ 2 and Equa-
tion 4.34 holds for all n > no. Consider any n > no. First observe that

[n/2] < [n/21 < 1 + [n/21,

which implies that

T(Ln/21)< T([n/21)< T(1 + [n/21).

135



Analysis of Algorithms Chapter 4

Therefore, Equation 4.34 gives rise to

T(n)< 3T(1 + [n/2])+cn.

Now make a change of variable by introducing a new function T such that T (n)
T(n + 2) for all n. Consider again any n > no.

T(n)= T(n + 2) < 3T(1 + [(n + 2)/21)+c(n + 2)

< 3T(2 + [n/21)+2cn (because n + 2 < 2n)

3T([n/21)+2cn

In particular,
T(n)< 3T(n/2)+dn n > no

when n/no is a power of 2, where d = 2c. This is a special case of the recurrence
analysed in the remark following Example 4.7.13, with f = 3, b = 2 and k = 1. Since
F > bk, we obtain t (n)e O(nlg3 ). Finally, we use one last time the fact that T(n)
is eventually nondecreasing: T(n) < T(n + 2)= T(n) for any sufficiently large n.
Therefore any asymptotic upper bound on T(n) applies equally to T(n), which
concludes the proof that T(n) Q(nig3 ). D

4.7.5 Range transformations

When we make a change of variable, we transform the domain of the recurrence.
Instead, it may be useful to transform the range to obtain a recurrence in a form
that we know how to solve. Both transformations can sometimes be used together.
We give just one example of this approach.

Example 4.7.15. Consider the following recurrence, which defines T(n) when n
is a power of 2.

T(n)= 1/3 if n =I
nVT2 (n/2) otherwise

The first step is a change of variable: let ti denote T(2i).

ti = T(2') 2i T2 (2' 1)

2' ti 1

At first glance, none of the techniques we have seen applies to this recurrence since
it is not linear; furthermore the coefficient 2i is not a constant. To transform the
range, we create yet another recurrence by using ui to denote lg ti.

u= lg ti i + 2g t1

i+2ui-1

This time, once rewritten as
ui - 2ui1=

136



Section 4.7 Solving recurrences

the recurrence fits Equation 4.10. The characteristic polynomial is

(x - 2)(x 1)2

and thus all solutions are of the form

Ui =c2' +C21-i+C3i11 .

Substituting this solution into the recurrence for ui yields

i = ui - 2uj-j

=c 1 2'+C2+C3i -2(c 2'-±c2+C3(i 1))

= (2c3 - C2) -C3 i

and thus C3 = -1 and C2 = 2C3 = -2. Therefore, the general solution for ui, if the
initial condition is not taken into account, is ui cl 2i - i - 2. This gives us the
general solution for t1 and T(n).

tj = 2ui = 2 cjT-i-2

T(n)= tlgn = 2 cin lgn-2 2cln
4n

We use the initial condition T(1)= 1/3 to determine cl: T(1) = 2c' /4 = 1/3 implies
that cl = lg(4 / 3 )= 2 - lg3. The final solution is therefore

22n
4n 3n'

4.7.6 Asymptotic recurrences
When recurrences arise in the analysis of algorithms, they are often not as "'clean"
as

S (n)' = a if n =1 (4.35)
S 4S(n . 2)+bn if n > 1

for specific positive real constants a and b. Instead, we usually have to deal with
something less precise, such as

T(n)=4T(n . 2)+f(n) (4.36)

when n is sufficiently large, where all we know about f (n) is that it is in the exact
order of n, and we know nothing specific about the initial condition that defines
T(n) except that it is positive for all n. Such an equation is called an asymptotic re-
currence. Fortunately, the asymptotic solution of a recurrence such as Equation 4.36
is virtually always identical to that of the simpler Equation 4.35. The general tech-
nique to solve an asymptotic recurrence is to "sandwich" the function it defines
between two recurrences of the simpler type. When both simpler recurrences have

137



Analysis of Algorithms Chapter 4

the same asymptotic solution, the asymptotic recurrence must have the same solu-
tion as well. We illustrate this with our example.

For arbitrary positive real constants a and b, define the recurrence

Tab(l) 44Ta, b(n 2)+bn if n > 1.

The now-familiar techniques apply to find

Ta,b(n)= (a + b)n 2 - bn

provided n is a power of 2. Since n is a smooth function and Ta,b (n) is nonde-
creasing (an easy proof by mathematical induction), it follows that Ta,b (n) E 0(n 2 )
regardless of the (positive) values of a and b. There is in fact no need to solve
the recurrence explicitly as the result of Example 4.7.13 applies directly once it is
established that Ta,b (n) is nondecreasing.

To achieve our goal, it suffices to prove the existence of four positive real con-
stants r, s, u and v such that

Tr,s (n)s5 T (n) s Tu,v (n) (4.37)

for all n > 1. Since both Tr,s (n) and T,,v(n) are in the exact order of n2, it will
follow that T (n) e 0(n 2 ) as well. One interesting benefit of this approach is that
Ta,b (n) is nondecreasing for any fixed positive values of a and b, which makes it
possible to apply the smoothness rule. On the other hand, this rule could not have
been invoked to simplify directly the analysis of T(n) by restricting our attention
to the case when n is a power of 2 because Equation 4.36 does not provide enough
information to be able to assert that T(n) is nondecreasing.

We still have to prove the existence of r, s, u and v. For this, note that
Ta,a(n) = a T1,j(n) for all a and Ta,b(n)< Ta',b'(n) when a < a' and b < b' (two
more easy proofs by mathematical induction). Let c and d be positive real constants
and let no be an integer sufficiently large that cn s f(n) s dn and

T(n)= 4T(n .2)+f(n)

for all n >nO. Choose r = min(T(n)/T1 ,j(n) I I < n S no), s = min(r,c),
u = max(T(n)/T1 1 (n) I 1 < n < no) and v= max(u, d). By definition,

T (n) > r Tl j (n) =T,,r (n) > Tr,, (n)

and

T(n) s u Tlij (n)= Tusu (n) < Tu,v (n)

for all n S nO. This forms the basis of the proof by mathematical induction that
Equation 4.37 holds. For the induction step, consider an arbitrary n > no and

138



Section 4.8 Problems

assume by the induction hypothesis that Tr,s (m) < T(m) < TU,V (m) for all m < n.
Then,

T(n) = 4 T(n 2) +f (n)

<4T(n 2)+dn

- 4 T.,, (n . 2) +dn by the induction hypothesis

< 4 T,,, (n 2) +vn since d < v

= Tu,v (n).

The proof that Tr,s (n) < T(n) is similar, which completes the argument.

Example 4.7.16. The important class of recurrences solved in Example 4.7.13 can
be generalized in a similar way. Consider a function T: N - R+ such that

T(n)= f T(n . b)+f(n)

for all sufficiently large n, where f > 1 and b > 2 are constants, and f (n) e 6 (nk

for some k > 0. For arbitrary positive real constants x and y, define

Tx~y (n = X kif n =1
T I, (n) Ty (n b) +ynk if n > 1.

It is easy to show by mathematical induction that T,,y (n) is nondecreasing. There-
fore, Example 4.7.13 applies to its analysis with the same result in 6 notation re-
gardless of the value of x and y. Finally, we can show with the approach used
above that our original function T(n) must be sandwiched between Trs (n) and
TUV (n) for appropriate choices of r, s, u and v. The conclusion is that

E) (nk) if e < bk

T(n)] )(nk logn) if f = bk

O (nlogb V) if l? > bk

exactly as was the case with the more specific recurrence given in Example 4.7.13.
Moreover, if all we know about f (n) is that it is in the order of nk, rather than
knowing its exact order, we are still entitled to reach the same conclusion concerning
T (n), except that 0 must be replaced by 0 throughout. (This is subtly different
from the situation investigated in the remark following Example 4.7.13.) D

4.8 Problems

Problem 4.1. How much time does the following "algorithm" require as a function
of n?

fr - o
for i -1 to n do

for j - 1 to n2 do
for k - I to n3 do

Express your answer in 0 notation in the simplest possible form. You may consider
that each individual instruction (including loop control) is elementary.

139



Analysis of Algorithms Chapter 4

Problem 4.2. How much time does the following "algorithm" require as a function
of n?

e - o
for i -1 to n do

for j - 1 to i do
for k - j to n do

e - e+i

Express your answer in 8 notation in the simplest possible form. You may consider
that each individual instruction (including loop control) is elementary.

Problem 4.3. Consider the loop

for i - 1 to m do P

which is part of a larger algorithm that works on an instance of size n. Let t be the
time needed for each execution of P, which we assume independent of i for the
sake of this problem (but t could depend on n). Prove that this loop takes a time
in O ( mt) provided t is bounded below by some constant and provided there exists a
threshold no such that m > 1 whenever n > no. (Recall that we saw in Section 4.2.2
that the desired conclusion would not hold without those restrictions.)

Problem 4.4. Prove by mathematical induction that the values of i and j at the
end of the k-th iteration of Fibiter in Section 4.2.2 are fk-, and fk, respectively,
where f, denotes the n-th Fibonacci number.

Problem 4.5. Consider the following algorithm to compute binomial coefficients.

function C(n, k)
if k = O or k = n then return 1
else return C(n -1, k - 1)+C(n -1, k)

Analyse the time taken by this algorithm under the (unreasonable) assumption
that the addition C(n - 1, k - 1)+C(n -1, k) can be carried out in constant time
once both C(n - 1, k - 1) and C(n - 1, k) have been obtained recursively. Let t(n)
denote the worst time that a call on C(n, k) may take for all possible values of k,
o < k < n. Express t(n) in the simplest possible form in 0 notation.

Problem 4.6. Consider the following "algorithm".

procedure DC(n)
If n < 1 then return
for i - 1 to 8 do DC(n 2)
for i - 1 to n3 do dummy - 0

140



Section 4.8 Problems

Write an asymptotic recurrence equation that gives the time T(n) taken by a call
of DC(n). Use the result of Example 4.7.16 to determine the exact order of T(n) in
the simplest possible form. Do not reinvent the wheel here: apply Example 4.7.16
directly. The complete solution of this problem should not take more than 2 or
3 lines!
Note: This is how easy it is to analyse the running time of most divide-and-conquer
algorithms; see Chapter 7.

Problem 4.7. Rework Problem 4.6 if the constant 8 that appears in the middle line
of algorithm DC is replaced by 9.

Problem 4.8. Rework Problem 4.6 if the constant 8 that appears in the middle line
of algorithm DC is replaced by 7.

Problem 4.9. Consider the following "algorithm".

procedure waste(n)
for i 1 to n do

for j - 1 to i do
write i, j, n

if n > 0 then
for i - 1 to 4 do

waste(n . 2)

Let T(n) stand for the number of lines of output generated by a call of waste(n).
Provide a recurrence equation for T(n) and use the result of Example 4.7.16 to
determine the exact order of T(n) in the simplest possible form. (We are not asking
you to solve the recurrence exactly.)

Problem 4.10. Prove by mathematical induction that if do = n and de < df- I/ 2

for all f > 1, then de < n/2t for all l? 2 0. (This is relevant to the analysis of the
time taken by binary search; see Section 4.2.4.)

Problem 4.11. Consider the following recurrence for n > 1.

i~) I c if n 1
{t(n : 2)+b otherwise

Use the technique of the characteristic equation to solve this recurrence when n is
a power of 2. Prove by mathematical induction that f (n) is an eventually nonde-
creasing function. Use the smoothness rule to show that I (n)e O)(logn). Finally,
conclude that t(n)E O(logn), where t(n) is given by Equation 4.2. Can we con-
clude from Equation 4.2 that t (n) E G (log n) ? Why or why not?

Problem 4.12. Prove that the initialization phase of pigeon-hole sorting (Sec-
tion 2.7.2) takes a time in O(n + s).

Problem 4.13. We saw in Section 4.2.4 that binary search can find an item in a
sorted array of size n in a time in O(logn). Prove that in the worst case a time in
Q (log n) is required. On the other hand, what is the time required in the best case?

141



Analysis of Algorithms Chapter 4

Problem 4.14. How much time does insertion sorting take to sort n distinct items
in the best case? State your answer in asymptotic notation.

Problem 4.15. We saw in Section 4.4 that a good barometer for the worst-case
analysis of insertion sorting is the number of times the while loop condition is
tested. Show that this barometer is also appropriate if we are concerned with the
best-case behaviour of the algorithm (see Problem 4.14).

Problem 4.16. Prove that Euclid's algorithm performs least well on inputs of any
given size when computing the greatest common divisor of two consecutive num-
bers from the Fibonacci sequence.

Problem 4.17. Give a nonrecursive algorithm to solve the Towers of Hanoi prob-
lem (see Section 4.4). It is cheating simply to rewrite the recursive algorithm using
an explicit stack to simulate the recursive calls!

Problem 4.18. Prove that the Towers of Hanoi problem with n rings cannot be
solved with fewer than 2n - 1 movements of rings.

Problem 4.19. Give a procedure similar to algorithm count from Section 4.6to
increase an m-bit binary counter. This time, however, the counter should remain
all ones instead of cycling back to zero when an overflow occurs. In other words,
if the current value represented by the counter is v, the new value after a call on
your algorithm should be min(v + 1, 2m - 1). Give the amortized analysis of your
algorithm. It should still take constant amortized time for each call.

Problem 4.20. Prove Equation 4.6 from Section 4.7.1 by mathematical induction
when n is a power of 2. Prove also by mathematical induction that the function
T (n) defined by Equation 4.4 is nondecreasing (for all n, not just when n is a power
of 2).

Problem 4.21. Consider arbitrary positive real constants a and b. Use intelligent
guesswork to solve the following recurrence when n > 1.

t (n) aif n 1
Lnt(n-l)+bn otherwise.

You are allowed a term of the form X 1/i! in your solution. Prove your an-
swer by mathematical induction. Express t (n) in 6 notation in the simplest
possible form. What is the value of liming t(n)/n! as a function of a and b?
(Note: II l/i! = e -1, where e = 2.7182818 ... is the base of the natural loga-
rithm.) Although we determined the asymptotic behaviour of this recurrence in
Problem 1.31 using constructive induction, note that this time we have obtained a
more precise formula for t(n). In particular, we have obtained the limit of t(n)/n!
as n tends to infinity. Recall that this problem is relevant to the analysis of the
recursive algorithm for calculating determinants.

Problem 4.22. Solve the recurrence of Example 4.7.2 by intelligent guesswork.
Resist the temptation to "cheat" by looking at the solution before working out this
problem!

142



Section 4.8 Problems

Problem 4.23. Prove that Equation 4.7 (Section 4.7.2) has only solutions of the
form

k

t, = E cri'

til

provided the roots rl, r2,..., rk of the characteristic polynomial are distinct.

Problem 4.24. Complete the solution of Example 4.7.7 by determining the value
of cl as function of to.

Problem 4.25. Complete the solution of Example 4.7.11 by determining the value
of cl as function of to.

Problem 4.26. Complete the solution of Example 4.7.12 by determining the value
of cl as function of to.

Problem 4.27. Complete the solution of Example 4.7.13 by showing that C =c.

Problem 4.28. Complete the remark that follows Example 4.7.13 by proving by
mathematical induction that T(n) < T(n) for all n > no such that n/no is a power
of b.

Problem 4.29. Solve the following recurrence exactly.

In if n = Oorn= 1
|5t1 - 6tn-2 otherwise

Express your answer as simply as possible using the 0 notation.

Problem 4.30. Solve the following recurrence exactly.

t I 9n2 -15n+106 if n =O,lor2
t tn- + 2t" 2 - 2t, 3 otherwise

Express your answer as simply as possible using the 0 notation.

Problem 4.31. Consider the following recurrence.

t n if n =Oorn =1
|2tn-1 -2tn-2 otherwise

Prove that t, = 2"/2 sin(nrT/4), not by mathematical induction but by using the
technique of the characteristic equation.

Problem 4.32. Solve the following recurrence exactly.

i n if n =0,1,2or3
1tn- + tn-3 - tn-4 otherwise

Express your answer as simply as possible using the 0 notation.

143



Analysis of Algorithms Chapter 4

Problem 4.33. Solve the following recurrence exactly.

tn+1 if n =Oorn =
L 3tn-, - 2tn 2 + 3 x 2n 2 otherwise

Express your answer as simply as possible using the (H) notation.

Problem 4.34. Solve the following recurrence exactly.

T(n)= a if n =Oorn= 1
IT(n -l)+T(n -2)+c otherwise

Express your answer as simply as possible using the 0 notation and the golden
ratio P = (1 + 5\f ) /2. Note that this is Recurrence 4.1 from Section 4.2.3 if h(n) = c,
which represents the time taken by a call on Fibrec(n) if we count the additions at
unit cost.

Problem 4.35. Solve the following recurrence exactly.

T(n)- La if n = or n = 1
IT(n-l)+T(n -2)+cn otherwise

Express your answer as simply as possible using the 0 notation and the golden ratio
P = (1 + 5 ) /2. Note that this is Recurrence 4.1 from Section 4.2.3 if h(n) = cn,
which represents the time taken by a call on Fibrec(n) if we do not count the
additions at unit cost. Compare your answer to that of Problem 4.34, in which
additions were counted at unit cost.

Problem 4.36. Solve the following recurrence exactly for n a power of 2.

T(n)=- if n 1

=4T(n/2)+n otherwise

Express your answer as simply as possible using the 8 notation.

Problem 4.37. Solve the following recurrence exactly for n a power of 2.

T~n)= 1 if n =1
( 2T(n/2)+lgn otherwise

Express your answer as simply as possible using the 0 notation.

Problem 4.38. Solve the following recurrence exactly for n a power of 2.

T (n)= { +ifn 1ei
T1) ~5T (n /2) +(nIg n) 2 otherwise

Express your answer as simply as possible using the 0 notation.

144



Section 4.8 Problems

Problem 4.39. Solve the following recurrence exactly for n of the form 2 2 k.

(1 if n= 2

T(n) l2T( /n)++lgn otherwise

Express your answer as simply as possible using the 8 notation.

Problem 4.40. Solve the following recurrence exactly.

[n if n=Oorn 1
T(n)= =

T l2T2(n -1)+VT2(n - 2)+n otherwise

Express your answer as simply as possible using the 0 notation.

Problem 4.41. Solve the following recurrence exactly for n a power of 2.

1 if n = 1
T(n)= 3/2 ifn =2

l2T(n/2)- T(n/4)-1/n otherwise

Problem 4.42. Solve the following recurrence exactly.

t = O ifn 0=
l1/(4- tn 1) otherwise

Problem 4.43. Solve the following recurrence exactly as a function of the initial
conditions a and b.

a if n= 0
T(n)= b ifn =1

(1 + T(n - 1))/T(n - 2) otherwise

Problem 4.44. We saw in Example 4.7.13 the solution to an important recur-
rence that is particularly useful for the analysis of divide-and-conquer algorithms.
In some cases, however, a more general result is required, and the technique of the
characteristic equation does not always apply. Let no > 1 and b > 2 be integers,
and let a and d be real positive constants. Define

X= {ne JI (BiN)[n =nobi]l.

Let f X - 2° be an arbitrary function. Define the function T: X - R>o by the
recurrence

T d if n=no
1 aT(n/b)+f(n) if n E X, n > nO.

Let p = log, a. It turns out that the simplest way to express T(n) in asymptotic
notation depends on how f(n) compares to nP. In what follows, all asymptotic
notation is implicitly conditional on n E X. Prove that

145



Analysis of Algorithms Chapter 4

1. If we set f (no)= d, which is of no consequence for the definition of T, the value
of T (n) is given by a simple summation when n e X:

log,(n/no)

T(n)= E af f(n/b ).

2. Let E be any strictly positive real constant; then

P) if f(n) O(nP/(logn)l+E)
T (n)c ()(f(n)lognloglogn) iff (n)O(nP/logn)

f (f (n)logn) iff(n) ) (nP(logn)E 1)

O (f(n)) if f (n)e E(nP+-).

The third alternative includes f (n)E 9 (nW) by choosing E = 1.

3. As a special case of the first alternative, T(n) e O(nP) whenever f(n)e 0 (n)
for some real constant r < p.

4. The first alternative can be generalized to include cases such as

f (n) Ez 0 W/((og n)(log log n)l +E));

we also get T(n) E9(nP) if f(n)e Q(nPg(n)) where g(n) is nonincreasing
and Y xng(n) converges.

5. The last alternative can be generalized to include cases such as

f(n)e O(nW+ logn) or f(n)e O3(nP+/ logn);

wealsoget T(n)Ei (f(n)) if f(n)e 0 (nP+E) andiff(n)> akf (n/b) forsome
constant k > 1 and all sufficiently large n E X.

4.9 References and further reading
The Towers of Hanoi is the name given to a toy invented by the French mathemati-
cian Edouard Lucas in 1883: see Gardner (1959). Buneman and Levy (1980) and
Dewdney (1984) give a solution to Problem 4.17.

Amortized analysis was popularized by Tarjan (1985).
The main mathematical aspects of the analysis of algorithms can be found in

Greene and Knuth (1981). A number of techniques for analysing algorithms are
given in Purdom and Brown (1985) and Rawlins (1992).

Several techniques for solving recurrences, including the characteristic equa-
tion and change of variable, are explained in Lueker (1980). For a more rigorous
mathematical treatment see Knuth (1968) or Purdom and Brown (1985). The paper
by Bentley, Haken and Saxe (1980) is particularly relevant for recurrences arising
from the analysis of divide-and-conquer algorithms (see Chapter 7). Problem 4.44
comes partly from Verma (1994), which presents further general results.

146



Chapter 5

Some Data Structures

The use of well-chosen data structures is often a crucial factor in the design of
efficient algorithms. Nevertheless, this book is not intended to be a manual on
data structures. We assume the reader already has a good working knowledge of
such basic notions as arrays, records, and the various structured data types ob-
tained using pointers. We also suppose that the mathematical concepts of directed
and undirected graphs are reasonably familiar, and that the reader knows how to
represent such objects efficiently on a computer.

The chapter begins with a brief review of the more important aspects of these
elementary data structures. The review includes a summary of their essential
properties from the point of view of algorithmics. For this reason even readers
who know the basic material well should skim the first few sections. The last three
sections of the chapter introduce the less elementary notions of heaps and disjoint
sets. Chosen because they will be used in subsequent chapters, these structures
also offer interesting examples of the analysis of algorithms. Most readers will
probably need to read the sections concerning these less familiar data structures
quite thoroughly.

5.1 Arrays, stacks and queues
An array is a data structure consisting of a fixed number of items of the same
type. (We shall talk about items or elements, indifferently.) On a machine, these are
usually stored in contiguous storage cells. In a one-dimensional array, access to any
particular item is obtained by specifying a single subscript or index. For instance,
we might declare a one-dimensional array of integers as follows.

tab: array [1 .. 50] of integers

Here tab is an array of 50 integers indexed from 1 to 50; tab[l] refers to the first item
of the array, tab[50] to the last. It is natural to think of the items as being arranged

147



Some Data Structures Chapter 5

from left to right, so we may also refer to tab[l] as the left-hand item, and so on.
We often omit to specify the type of the items in the array when the context makes
this obvious.

From the point of view that interests us in this book, the essential property of
an array is that we can calculate the address of any given item in constant time.
For example, if we know that the array tab above starts at address 5000, and that
integer variables occupy 4 bytes of storage each, then the address of the item with
index k is easily seen to be 4996 + 4k. Even if we think it worthwhile to check that
k does indeed lie between 1 and 50, the time required to compute the address can
still be bounded by a constant. It follows that the time required to read the value
of a single item, or to change such a value, is in 0 (1): in other words, we can treat
such operations as elementary.

On the other hand, any operation that involves all the items of an array will
tend to take longer as the size of the array increases. Suppose we are dealing with
an array of some variable size n; that is, the array consists of n items. Then an
operation such as initializing every item, or finding the largest item, usually takes
a time proportional to the number of items to be examined. In other words, such
operations take a time in 0(n). Another common situation is where we want to
keep the values of successive items of the array in order-numerical, alphabetic,
or whatever. Now whenever we decide to insert a new value we have to open up a
space in the correct position, either by copying all the higher values one position to
the right, or else by copying all the lower values one position to the left. Whichever
tactic we adopt (and even if we sometimes do one thing, sometimes the other), in
the worst case we may have to shift n /2 items. Similarly, deleting an element may
require us to move all or most of the remaining items in the array. Again, therefore,
such operations take a time in 0((n).

A one-dimensional array provides an efficient way to implement the data struc-
ture called a stack. Here items are added to the structure, and subsequently re-
moved, on a last-in-first-out (LIFO) basis. The situation can be represented using an
array called stack, say, whose index runs from 1 to the maximum required size of
the stack, and whose items are of the required type, along with a counter. To set
the stack empty, the counter is given the value zero; to add an item to the stack,
the counter is incremented, and then the new item is written into stack[counter];
to remove an item, the value of stack[counter] is read out, and then the counter is
decremented. Tests can be added to ensure that no more items are placed on the
stack than were provided for, and that items are not removed from an empty stack.
Adding an item to a stack is usually called a push operation, while removing one
is called pop.

The data structure called a queue can also be implemented quite efficiently in
a one-dimensional array Here items are added and removed on a first-in-first-out
(FIFO) basis; see Problem 5.2. Adding an item is called an enqueue operation, while
removing one is called dequeue. For both stacks and queues, one disadvantage
of using an implementation in an array is that space usually has to be allocated at
the outset for the maximum number of items envisaged; if ever this space is not
sufficient, it is difficult to add more, while if too much space is allocated, waste
results.

148



Section 5.1 Arrays, stacks and queues

The items of an array can be of any fixed-length type: this is so that the address
of any particular item can be easily calculated. The index is almost always an integer.
However, other so-called ordinal types can be used. For instance,

lettab: array ['a'.. 'z'] of value

is one possible way of declaring an array of 26 values, indexed by the letters from 'a'
to 'z'. It is not permissible to index an array using real numbers, nor do we allow an
array to be indexed by structures such as strings or sets. If such things are allowed,
accessing an array item can no longer be considered an elementary operation.
However a more general data structure called an associative table, described in
Section 5.6, does allow such indexes.

The examples given so far have all involved one-dimensional arrays, that is,
arrays whose items are accessed using just one index. Arrays with two or more
indexes can be declared in a similar way. For instance,

matrix: array [1_. .20,1 . ._20] of complex

is one possible way to declare an array containing 400 items of type complex. A ref-
erence to any particular item, such as matrix[5, 7], now requires two indexes. The
essential point remains, however, that we can calculate the address of any given
item in constant time, so reading or modifying its value can be taken to be an
elementary operation. Obviously if both dimensions of a two-dimensional array
depend on some parameter n, as in the case of an n x n matrix, then operations
such as initializing every item of the array, or finding the largest item, now take a
time in 9 (n2 ).

We stated above that the time needed to initialize all the items of an array of size
n is in 0((n). Suppose however we do not need to initialize each item, but simply to
know whether it has been initialized or not, and if so to obtain its value. Provided
we are willing to use rather more space, the technique called virtual initialization
allows us to avoid the time spent setting all the entries in the array. Suppose the
array to be virtually initialized is T[1 . .n]. Then we also need two auxiliary arrays
of integers the same size as T, and an integer counter. Call these auxiliary arrays
a[1. .n] and b[l . . n], say, and the counter ctr. At the outset we simply set ctr
to zero, leaving the arrays a, b and T holding whatever values they happen to
contain.

Subsequently ctr tells us how many elements of T have been initialized, while
the values a [1] to afctr] tell us which these elements are: a[1] points to the element
initialized first, a[2] to the element initialized second, and so on; see Figure 5.1,
where three items of the array T have been initialized. Furthermore, if T[i] was
the k-th element to be initialized, then b[i]= k. Thus the values in a point to T
and the values in b point to a, as in the figure.

To test whether T [ i] has been assigned a value, we first check that 1 < b [ i] < ctr.
If not, we can be sure that T[i] has not been initialized. Otherwise we are not sure
whether T[i] has been initialized or not: it could be just an accident that b[i] has a
plausible value. However if T[i] really has been assigned a value, then it was the
b[ i] -th element of the array to be initialized. We can check this by testing whether

149



Some Data Structures Chapter 5

1 2 3 4 5 6 7 8

-6| 17 24 T

4 7 2 a (ctr = 3)

3 1 2 b

Figure 5.1. A virtually initialized array

a [ b[i]] i. Since the first ctr values of the array a certainly have been initialized,
and 1 < b[i]< ctr, it cannot be an accident if a[b[i]] = i, so this test is conclusive:
if it is satisfied, then T[i] has been initialized, and if not, not.

To assign a value to T[i] for the first time, increment the counter ctr, set alctr]
to i, set b[i] to ctr, and load the required value into T[i]. On subsequent assign-
ments to T[i], of course, none of this is necessary. Problem 5.3 invites you to fill in
the details. The extra space needed to use this technique is a constant multiple of
the size of T.

5.2 Records and pointers
While an array has a fixed number of items of the same type, a record is a data
structure comprising a fixed number of items, often calledfields in this context, that
are possibly of different types. For example, if the information about a person that
interests us consists of their name, age, weight and sex, we might want to use a
data structure of the following form.

type person = record
name: string
age: integer
weight: real
male: Boolean

Now if Fred is a variable of this type, we use the dot notation to refer to the fields;
for example, Fred. name is a string and Fred. age is an integer.

An array can appear as an item of a record, and records can be kept in arrays.
If we declare, for example,

class: array [I1 .50] of person

then the array class holds 50 records. The attributes of the seventh member of
the class are referred to as class[7]. name, class[7]. age, and so on. As with arrays,
provided a record holds only fixed-length items, the address of any particular item
can be calculated in constant time, so consulting or modifying the value of a field
may be considered as an elementary operation.

150



Section 5.3 Lists

Many programming languages allow records to be created and destroyed dy-
namically. (Some languages allow this for arrays, too, but it is less common.) This
is one reason why records are commonly used in conjunction with pointers. A dec-
laration such as

type boss = t person

says that boss is a pointer to a record whose type is person. Such a record can be
created dynamically by a statement such as

boss - new person.

Now boss t (note that here the arrow follows the name) means "the record that boss
points to". To refer to the fields of this record, we use boss T. name, boss t. age, and
so on. If a pointer has the special value nil, then it is not currently pointing to any
record.

5.3 Lists

A list is a collection of items of information arranged in a certain order. Unlike
arrays and records, the number of items in a list is generally not fixed, nor is it
usually bounded in advance. The corresponding data structure should allow us
to determine, for example, which is the first item in the structure, which is the
last, and which are the predecessor and the successor (if they exist) of any given
item. On a machine, the storage corresponding to any given item of information
is often called a node. Besides the information in question, a node may contain one
or more pointers. Such a structure is frequently represented graphically by boxes
and arrows, as in Figure 5.2. The information attached to a node is shown inside
the corresponding box, and the arrows show links from a node to its successor.

alpha1 beta gamma delta

Figure 5.2. A list

Lists are subject to a number of operations: we might want to insert an additional
node, to delete a node, to copy a list, to count the number of elements it contains,
and so on. The various computer implementations commonly used differ in the
quantity of storage required, and in the ease of carrying out certain operations.
Here we content ourselves with mentioning the best-known techniques.

Implemented as an array by the declaration

type list = record
counter: O.. maxlength
value: array [1 . .maxlength] of information

151



Some Data Structures Chapter 5

the items of a list occupy the slots value[1] to value[counter], and the order of the
items is the same as the order of their indexes in the array. Using this implemen-
tation, we can find the first and the last items of the list rapidly, as we can the
predecessor and the successor of a given item. On the other hand, as we saw in
Section 5.1, inserting a new item or deleting one of the existing items requires a
worst-case number of operations in the order of the current size of the list. It was
noted there, however, that this implementation is particularly efficient for the im-
portant structure known as the stack; and a stack can be considered as a kind of
list where addition and deletion of items are allowed only at one designated end
of the list. Despite this, such an implementation of a stack may present the ma-
jor disadvantage of requiring that all the storage potentially required be reserved
throughout the life of the program.

On the other hand, if pointers are used to implement a list structure, the nodes
are usually records with a form similar to the following:

type list =t node
type node = record

value: information
next: t node

where each node except the last includes an explicit pointer to its successor. The
pointer in the last node has the special value nil, indicating that it goes nowhere.
In this case, provided a suitable programming language is used, the storage needed
to represent the list can be allocated and recovered dynamically as the program
proceeds. Hence two or more lists may be able to share the same space; furthermore
there is no need to know a priori how long any particular list will get.

Even if additional pointers are used to ensure rapid access to the first and last
items of the list, it is difficult when this representation is used to examine the k-th
item, for arbitrary k, without having to follow k pointers and thus to take a time
in 0 (k). However, once an item has been found, inserting a new node or deleting
an existing node can be done rapidly by copying or changing just a few fields.
In our example, a single pointer is used in each node to designate its successor. It is
therefore easy to traverse the list in one direction, but not in the other. If a higher
storage overhead is acceptable, it suffices to add a second pointer to each node to
allow the list to be traversed rapidly in either direction.

Elementary programming books are rife with variations on this theme. Lists
may be circular, with the last item pointing back to the first, or they may have a
special, different head cell, containing for example the number of nodes in the list.
However we shall have no use for such structures in this book.

5.4 Graphs
Intuitively speaking, a graph is a set of nodes joined by a set of lines or arrows.
Consider Figure 5.3 for instance. We distinguish directed and undirected graphs.
In a directed graph the nodes are joined by arrows called edges. In the example
of Figure 5.3 there exists an edge from alpha to gamma and another from gamma
to alpha. Nodes beta and delta, however, are joined only in the direction indicated.
In the case of an undirected graph, the nodes are joined by lines with no direction

152



Section 5.4 Graphs

indicated, also called edges. In both directed and undirected graphs, sequences
of edges may form paths and cycles. A graph is connected if you can get from any
node to any other by following a sequence of edges; in the case of a directed graph,
you are allowed to go the wrong way along an arrow. A directed graph is strongly
connected if you can get from any node to any other by following a sequence of
edges, but this time respecting the direction of the arrows.

Figure 5.3. A directed graph

There are never more than two arrows joining any two given nodes of a directed
graph, and if there are two arrows, they must go in opposite directions; there is
never more than one line joining any two given nodes of an undirected graph.
Formally, a graph is therefore a pair G = (N, A), where N is a set of nodes and A is
a set of edges. An edge from node a to node b of a directed graph is denoted by
the ordered pair (a, b), whereas an edge joining nodes a and b in an undirected
graph is denoted by the set {a, b} . (Remember that a set is an unordered collection of
elements; see Section 1.4.2.) For example, Figure 5.3 is an informal representation
of the graph G (N, A) where

N = {alpha, beta, gamma, delta}

A = I (alpha, beta), (alpha, gamma), (beta, delta),

(gamma, alpha), (gamma, beta), (gamma, delta) }.

There are at least two obvious ways to represent a graph on a computer. The
first uses an adjacency matrix.

type adjgraph = record
value: array [1. . nbnodes] of information
adjacent: array [1. . nbnodes, 1 . . nbnodes] of Boolean

If the graph includes an edge from node i to node j, then adjacent[i, j]= true;
otherwise adjacent [i, j]= false. In the case of an undirected graph, the matrix is
necessarily symmetric.

With this representation it is easy to see whether or not there is an edge between
two given nodes: to look up a value in an array takes constant time. On the other
hand, should we wish to examine all the nodes connected to some given node, we
have to scan a complete row of the matrix, in the case of an undirected graph, or

153



Some Data Structures Chapter 5

both a complete row and a complete column, in the case of a directed graph. This
takes a time in O (nbnodes), the number of nodes in the graph, independent of the
number of edges that enter or leave this particular node. The space required to
represent a graph in this fashion is quadratic in the number of nodes.

A second possible representation is the following.

type lisgraph = array [1 .. nbnodes] of
record
value: information
neighbours: list

Here we attach to each node i a list of its neighbours, that is, of those nodes j
such that an edge from i to j (in the case of a directed graph), or between i and j
(in the case of an undirected graph), exists. If the number of edges in the graph is
small, this representation uses less storage than the one given previously. It may
also be possible in this case to examine all the neighbours of a given node in less
than nbnodes operations on the average. On the other hand, determining whether
a direct connection exists between two given nodes i and j requires us to scan the
list of neighbours of node i (and possibly of node j too, in the case of a directed
graph), which is less efficient than looking up a Boolean value in an array.

5.5 Trees
A tree (strictly speaking, a free tree) is an acyclic, connected, undirected graph.
Equivalently, a tree may be defined as an undirected graph in which there exists
exactly one path between any given pair of nodes. Since a tree is a kind of graph,
the same representations used to implement graphs can be used to implement
trees. Figure 5.4(a) shows two trees, each of which has four nodes. You can easily
verify that these are the only distinct trees with four nodes; see Problem 5.7. Trees
have a number of simple properties, of which the following are perhaps the most
important:

• A tree with n nodes has exactly n - I edges.

• If a single edge is added to a tree, then the resulting graph contains exactly one
cycle.

c If a single edge is removed from a tree, then the resulting graph is no longer
connected.

In this book we shall most often be concerned with rooted trees. These are trees
in which one node, called the root, is special. When drawing a rooted tree, it is
customary to put the root at the top, like a family tree, with the other edges coming
down from it. Figure 5.4(b) illustrates four different rooted trees, each with four
nodes. Again, you can easily verify that these are the only rooted trees with four
nodes that exist. When there is no danger of confusion, we shall use the simple
term "tree" instead of the more correct "rooted tree", since almost all our examples
are of this kind.

154



Section 5.5 Trees

(a) (b)

Figure 5.4. (a) Trees, and (b) Rooted trees with 4 nodes

Extending the analogy with a family tree, it is customary to use such terms as
"parent" and "child" to describe the relationship between adjacent nodes. Thus
in Figure 5.5, alpha, the root of the tree, is the parent of beta and gamma; beta is the
parent of delta, epsilon and zeta, and the child of alpha; while epsilon and zeta are the
siblings of delta. An ancestor of a node is either the node itself (this is not the same
as the everyday definition), or its parent, its parent's parent, and so on. Thus both
alpha and zeta are ancestors of zeta. A descendant of a node is defined analogously,
again including the node itself.

Figure 5.5. A rooted tree

A leaf of a rooted tree is a node with no children; the other nodes are called internal
nodes. Although nothing in the definition indicates this, the branches of a rooted
tree are often considered to be ordered from left to right: in the previous example
beta is situated to the left of gamma, and-by analogy with a family tree once again-
delta is called the eldest sibling of epsilon and zeta. The two trees in Figure 5.6 may
therefore be considered distinct.

On a computer, any rooted tree may be represented using nodes of the following
type.

type treenodel = record
value: information
eldest-child,next-sibling: t treenodel

155

0 b



Some Data Structures Chapter 5

Figure 5.6. Two distinct rooted trees

The rooted tree shown in Figure 5.5 would be represented as in Figure 5.7, where
the arrows show the direction of the pointers used in the computer representation,
not the direction of edges in the tree (which is, of course, an undirected graph).
We emphasize that this representation can be used for any rooted tree; it has the
advantage that all the nodes can be represented using the same record structure,
no matter how many children or siblings they have. However many operations
are inefficient using this minimal representation: it is not obvious how to find the
parent of a given node, for example (but see Problem 5.10).

Figure 5.7. Possible computer representation of a rooted tree

Another representation suitable for any rooted tree uses nodes of the type

type treenode2 = record
value: information
parent: t treenode2

where now each node contains only a single pointer leading to its parent. This
representation is about as economical with storage space as one can hope to be, but
it is inefficient unless all the operations on the tree involve starting from a node and
going up, never down. (For an application where this is exactly what we need, see
Section 5.9.) Moreover it does not represent the order of siblings.

A suitable representation for a particular application can usually be designed
by starting from one of these general representations and adding supplementary
pointers, for example to the parent or to the eldest sibling of a given node. In this

156



Section 5.5 Trees

way we can speed up the operations we want to perform efficiently at the price of
an increase in the storage needed.

We shall often have occasion to use binary trees. In such a tree, each node can
have 0, 1, or 2 children. In fact, we almost always assume that a node has two
pointers, one to its left and one to its right, either of which can be nil. When we
do this, although the metaphor becomes somewhat strained, we naturally tend to
talk about the left child and the right child, and the position occupied by a child
is significant: a node with a left child but no right child can never be the same as
a node with a right child but no left child. For instance, the two binary trees in
Figure 5.8 are not the same: in the first case b is the left child of a and the right
child is missing, whereas in the second case b is the right child of a and the left
child is missing.

Figure 5.8. Two distinct binary trees

If each node of a rooted tree can have no more than k children, we say it is a k-
ary tree. There are several ways of representing a k-ary tree on a computer. One
obvious representation uses nodes of the following type.

type k-ary-node = record
value: information
child: array [1 . . k] of tk-ary-node

In the case of a binary tree we can also define

type binary-node = record
value: information
left-child, right-child: tbinary-node

It is also sometimes possible, as we shall see in the following section, to represent
a k-ary tree using an array without any explicit pointers.

A binary tree is a search tree if the value contained in every internal node is
greater than or equal to the values contained in its left child or any of that child's
descendants, and less than or equal to the values contained in its right child or any
of that child's descendants. Figure 5.9 gives an example of a search tree. The figure

157



Some Data Structures Chapter 5

shows the value contained in each node. This structure is interesting because, as
the name implies, it allows efficient searches for values in the tree. In the example,
although the tree contains 7 items, we can find 27, say, with only 3 comparisons.
The first, with the value 20 stored at the root, tells us that 27 is in the right subtree
(if it is anywhere); the second, with the value 34 stored at the root of the right
subtree, tells us to look down to the left; and the third finds the value we seek.

Figure 5.9. A search tree

The search procedure sketched above can be described more formally as follows.

function search(x, r)
{The pointer r points to the root of a search tree.
The function searches for the value x in this tree
and returns a pointer to the node containing x.
If x is missing, the function returns nil.}

if r = nil then {x is not in the tree}
return nil

else if x = rt. value then return r
else if x < rt. value then return search(x, rt .left-child)
else return search(x, r I. right-child)

Here we suppose that the search tree is composed of nodes of the type binary-node
defined above. For efficiency it may be better to rewrite the algorithm avoiding the
recursive calls, although some compilers automatically remove this so-called tail
recursion. Problem 5.11 invites you to do this.

It is simple to update a search tree, that is, to delete a node or to add a new value,
without destroying the search tree property. However, if this is done carelessly, the
resulting tree can become unbalanced. By this we mean that many of the nodes
in the tree have only one child, not two, so its branches become long and stringy
When this happens, searching the tree is no longer efficient. In the worst case,
every node in the tree may have exactly one child, except for a single leaf that
has no children. With such an unbalanced tree, finding an item in a tree with n
elements may involve comparing it with the contents of all n nodes.

A variety of methods are available to keep the tree balanced, and hence to
guarantee that such operations as searches or the addition and deletion of nodes

158



Section 5.6 Associative tables

take a time in 0 (log n) in the worst case, where n is the number of nodes in the tree.
These methods may also allow the efficient implementation of several additional
operations. Among the older techniques are the use of AVL trees and 2-3 trees; more
recent suggestions include red-black trees and splay trees. Since these concepts are
not used in the rest of the book, here we only mention their existence.

Height, depth and level

It is easy to confuse the terms used to describe the position of a node in a rooted
tree. Height and level, for instance, are similar concepts, but not the same.

• The height of a node is the number of edges in the longest path from the node
in question to a leaf.

• The depth of a node is the number of edges in the path from the root to the node
in question.

• The level of a node is equal to the height of the root of the tree minus the depth
of the node concerned.

Node Height Depth Level

alpha 2 0 2
beta 1 1 1

gamma 0 1 1
delta 0 2 0

epsilon 0 2 0
zeta 0 2 0

Figure 5.10. Height, depth and level

For example, Figure 5.10 gives the height, depth and level for each node of the tree
illustrated in Figure 5.5. Informally, if the tree is drawn with successive generations
of nodes in neat layers, then the depth of a node is found by numbering the layers
downwards from 0 at the root; the level of a node is found by numbering the layers
upwards from 0 at the bottom; only the height is a little more complicated.

Finally we define the height of the tree to be the height of its root; this is also the
depth of the deepest leaf and the level of the root.

5.6 Associative tables
An associative table is just like an array, except that the index is not restricted to lie
between two prespecified bounds. For instance, if T is a table, you may use T[l]
and then T[106 ] with no need to reserve one million storage cells for the table.
Better still, you may use strings rather than numbers for the index, so T["Fred"]
is as legitimate as T[1]. Ideally, a table should not take much more space than is
needed to write down the indexes used so far, together with space for the values
stored in those table locations.

159



Some Data Structures Chapter 5

The convenience of tables comes at a price: unlike arrays, tables cannot be
implemented so that each access is guaranteed to take constant time. The easiest
way to implement a table is with a list.

type table list = t table node
type table node = record

index: index type
value: information
next: t table node

With this implementation, access to T["Fred"] is accomplished by marching
through the list until "Fred" is found in the index field of a node or until the end of
the list is reached. In the first case, the associated information is in the value field
of the same node; in the second, we know that "Fred" is missing. New entries are
created when needed; see Problem 5.12. This implementation is very inefficient.
In the worst case, each request concerns a missing element, forcing us to explore the
entire list at each access. A sequence of n accesses therefore requires a time in Q (n2 )

in the worst case. If up to m distinct indexes are used in those n accesses, m < n,
and if each request is equally likely to access any of those indexes, the average-case
performance of this implementation is as bad as its worst case: Q(mn). Provided
the index fields can be compared with one another and with the requested index in
unit time, balanced trees can be used to reduce this time to 0 (n log m) in the worst
case; see Section 5.5. This is better, but still not good enough for one of the main
applications for associative tables, namely compilers.

Just about every compiler uses an associative table to implement the symbol
table. This table holds all the identifiers used in the program to be compiled. If Fred
is an identifier, the compiler must be able to access relevant information such as
its type and the level at which it is defined. Using tables, this information is sim-
ply stored in T["Fred"]. The use of either implementation outlined above would
slow a compiler down unacceptably when it dealt with programs containing a
large number of identifiers. Instead, most compilers use a technique known as
hash coding, or simply hashing. Despite a disastrous worst case, hashing performs
reasonably well in practice most of the time.

Let U be the universe of potential indexes for the associative table to be im-
plemented, and let N << U1 be a parameter chosen as described below. A hash
function is a function h: U - {0, 1,2,... ,N 1}. This function should efficiently
disperse all the probable indexes: h(x) should be different from h(y) for most
of the pairs x / y likely to be used simultaneously. For instance h(x)= x mod N
is reasonably good for compiler purposes provided N is prime and x is obtained
from the identifier's name using any standard integer representation of character
strings, such as ASCII.

When x + y but h(x)= h(y), we say there is a collision between x and y.
If collisions were very unlikely, we could implement the associative table T with
an ordinary array A[O.. N- 1], using A[h(x)] each time T[x] is logically needed.
The problem is that T[x] and T[y] are confused whenever x and y collide. Un-
fortunately, this is intolerable because the collision probability cannot be neglected

160



Section 5.6 Associative tables

unless N >> m 2 , where m is the number of different indexes actually used; see Prob-
lem 5.14. Many solutions for this difficulty have been proposed. The simplest is list
hashing or chaining. Each entry of array A[O.. N -1] is of type table list: A[i] con-
tains the list of all indexes that hash to value i, together with their relevant in-
formation. Figure 5.11 illustrates the situation after the following four requests to
associative table T.

T["Laurel"]- 3
T["Chaplin"]- 1
T["Hardy"]- 4
Tf"Keaton"]- 1

In this example, N = 6, h("Keaton")= 1, h("Laurel")= h("Hardy")= 2 and
h("Chaplin")= 4.

0

2

3

4

5

Hardy 1 4 V|

Figure 5.11. Illustration of hashing

The loadfactor of the table is m/N, where m is the number of distinct indexes used
in the table and N is the size of the array used to implement it. If we suppose that
every index, every value stored in the table and every pointer occupy a constant
amount of space, the table takes space in 0 (N + m) and the average length of the
lists is equal to the load factor. Thus increasing N reduces the average list length
but increases the space occupied by the table. If the load factor is kept between '/2
and 1, the table occupies a space in 0((m), which is optimal up to a small constant
factor, and the average list length is less than 1, which is likely to imply efficient
access to the table. It is tempting to improve the scheme by replacing the N collision
lists by balanced trees, but this is not worthwhile if the load factor is kept small,
unless it is essential to improve the worst-case performance.

The load factor can be kept small by rehashing. With the compiler application in
mind, for instance, the initial value of N is chosen so we expect small programs to
use less than N different identifiers. We allow the load factor to be smaller than 1/2
when the number of identifiers is small. Whenever more than N different identifiers
are encountered, causing the load factor to exceed 1, it is time to double the size

161



Some Data Structures Chapter 5

of the array used to implement the hash table. At that point, the hash function
must be changed to double its range and every entry already in the table must be
rehashed to its new position in a list of the larger array. Rehashing is expensive,
but so infrequent that it does not cause a dramatic increase in the amortized time
required per access to the table. Rehashing is repeated each time the load factor
exceeds 1; after rehashing the load factor drops back to 1/2.

Unfortunately, a small average list length does not guarantee a small average
access time. The problem is that the longer a list is, the more likely it is that one of
its elements will be accessed. Thus bad cases are more likely to happen than good
ones. In the extreme scenario, there could be one list of length N and N - 1 lists of
length zero. Even though the average list length is 1, the situation is no better than
when we used the simple table list approach. If the table is used in a compiler, this
would occur if all the identifiers of a program happened to hash to the same value.
Although this is unlikely, it cannot be ruled out. Nevertheless, it can be proved
that each access takes constant expected time in the amortized sense, provided
rehashing is performed each time the load factor exceeds 1 and provided we make
the unnatural assumption that every possible identifier is equally likely to be used.
In practice, hashing works well most of the time even though identifiers are not
chosen at random. Moreover, we shall see in Section 10.7.3 how to remove this
assumption about the probability distribution of the instances to be handled and
still have provably good expected performance.

5.7 Heaps

A heap is a special kind of rooted tree that can be implemented efficiently in an array
without any explicit pointers. This interesting structure lends itself to numerous
applications, including a remarkable sorting technique called heapsort, presented
later in this section. It can also be used for the efficient representation of certain
dynamic priority lists, such as the event list in a simulation or the list of tasks to be
scheduled by an operating system.

A binary tree is essentially complete if each internal node, with the possible
exception of one special node, has exactly two children. The special node, if there
is one, is situated on level 1; it has a left child but no right child. Moreover, either all
the leaves are on level 0, or else they are on levels 0 and 1, and no leaf on level 1 is
to the left of an internal node at the same level. Intuitively, an essentially complete
tree is one where the internal nodes are pushed up the tree as high as possible,
the internal nodes on the last level being pushed over to the left; the leaves fill the
last level containing internal nodes, if there is still any room, and then spill over
onto the left of level 0. For example, Figure 5.12 illustrates an essentially complete
binary tree containing 10 nodes. The five internal nodes occupy level 3 (the root),
level 2, and the left side of level 1; the five leaves fill the right side of level 1 and
then continue at the left of level 0.

If an essentially complete binary tree has height k, then there is one node
(the root) on level k, there are two nodes on level k -1, and so on; there are 2 k 1
nodes on level 1, and at least 1 and not more than 2 k on level 0. If the tree contains n

162



Section 5.7 Heaps

Figure 5.12. An essentially complete binary tree

nodes in all, counting both internal nodes and leaves, it follows that 2 k < n < 2 k+1.

Equivalently, the height of a tree containing n nodes is k [lg n], a result we shall
use later.

This kind of tree can be represented in an array T by putting the nodes of
depth k, from left to right, in the positions T[2k], T[2k + 1], ... , T[2k+1 -1], with the
possible exception of level 0, which maybe incomplete. Figure 5.12 indicates which
array element corresponds to each node of the tree. Using this representation, the
parent of the node represented in T[i] is found in T[i . 2] for i > 1 (the root T[l]
does not have a parent), and the children of the node represented in T[i] are found
in T[2i] and T[2i + 1], whenever they exist. The subtree whose root is in T[i] is
also easy to identify.

Now a heap is an essentially complete binary tree, each of whose nodes includes
an element of information called the value of the node, and which has the property
that the value of each internal node is greater than or equal to the values of its
children. This is called the heap property. Figure 5.13 shows an example of a heap
with 10 nodes. The underlying tree is of course the one shown in Figure 5.12, but
now we have marked each node with its value. The heap property can be easily
checked. For instance, the node whose value is 9 has two children whose values
are 5 and 2: both children have a value less than the value of their parent. This
same heap can be represented by the following array.

11017191417151212 1 61

Since the value of each internal node is greater than or equal to the values of its
children, which in turn have values greater than or equal to the values of their
children, and so on, the heap property ensures that the value of each internal node
is greater than or equal to the values of all the nodes that lie in the subtrees below it.
In particular, the value of the root is greater than or equal to the values of all the
other nodes in the heap.

163



Some Data Structures Chapter 5

Figure 5.13. A heap

The crucial characteristic of this data structure is that the heap property can be
restored efficiently if the value of a node is modified. If the value of a node increases
to the extent that it becomes greater than the value of its parent, it suffices to
exchange these two values, and then to continue the same process upwards in
the tree if necessary until the heap property is restored. We say that the modified
value has been percolated up to its new position in the heap. (This operation is often
called sifting up, a curiously upside-down metaphor.) For example, if the value 1
in Figure 5.13 is modified so that it becomes 8, we can restore the heap property
by exchanging the 8 with its parent 4, and then exchanging it again with its new
parent 7, obtaining the result shown in Figure 5.14.

Figure 5.14. The heap, after percolating 8 to its place

If on the contrary the value of a node is decreased so that it becomes less than the
value of at least one of its children, it suffices to exchange the modified value with
the larger of the values in the children, and then to continue this process downwards
in the tree if necessary until the heap property is restored. We say that the modified

164



Section 5.7 Heaps

value has been sifted down to its new position. For example, if the 10 in the root of
Figure 5.14 is modified to 3, we can restore the heap property by exchanging the 3
with its larger child, namely 9, and then exchanging it again with the larger of its
new children, namely 5. The result we obtain is shown in Figure 5.15.

Figure 5.15. The heap, after sifting 3 down to its place

The following procedures describe more formally the basic processes for manipu-
lating a heap. For clarity, they are written so as to reflect the preceding discussion
as closely as possible. If you intend to use heaps for a "real" application, we en-
courage you to figure out how to avoid the inefficiency caused by our use of the
"exchange" instruction.

procedure alter-heap(T[L . . n], i, v)
{ T[1 . . n] is a heap. The value of T[i] is set to v and the
heap property is re-established. We suppose that 1 < i c n.}

x- T[i]
T[i]- v
if v < x then sift-down(T, i)

else percolate(T, i)

procedure sift-down(T[I. . n], i)
{This procedure sifts node i down so as to re-establish the heap

property in T[L .n]. We suppose that T would be a heap if T[i]
were sufficiently large. We also suppose that 1 < i < n.}

k - i
repeat

j - k
{find the larger child of node j}
if 2j < n and T[2j]> T[k] then k - 2j
if 2j <nand T[2j+ 1]> T[k] then k -2j11
exchange T[j] and T[k]
{if j = k, then the node has arrived at its final position}

until j = k

165



Some Data Structures Chapter 5

procedure percolate(T[1 ..n], i)
{This procedure percolates node i so as to re-establish the heap

property in T[1.. n]. We suppose that T would be a heap if T[i]
were sufficiently small. We also suppose that 1 < i • n.
The parameter n is not used here.}

k - i
repeat

j- k
if j > I and T[j 2]< T[k] then ke -j :2
exchange T[j] and T[k]
{if j = k, then the node has arrived at its final position}

until j = k

The heap is an ideal data structure for finding the largest element of a set, removing
it, adding a new node, or modifying a node. These are exactly the operations we
need to implement dynamic priority lists efficiently: the value of a node gives the
priority of the corresponding event, the event with highest priority is always found
at the root of the heap, and the priority of an event can be changed dynamically at
any time. This is particularly useful in computer simulations and in the design of
schedulers for an operating system. Some typical procedures are illustrated below.

functionfind-max(T[l. . n])
{Returns the largest element of the heap T[L. . n] }
return Ti[1]

procedure delete-max(T[1 . .n])
{Removes the largest element of the heap T[L. .n]

and restores the heap property in T[L.. n -1]}
T[l]- T[n]
sift-down(T[ I..n -1], 1)

procedure insert-node (T[1.. n], v)
{Adds an element whose value is v to the heap T[1. . n]
and restores the heap property in T[L.. n + 1]}

T[n + 1]- v
percolate(T[l1..n + 1],n +1)

It remains to be seen how to create a heap starting from an array T[L..n] of elements
in an undefined order. The obvious solution is to start with an empty heap and to
add elements one by one.

procedure slow-make-heap(Till . . n])
{This procedure makes the array T[L. .n] into a heap,
albeit rather inefficiently}

for i - 2 to n do {percolate}(T[L. .i], i)

166



Section 5.7 Heaps

However this approach is not particularly efficient; see Problem 5.19. There exists
a cleverer algorithm for making a heap. Suppose, for example, that our starting
point is the following array:

represented by the tree in Figure 5.16a. We first make each of the subtrees whose
roots are at level 1 into a heap; this is done by sifting down these roots, as illustrated
in Figure 5.16b. The subtrees at the next higher level are then transformed into
heaps, again by sifting down their roots. Figure 5.16c shows the process for the left
subtree. The other subtree at level 2 is already a heap. This results in an essentially
complete binary tree corresponding to the array:

111019171715 2 2 4 6

It only remains to sift down its root to obtain the desired heap. The final process
thus goes as follows:

10 1 9 7 7 5 2 2 4 6
10 7 9 1 7 5 2 2 4 6
10 7 9 4 7 5 2 2 1 6

The tree representation of the final form of the array is shown previously as Fig-
ure 5.13.

Here is a formal description of the algorithm.

procedure make-heap(T[ .. n])
{This procedure makes the array T[L. . n] into a heap}
for i - [n/21 downto 1 do sift-down(T, i)

Theorem 5.7.1 The algorithm constructs a heap in linear time.

Proof We give two proofs of this claim.

1. As a barometer we use the instructions in the repeat loop of the algorithm
sift-down. To sift down a node at level r, clearly we make at most r + 1 trips round
the loop. Now the height of a heap containing n nodes is [ lg nj = k, say. In the heap
there are 2k l nodes at level 1 (not all of which are necessarily internal nodes), 2 k 2
nodes at level 2 (all of which must be internal nodes), and so on, down to 1 node at
level k, the root. When we apply make-heap, we sift down the value in each internal
node. Hence if t is the total number of trips round the repeat loop, we have

t < 2 x 2 k1 + 3 x 2k-2 + . . + (k + 1)20

< - 2 k + 2k+1 (2  + 2x2 2 + 3 x 2 3 +.)

= 2k+2 - 2 k < 4n

167



Some Data Structures Chapter 5

(a) The starting situation.

0 0

(b) The level I subtrees are made into heaps.

2 4 6

(c) One level 2 subtree is made into a heap (the other already is a heap).

Figure 5.16. Making a heap

where we used Proposition 1.7.12 to sum the infinite series. The required work
is therefore in 0(n).

2. Let t(k) be the time needed in the worst case to build a heap of height at
most k. Assume that k Ž 2. To construct the heap, the algorithm first transforms
each of the two subtrees attached to the root into heaps of height at most k -1.
(The right subtree could be of height k - 2.) The algorithm then sifts the root down
a path whose length is at most k, which takes a time s (k) e 0 (k) in the worst case.
We thus obtain the asymptotic recurrence

t(k)< 2t(k - 1)+s(k).

168



Section 5.7 Heaps

This is similar to Example 4.7.7, which yields t (k) e 0 (2 k). But a heap containing
n elements is of height [lg nJ, hence it can be built in at most t ( [lg n I) steps, which
is in 0(n) because 2[1 I< n. <

Williams invented the heap to serve as the underlying data structure for the
following sorting algorithm.

procedure heapsort(T[l .. n])

{ T is an array to be sorted}
make-heap (T)
for i - n downto 2 do

exchange T[1] and T[i]
sift-down(T[l.. i -1,1)

Theorem 5.7.2 The algorithm takes a time in 0 (n log n) to sort n elements.

Proof Let t(n) be the time taken to sort an array of n elements in the worst case. The
make-heap operation takes a time linear in n, and the height of the heap that is
produced is [lg n 1. The for loop is executed n - 1 times. Each time round the
loop, the "exchange" instruction takes constant time, and the sift-down operation
then sifts the root down a path whose length is at most lg n, which takes a time in
the order of log n in the worst case. Hence

t(n)e 0(n)+(n - l)0(l)+(n -1)0(logn)- 0(nlogn).

It can be shown that t(n) e E (n log n): the exact order of t(n) is also n log n,
both in the worst case and on the average, supposing all initial permutations of the
objects to be sorted to be equally likely. However this is more difficult to prove.

The basic concept of a heap can be improved in several ways. For applications
that need percolate more often than sift-down (see for example Problem 6.16), it pays
to have more than two children per internal node. This speeds up percolate (because
the heap is shallower) at the cost of slowing down operations such as sift-down that
must consider every child at each level. It is still possible to represent such heaps
in an array without explicit pointers, but a little care is needed to do it correctly;
see Problem 5.23.

For applications that tend to sift down an updated root node almost to the
bottom level, it pays to ignore temporarily the new value stored at the root, choosing
rather to treat this node as if it were empty, that is, as if it contained a value smaller
than any other value in the tree. The empty node will therefore be sifted all the
way down to a leaf. At this point, put the relevant value back into the empty leaf,
and percolate it to its proper position. The advantage of this procedure is that it
requires only one comparison at each level while the empty node is being sifted
down, rather than two with the usual procedure. (This is because we must compare

169



Some Data Structures Chapter 5

the children to each other, but we do not need to compare the greater child with its
parent.) Experiments have shown that this approach yields an improvement over
the classic heapsort algorithm.

We shall sometimes have occasion to use an inverted heap. By this we mean an
essentially complete binary tree where the value of each internal node is less than
or equal to the values of its children, and not greater than or equal as in the ordinary
heap. In an inverted heap the smallest item is at the root. All the properties of an
ordinary heap apply mutatis mutandis.

Although heaps can implement efficiently most of the operations needed to
handle dynamic priority lists, there are some operations for which they are not
suited. For example, there is no good way of searching for a particular item in a
heap. In procedures such as sift-down and percolate above, we provided the address
of the node concerned as one of the parameters of the procedure. Furthermore there
is no efficient way of merging two heaps of the kind we have described. The best
we can do is to put the contents of the two heaps side by side in an array, and then
call procedure make-heap on the combined array.

As the following section will show, it is not hard to produce mergeable heaps at
the cost of some complication in the data structures used. However in any kind of
heap searching for a particular item is inefficient.

5.8 Binomial heaps
In an ordinary heap containing n items, finding the largest item takes a time in 0 (1).
Deleting the largest item or inserting a new item takes a time in 0 (log n). However
merging two heaps that between them contain n items takes a time in 0 (n). In this
section we describe a different kind of heap, where finding the largest item still takes
a time in 0 (1) and deleting the largest item still takes a time in 0 (log n). However
merging two of these new heaps only requires a time in 0 (log n), and inserting
a new item-provided we look at the amortized cost, not the actual cost of each
operation-only requires a time in 0 (1).

We first define binomial trees. The i-th binomial tree B1, i > 0 is defined recur-
sively to consist of a root node with i children, where the j-th child, 1 < j < i, is
in turn the root of a binomial tree Bj_1 . Figure 5.17 shows Bo to B4. It is easy to
show by mathematical induction that the binomial tree Bi contains 2' nodes, of

which (k) are at depth k, 0 < k < i. Here (k) is the binomial coefficient defined in
Section 1.7.3. This, of course, is what gives binomial trees their name. We assume
that each node in such a tree can store a value. Since the nodes have a variable
number of children, they are probably best represented on a computer using the
type treenodel defined in Section 5.5.

To define a binomial heap we begin with a collection of binomial trees. Each
binomial tree in the collection must be a different size, and furthermore each must
have the heap property: the value stored at any internal node must be greater than
or equal to the values of its children. This ensures that the largest item in the heap
is in the root of one of its binomial trees. To complete the definition of a binomial
heap, we add pointers to join each root to the next, in order of increasing size of
the binomial trees. It is convenient to organize the roots in a doubly-linked list
so that insertion or deletion of a root is easy. Finally we add a pointer to the root

170



Section 5.8 Binomial heaps

Bo B. B2 B3

Figure 5.17. Binomial trees Bo to B4

containing the largest element in the heap. Figure 5.18 illustrates a binomial heap
with 11 items. It is easy to see that a binomial heap containing n items comprises
not more than f lg n] binomial trees.

max \

Figure 5.18. A binomial heap containing 11 items

Suppose we have two binomial trees Bi, the same size but possibly containing
different values. Assume they both have the heap property. Then it is easy to
combine them into a single binomial tree Bi+,1 still with the heap property. Make
the root with the smaller value into the (i + 1)-st child of the root with the larger
value, and we are done. Figure 5.19 shows how two B2's can be combined into a B3
in this way. We shall call this operation linking two binomial trees. Clearly it takes
a time in 0(1).

Next we describe how to merge two binomial heaps H, and H2 . Each consists
of a collection of binomial trees arranged in increasing order of size. Begin by
looking at any Bo's that may be present. If neither H1 nor H2 includes a Bo, there is
nothing to do at this stage. If just one of H, and H2 includes a Bo, keep it to form
part of the result. Otherwise link the two Bo's from the two heaps into a B1. Next

171

0

(D ------ ----



Some Data Structures Chapter 5

+

Figure 5.19. Linking two B2's to make a B3

look at any Bl's that may be present. We may have as many as three of them to
deal with, one from each of HI and H2, and one "carried" from the previous stage.
If there are none, there is nothing to do at this stage. If there is just one, keep it
to form part of the result. Otherwise link any two of the Bl's to form a B2; should
there be a third one, keep it to form part of the result. Next look at any B2 's that
may be present, and so on.

In general, at stage i we have up to three Bi's on hand, one from each of HI
and H2, and one "carried" from the previous stage. If there are none, there is
nothing to do at this stage; if there is just one, we keep it to form part of the result;
otherwise we link any two of the Bi's to form a B,+1, keeping the third, if there is
one, to form part of the result. If a BiI is formed at this stage, it is "carried" to
the next stage. As we proceed, we join the roots of those binomial trees that are to
be kept, and we also keep track of the root with the largest value so as to set the
corresponding pointer in the result. Figure 5.20 illustrates how a binomial heap
with 6 elements and another with 7 elements might be merged to form a binomial
heap with 13 elements.

The analogy with binary addition is close. There at each stage we have up to
three Is, one carried from the previous position, and one from each of the operands.
If there are none, the result contains 0 in this position; if there is just one, the result
contains a 1; otherwise two of the is generate a carry to the next position, and the
result in this position is 0 or 1 depending whether two or three is were present
initially.

If the result of a merge operation is a binomial heap comprising n items, it can
be constructed in at most Ilg n ] + 1 stages. Each stage requires at most one linking
operation, plus the adjustment of a few pointers. Thus one stage can be done in a
time in 0(1), and the complete merge takes a time in 0 (log n).

Finding the largest item in a binomial heap is simply a matter of returning
the item indicated by the appropriate pointer. Clearly this can be done in a time
in 0 (1). Deleting the largest item of a binomial heap H is done as follows.

(i) Let B be the binomial tree whose root contains the largest item of H. Remove B

172



Section 5.8 Binomial heaps

merged with

yields

Q13

0

Figure 5.20. Merging two binomial heaps

from H, joining any remaining constituents of H into a new binomial heap H1 .

(ii) Remove the root of B. Join the binomial trees that used to be the subtrees of
this root into a new binomial heap H2 . (They are already in order of increasing
size, as required.)

(iii) Merge H1 and H2 into a single binomial heap. This is the required result.

Here step (i) takes a time in 0 (1), since it requires no more than the adjustment of a
few pointers. Step (ii) takes a time in 0 (log n) because the root of any tree in H has
at most [lg n J children; this exact time required depends on how the children are
linked together. Step (iii) takes a time in 0 (log n) as we have just seen. Therefore
the entire operation takes a time in 0 (log n).

Inserting a new item into a binomial heap H can be done as follows.

(i) Take the item to be inserted and convert it into a binomial tree containing just
that one item. All that is required is to create a single node, and to initialize its
value correctly. Call this new binomial tree B*

(ii) Set i - 0.

p
6

173



Some Data Structures Chapter 5

(iii) If H includes a Bi, then

- remove the root of this B1 from the list of roots of H;
link Bi and the Bi from H to form a binomial tree B>* ;

- set -i+1; and
- repeat step (iii).

Otherwise go on to step (iv).

(iv) Insert the root of Bi into the list of roots belonging to H. If the item just inserted
is larger than any other item in H, set H's pointer to point to the root of B>*

The whole operation is reminiscent of incrementing a binary counter: most of the
time step (iii) is executed just once or twice, but occasionally an insertion will cause
a cascade of "carries" and step (iii) will be executed many times. As for the binary
counter, however, we can do the required work in a time in 0(1) provided we are
content to use amortized costs; see Section 4.6.

To do this, we use an accounting trick as described in Section 4.6. Specifically,
we initially set up a virtual bank account containing zero tokens. Whenever a new
binomial tree is created, we charge the process creating it one token that we deposit
in the bank account. We assume that one token is sufficient to pay for one linking
operation, which as we saw takes a time in 0 (1), plus a little extra to pay for a small
constant overhead. Whenever we perform such a linking operation, we withdraw
one token from the bank account to pay for it, so the operation has zero amortized
cost. Our bank account can never be overdrawn, because we can never link more
trees than we have created. What is the effect on the binomial heap operations?

For the operation of finding the largest item, this accounting trick has no effect
at all: no binomial trees are created or destroyed. Part of a merge operation con-
sists of linking trees together. Apart from this, no trees are created or destroyed.
As we just saw, linking (plus a little overhead) can be done at zero amortized cost.
However the merge operation may also involve joining the roots of trees that were
constituents of the original two heaps, and for which no linking has occurred. There
may be up to [ lg n] of these. The required work for each is in 0 (1) -only a few
pointers have to be changed-so the total time required is in 0 (log n). Hence a
merge operation still has an amortized cost in 0 (log n), despite the fact that the
necessary linking operations have already been paid for.

To insert an extra item in a binomial heap, we begin in step (i) by creating a
new binomial tree. When this tree is created, we charge one token that we deposit
in the bank account. The rest of this step clearly takes a time in 0 (1). Thus, even
including the extra charge, the step can be carried out in a time in 0(1). Step (ii)
is trivial. Every time we execute step (iii) we do one linking operation and adjust
a small number of pointers. Since one binomial tree disappears during the linking
operation, we can use one token from the bank account to pay for the whole step.
The amortized cost of each execution of step (iii) is therefore zero. Step (iv) takes a
time in 0 (1). Pulling all this together, we see that the complete insertion operation
can be carried out in an amortized time in 0 (1), as we promised at the beginning
of the section.

Even more elaborate data structures have been proposed to implement dy-
namic priority lists. Using lazy binomial heaps, which are just like binomial heaps

174



Section 5.9 Disjoint set structures

except that we put off some housekeeping operations until they are absolutely nec-
essary, two heaps can be merged in an amortized time in 0 (1). The Fibonacci heap is
another data structure that allows us to merge priority lists in constant amortized
time. In addition, the value of a node in a Fibonacci heap can be increased and the
node in question percolated to its new place in constant amortized time. We shall
see in Problem 6.17 how useful this can be. Those heaps are based on Fibonacci
trees; see Problem 5.29. The structure called a double-ended heap, or deap, allows
both the largest and the smallest member of a set to be found efficiently.

5.9 Disjoint set structures
Suppose we have N objects numbered from 1 to N. We wish to group these into
disjoint sets, so that at any given time each object is in exactly one set. In each set
we choose one member to serve as a label for the set. For instance, if we decide to
use the smallest object as the label, then we can refer to the set {2, 5, 7,101 simply
as "set 2". Initially the N objects are in N different sets, each containing exactly one
object. Thereafter, we execute a sequence of operations of two kinds:

• given some object, we find which set contains it, and return the label of this set;
and

o given two different labels, we merge the contents of the two corresponding sets,
and choose a label for the combined set.

Our problem is to represent this situation efficiently on a computer.
One possible representation is obvious. Suppose, as suggested above, we de-

cide to use the smallest member of each set as the label. If we declare an array
set[l.. N], it suffices to put the label of the set corresponding to each object in
the appropriate array element. The two operations we want to perform can be
implemented by the following procedures.

functionfindl(x)
{Finds the label of the set containing x}
return set[x]

procedure mergel(a, b)
{Merges the sets labelled a and b; we assume a 76 b}
i - min(a, b)
j - max(a, b)
for k -1 to N do

if set[k]= j then set[k] - i

Suppose we are to execute an arbitrary sequence of operations, of types find and
merge, starting from the given initial situation. We do not know precisely in which
order these operations will occur. However there will be n of type find, and not
more than N -1 of type merge, for after N -1 merge operations all the objects are
in the same set. For many applications n is comparable to N, too. If consulting or
modifying one element of an array counts as an elementary operation, it is clear
that find takes constant time, and that merger takes a time in 0((N). The n find

175



Some Data Structures Chapter 5

operations therefore take a time in a0(n), while N - 1 merge operations take a time
in 0(N 2 ). If n and N are comparable, the whole sequence of operations takes a
time in E) (n 2 ).

Let us try to do better than this. Still using a single array, we can represent each
set as a rooted tree, where each node contains a single pointer to its parent (as for
the type treenode2 in Section 5.5). We adopt the following scheme: if set[i]= i, then
i is both the label of its set and the root of the corresponding tree; if set[i]= j i,
then j is the parent of i in some tree. The array

12 23 12 1 13 14 1313 14

therefore represents the trees shown in Figure 5.21, which in turn represent the sets
{1, 5}, {2, 4,7, 101 and {3, 6,8,91. To merge two sets, we need now to change only
a single value in the array; on the other hand, it is harder to find the set to which
an object belongs.

function find2 (x)
{Finds the label of the set containing object x}
r- x
while set[r]I/ r do r - set[r]
return r

procedure merge2(a, b)
{Merges the sets labelled a and b; we assume a / b}
if a < b then set[b]- a

else set[a]- b

Now if each consultation or modification of an array element counts as an ele-
mentary operation, then the time needed to execute a merge operation is constant.
However the time needed to execute afind operation is in 06(N) in the worst case.
When things go badly, therefore, executing an arbitrary sequence of n find2 and
N - 1 merge2 operations starting from the initial situation can take a time in 0 (nN).
If n is comparable to N as we assumed previously, this is 0 (n 2 ), and we have not
gained anything over the use offindl and merger. The problem arises because after
k calls of merge2 we may find ourselves confronted by a tree of height k, so each
subsequent call onfind2 may take a time proportional to k. To avoid this, we must
find a way to limit the height of the trees produced.

So far, we have chosen arbitrarily to use the smallest member of a set as its
label. This means that when we merge two trees, the one that does not contain the
smallest member of the resulting combined set becomes a subtree of the one that
does. It would be better to arrange matters so it is always the tree whose height
is least that becomes a subtree of the other. Suppose we have to merge two trees
whose heights are respectively hi and h2 . Using this technique, the height of the
resulting merged tree will be max(hl, h2 ) if hi W h2 , or hi + 1 if hi = h2. As the
following theorem shows, in this way the height of the trees does not grow as
rapidly.

176



Section 5.9 Disjoint set structures

5

Figure 5.21. Tree representation for disjoint sets

Theorem 5.9.1 Using the technique outlined above, after an arbitrary sequence of
merge operations startingfrom the initial situation, a tree containing k nodes has a
height at most [lg k.

Proof The proof is by generalized mathematical induction on k, the number of nodes in
the tree.

o Basis: The theorem is clearly true when k = 1, for a tree with only 1 node
has height 0, and O < [ig 1J.

o Induction step: Consider any k > 1. Assume the induction hypothesis that
the theorem is true for all m such that 1 < m < k. A tree containing k
nodes can be obtained only by merging two smaller trees. Suppose these
two smaller trees contain respectively a and b nodes, where we may as-
sume without loss of generality that a • b. Now a > 1 since there is no
way of obtaining a tree with 0 nodes starting from the initial situation,
and k = a + b. It follows that a < k/2 and b < k -1. Since k > 1, both
k/2 < k and k -1 < k, and hence a < k and b < k. Let the heights of
the two smaller trees be ha and hb respectively, and let the height of the
resulting merged tree be hk. Two cases arise.

- If ha # hb, then hk = max(ha,hb)< max lg ag, [1gb1), where we
used the induction hypothesis twice to obtain the inequality. Since
both a and b are less than k, it follows that hk < Llg k .

- If ha = hb, then hk = ha + 1 < [Iga] + 1, again using the induction
hypothesis. Now Llgal < [lg(k/2)] = Llg(k)-11 = [lgkl -1, and so
hk < Llgk].

Thus the theorem is true when k = 1, and its truth for k = n > 1 follows from its
assumed truth for k = 1, 2,..., n - 1. By the principle of generalized mathematical
induction, the theorem is therefore true for all k > 1. U

177

)



Some Data Structures Chapter 5

The height of the trees can be maintained in an additional array height[L . . N] so
that height[ i] gives the height of node i in its current tree. Whenever a is the label
of a set, height[a] therefore gives the height of the corresponding tree, and in fact
these are the only heights that concern us. Initially, height[i] is set to zero for each i.
The procedurefind2 is unchanged, but we must modify merge appropriately.

procedure merge3(a, b)
{Merges the sets labelled a and b; we assume a i b}
if height[a]= height[b]
then

height[a>- height[a]+l
set[b]- a

else
if height[a]> height[b]
then set[b] - a
else set[a].- b

If each consultation or modification of an array element counts as an elementary
operation, the time needed to execute an arbitrary sequence of n find2 and N - 1
merge3 operations, starting from the initial situation, is in O (N + nlogN) in the
worst case; assuming n and N are comparable, this is in the exact order of n log n.

By modifying find2, we can make our operations faster still. When we are
trying to determine the set that contains a certain object x, we first traverse the
edges of the tree leading up from x to the root. Once we know the root, we can
traverse the same edges again, this time modifying each node encountered on the
way so its pointer now indicates the root directly. This technique is called path
compression. For example, when we execute the operationfind(20) on the tree of
Figure 5.22a, the result is the tree of Figure 5.22b: nodes 20, 10 and 9, which lay on
the path from node 20 to the root, now point directly to the root. The pointers of
the remaining nodes have not changed.

This technique obviously tends to reduce the height of a tree and thus to ac-
celerate subsequent find operations. On the other hand, the new find operation
traverses the path from the node of interest to the root twice, and therefore takes
about twice as long as before. Hence path compression may not be worthwhile
if only a small number of find operations are performed. However, if many find
operations are executed, then after a while we may expect, roughly speaking, that
all the nodes involved will be attached directly to the roots of their respective trees,
so the subsequent finds take constant time. A merge operation will perturb this
situation only slightly, and not for long. Most of the time, therefore, bothfind and
merge operations will require a time in 0 (1), so a sequence of n of the former and
N - 1 of the latter operations will take a time-nearly-in 0 (n) when n and N are
comparable. We see below how close we come to this ideal situation.

One small point remains to be cleared up. Using path compression, it is no
longer true that the height of a tree whose root is a is given by height[a]. This is
because path compression may change the height of a tree, but it does not affect the

178



Section 5.9 Disjoint set structures

(b) After

(a) Before

Figure 5.22. Path compression

contents of the root node. However path compression can only reduce the height
of a tree, never increase it, so if a is the root, it remains true that height[a] is an
upper bound on the height of the tree; see Problem 5.31. To avoid confusion we
call this value the rank of the tree; the name of the array used in merge3 should be
changed accordingly. Thefind function is now as follows.

functionfind3(x)
{Finds the label of the set containing object x}
r- x
while set[r]# r do r - set[r]
{r is the root of the tree}
i E x

while i X r do
j -set[i]
set[i]- r
i- j

return r

From now on, when we use this combination of two arrays and of proceduresfind3
and merge3 to deal with disjoint sets of objects, we say we are using a disjoint set
structure; see also Problems 5.32 and 5.33 for variations on the theme.

It is not easy to analyse the time needed for an arbitrary sequence of find and
merge operations when path compression is used. In this book we content ourselves
with giving the result. First we need to define two new functions A (i, j) and oc (i, j).

179



Some Data Structures Chapter 5

The function A (i, j) is a slight variant of Ackermann 'sfunction; see Problem 5.38.
It is defined for i > 0 and j > 1.

2j if i= 0
A(i,j) 2 ifj =1

A(i - 1,A(i, j - 1)) otherwise

The facts below follow easily from the definition:

c A (1,1) = 2 and A (1, j + 1) = A (0, A (1, j)) = 2A (1, j) for j > 1. It follows that
A(1, j)= 2i for all j.

• A(2,1)= 2 and A(2,j + 1)= A(1,A(2,j))= 2 A(2i) for j 2 1. Therefore
A(2,1) 2, A(2,2)= 2 A(2,1) = 22 = 4, A(2,3)= 2A(2,2) = 222 = 16, A(2,4)

2 A(2,3) = 2222 = 65536, and in general

A(2,j)= 2 } 2S

where the right-hand side contains j 2s altogether. Remember that expo-
nentiation associates to the right, so

222 = 224 = 216 = 65536.

• A(3,1)= 2, A(3,2)= A(2,A(3,1))= 4,
A(3,3)= A(2, A(3,2))= 65536,

A(3,4) = A(2, A(3,3)) = A(2,65536) = 2. }65536 2S,

and so on.

It is evident that the function A grows extremely fast.
Now the function a(i, j) is defined as a kind of inverse of A:

o(i,j)= min{klk > 1 and A(k,4[i/jl)> lgj}.

Whereas A grows very rapidly, a grows extremely slowly. To see this, observe that
for any fixed j, a(i, j) is maximized when i < j, in which case 4[i/j] = 4, so

a(ij)< min{klk > 1 and A(k,4)> lgj}.

Therefore a(i,j)> 3 only when

lgj> A(3,4)= 2 }65536 2S

which is huge. Thus for all except astronomical values of j U,a (i,j) < 3.
With a universe of N objects and the given initial situation, consider an arbitrary

sequence of n calls of find3 and m < N - 1 calls of merge3. Let c = n + m. Using
the functions above, Tarjan was able to show that such a sequence can be executed
in a time in O (cot(c, N)) in the worst case. (We continue to suppose, of course,
that each consultation or modification of an array element counts as an elementary
operation.) Since for all practical purposes we may suppose that ax(c, N):< 3, the
time taken by the sequence of operations is essentially linear in c. However no
known algorithm allows us to carry out the sequence in a time that is truly linear
in c.

180



Section 5.10 Problems

5.10 Problems

Problem 5.1. You are to implement a stack of items of a given type. Give the nec-
essary declarations and write three procedures respectively to initialize the stack,
to add a new item, and to remove an item. Include tests in your procedures to
prevent adding or removing too many items. Also write a function that returns
the item currently at the top of the stack. Make sure this function behaves sensibly
when the stack is empty.

Problem 5.2. A queue can be represented using an array of items of the required
type, along with two pointers. One gives the index of the item at the head of
the queue (the next to leave), and the other gives the index of the item at the
end of the queue (the last to arrive). Give the necessary declarations and write
three procedures that initialize the queue, add a new item, and remove an item,
respectively. If your array has space for n items, what is the maximum number
of items that can be in the queue? How do you know when it is full, and when
it is empty? Include tests in your procedures to prevent adding or removing too
many items. Also write a function that returns the item currently at the head of the
queue. Make sure this function behaves sensibly when the queue is empty.
Hint: As items are added and removed, the queue tends to drift along the array.
When a pointer runs off the array, do not copy all the items to a new position, but
rather let the pointer wrap around to the other end of the array.

Problem 5.3. Fill in the details of the technique called virtual initialization de-
scribed in Section 5.1 and illustrated in Figure 5.1. You should write three algo-
rithms.

procedure init
{Virtually initializes T[L. . n] }

procedure store(i, v)
{Sets T[i] to the value v}

function val(i)
{Returns the value of T[i] if this has been assigned;
returns a default value (such as -1) otherwise}

A call on any of these (including init!) should take constant time in the worst case.

Problem 5.4. What changes in your solution to Problem 5.3 if the index to the
array T, instead of running from 1 to n, goes from n1 to n2, say?

Problem 5.5. Without writing the detailed algorithms, sketch how to adapt virtual
initialization to a two-dimensional array.

Problem 5.6. Show in some detail how the directed graph of Figure 5.3 could be
represented on a machine using (a) the adjgraph type of representation, and (b) the
lisgraph type of representation.

181



Some Data Structures Chapter 5

Problem 5.7. Draw the three different trees with five nodes, and the six different
trees with six nodes. Repeat the problem for rooted trees. For this problem the
order of the branches of a rooted tree is immaterial. You should find nine rooted
trees with five nodes, and twenty with six nodes.

Problem 5.8. Following Problem 5.7, how many rooted trees are there with six
nodes if the order of the branches is taken into account?

Problem 5.9. Show how the four rooted trees illustrated in Figure 5.4b would be
represented using pointers from a node to its eldest child and to its next sibling.

Problem 5.10. At the cost of one extra bit of storage in records of type treenodel,
we can make it possible to find the parent of any given node. The idea is to use
the next-sibling field of the rightmost member of a set of siblings to point to their
common parent. Give the details of this approach. In a tree containing n nodes,
how much time does it take to find the parent of a given node in the worst case?
Does your answer change if you know that a node of the tree can never have more
than k children?

Problem 5.11. Rewrite the algorithm search of Section 5.5 avoiding the recursive
calls.

Problem 5.12. Give a detailed implementation of associative tables using lists of
type table list from Section 5.6. Your implementation should provide the following
algorithms.

function init(T, x)
function val (T, x)
procedure set (T, x, y)

These determine if T[x] has been initialized, access its current value if it has one,
and set T[x] toy (either by creating entry TI[x] or by changing its value if it already
exists), respectively.

Problem 5.13. Prove that a sequence of n accesses to an associative table imple-
mented as in Problem 5.12 takes a time in Q(n2 ) in the worst case.

Problem 5.14. Prove that even if the array used to implement a hash table is of
size N = mi2 , where mn is the number of elements to be stored in the table, the
probability of collision is significant. Assume that the hash function sends each
element to a random location in the array.

Problem 5.15. Prove that the cost of rehashing can be neglected even in the worst
case, provided we perform an amortized analysis. In other words, show that ac-
cesses to the table can put enough tokens in the bank account to pay the complete
cost of rehashing each time the load factor exceeds 1. Assume that both the choice
of a new hash function and rehashing one entry in the table take constant time.

182



Section 5.10 Problems

Problem 5.16. Prove that if hashing is used to implement the symbol table of a
compiler, if the load factor is kept below 1, and if we make the unnatural assump-
tion that every possible identifier is equally likely to be used, the probability that
any identifier collides with more than t others is less than 1 it, for any integer t.
Conclude that the average time needed for a sequence of n accesses to the table is
in 0(n).

Problem 5.17. Propose strategies other than chaining for handling collisions in a
hash table.

Problem 5.18. Sketch an essentially complete binary tree with (a) 15 nodes and
(b) 16 nodes.

Problem 5.19. In Section 5.7 we saw an algorithm for making a heap (slow-make-
heap) that we described as "rather inefficient". Analyse the worst case for this
algorithm, and compare it to the linear-time algorithm make-heap.

Problem 5.20. Let T[1 .. 12] be an array such that T[i]= i for each i < 12. Exhibit
the state of the array after each of the following procedure calls. The calls are
performed one after the other, each one except the first working on the array left
by its predecessor.

make-heap(T)
alter-heap(T, 12, 10)
alter-heap(T, 1, 6)
alter-heap (T, 5, 8)

Problem 5.21. Exhibit a heap T containing n distinct values, such that the follow-
ing sequence results in a different heap.

m - find-max(T[I.. n])
delete-max (T [ 1 . . n] )
insert-node(T[1 . . n - 1], m)

Draw the heap after each operation. You may choose n to suit yourself.

Problem 5.22. Design an algorithmfind-in-heap(T[l..n],x) that looks for the
value x in the heap T and returns either the index of x in the heap, if it is present,
or 0 otherwise. What is the running time of your algorithm? Can you use the heap
property to speed up the search, and if so, how?

Problem 5.23. (k-ary heaps) In Section 5.7 we defined heaps in terms of an es-
sentially complete binary tree. It should be clear that the idea can be generalized
to essentially complete k-ary trees, for any k > 2. Show that we can map the
nodes of a k-ary tree containing n nodes to the elements T[0] to T[n - 1] of an
array in such a way that the parent of the node represented in T[i] is found in
T[(i -1) . k] for i > 0, and the children of the node represented in T[i] are found

183



Some Data Structures Chapter 5

in T[ik + 1], T[ik + 2],..., T[(i + 1)k]. Note that for binary trees, this is not the
mapping we used in Section 5.7; there we used a mapping onto T[1. .n], not onto
T[O.. n -1].
Write procedures sift-down (T, k, i) and percolate ( T, k, i) for these generalized heaps.
What are the advantages and disadvantages of such generalized heaps? For an
application where they may be useful, see Problem 6.16.

Problem 5.24. For heapsort, what are the best and the worst initial arrangements of
the elements to be sorted, as far as the execution time of the algorithm is concerned?
Justify your answer.

Problem 5.25. Prove that the binomial tree Bi defined in Section 5.8 contains 2i
nodes, of which (k) are at depth k, 0 < k • i.

Problem 5.26. Prove that a binomial heap containing n items comprises at most
I Ig nI binomial trees, the largest of which contains 2tLgnI items.

Problem 5.27. Consider the algorithm for inserting a new item into a binomial
heap H given in Section 5.8. A simpler method would be to create a binomial tree

Bo as in step (i) of the algorithm, make it into a binomial heap, and merge this new
heap with H. Why did we prefer the more complicated algorithm?

Problem 5.28. Using the accounting trick described in Section 5.8, what is the
amortized cost of deleting the largest item from a binomial heap?

Problem 5.29. (Fibonacci trees) It is convenient to define the Fibonacci tree F-1 to
consist of a single node. Then the i-th Fibonacci tree Fi, i > 0, is defined recursively
to consist of a root node with i children, where the j-th child, 1 < j < i, is in turn
the root of a Fibonacci tree Fj-2. Figure 5.23 shows Fo to F5 . Prove that the Fibonacci
tree Fi, i > 0, has fi, nodes, where fk is the k-th member of the Fibonacci sequence;
see Section 1.6.4.

Fo F. F2  F3 F4

Figure 5.23. Fibonacci trees Fo to F4

Problem 5.30. If each consultation or modification of an array element counts
as an elementary operation, prove that the time needed to execute an arbitrary
sequence of n operations of typefind2 and N - 1 operations of type merge3 starting
from the initial situation is in ) (N + n log N); this is E3 (n log n) when n and N are
comparable.

184



Section 5.10 Problems

Problem 5.31. When using path compression, we are content to use an array rank
that gives us an upper bound on the height of a tree, rather than the exact height.
Estimate how much time it would take to recompute the exact height of the tree
after each path compression.

Problem 5.32. In Section 5.9 we discussed merging two trees so the tree whose
height is least becomes a subtree of the other. A second possible tactic is to ensure
that the tree containing the smaller number of nodes always becomes a subtree of
the other. Path compression does not change the number of nodes in a tree, so
it is easy to store this value exactly, whereas we could not keep track efficiently
of the exact height of a tree after path compression. Write a procedure merge4 to
implement this tactic, and prove a result corresponding to Theorem 5.9.1.

Problem 5.33. The root of a tree has no parent, and we never use the value of rank
for a node that is not a root. Use this to implement a disjoint set structure with just
one array of length N rather than two (set and rank).

Problem 5.34. Let A be the variant of Ackermann's function defined in Section 5.9.
Show that A(i, 2) = 4 for all i.

Problem 5.35. Let A be the variant of Ackermann's function defined in Section 5.9.
Show that A(i + 1, j)> A(i, j) and A(i, j + 1)> A(i, j) for all i and j.

Problem 5.36. Let A be the variant of Ackermann's function defined in Section 5.9,
and define a (i, n) by

a(i, n)= mint jJA(iJ)> 1gn}.

Show that a(l, n) is in O(loglogn).

Problem 5.37. Consider the function lg* (n),the iterated logarithm of n. Informally,
this is the number of times we need to apply the function Ig to n to obtain a value less
thanorequaltol. Forexample,1g16 = 4,lg4 = 2,andlg2 = 1;hencelglglgl6 = 1,
and so lg* 16 = 3. Slightly more formally, we may define lg*n by

lg*n = min{kl lglg .. lgn s 1}.

k times

The function lg*n increases very slowly: lg*n is 4 or less for every n < 65536.
Let a(i, n) be the function defined in the previous problem. Show that a(2, n) is
in O(lg* n).

Problem 5.38. Ackermann's function (the genuine thing this time) is defined by

j j+l if i= 0
A(ij)= A(i -1,1) if i > Oj = 0

A(i -1,A(i, j -1)) otherwise.

Calculate A(2,5), A(3,3), and A(4,4).

185



Some Data Structures Chapter 5

5.11 References and further reading
For more information about data structures, consult Knuth (1968, 1973), Stone
(1972), Horowitz and Sahni (1976), Standish (1980), Aho, Hopcroft and Ullman
(1983), Tarjan (1983), Gonnet and Baeza-Yates (1984), Kingston (1990), Lewis and
Denenberg (1991) and Wood (1993). Graphs and trees are presented from a math-
ematical standpoint in Berge (1958, 1970).

Virtual initialization comes from Exercise 2.12 in Aho, Hopcroft, and Ullman
(1974). A variety of methods are available to keep search trees balanced; we did not
explain them in this chapter because we shall not need them later. Among those, AVL

trees, which come from Adel'son-Vel'skif and Landis (1962), are described in detail
in Knuth (1973); 2-3 trees come from Aho, Hopcroft and Ullman (1974); red-black
trees are from Guibas and Sedgewick (1978); and splay trees, which offer good
worst-case performance in the amortized sense, are from Sleator and Tarjan (1985).
Read Tarjan (1983) too. Hash coding is treated in detail in Knuth (1973); many
alternatives to chaining are given there.

The heap was introduced as a data structure for sorting by Williams (1964).
Heaps with more than two children per internal node are from Johnson (1975,1977);
see Problems 5.23 and 6.16. The idea of speeding up heapsort by sifting nodes to the
bottom before percolating them to their proper location is from Carlsson (1987a).
For ideas on building heaps faster, consult McDiarmid and Reed (1989). See also
Gonnet and Munro (1986) and Schaffer and Sedgewick (1993).

Binomial heaps are from Vuillemin (1978); see also Brown (1978) and Kozen
(1992). Fibonacci heaps are from Fredman and Tarjan (1987), where it is shown that
they can be used to speed up several classic network optimization algorithms of the
sort we shall study in Chapter 6; see Problem 6.17 for one example. Double-ended
heaps are from Carlsson (1986, 1987b), which are good sources of ideas on heaps
in general.

The analysis of disjoint set structures involving Ackermann's function is from
Tarjan (1975) but it is easier to read the subsequent account in Tarjan (1983). An ear-
lier upper bound on the worst-case complexity of this problem was due to Hopcroft
and Ullman (1973); it involved the lg* function of Problem 5.37. Galit and Ital-
iano (1991) survey a number of proposed algorithms. In this book, we give only
some of the possible uses for disjoint set structures; for more applications see
Hopcroft and Karp (1971), Aho, Hopcroft and Ullman (1974,1976) and Nelson
and Oppen (1980). Ackermann's function is from Ackermann (1928).

186



Chapter 6

Greedy Algorithms

If greedy algorithms are the first family of algorithms that we examine in detail in
this book, the reason is simple: they are usually the most straightforward. As the
name suggests, they are shortsighted in their approach, taking decisions on the
basis of information immediately at hand without worrying about the effect these
decisions may have in the future. Thus they are easy to invent, easy to implement,
and-when they work-efficient. However, since the world is rarely that simple,
many problems cannot be solved correctly by such a crude approach.

Greedy algorithms are typically used to solve optimization problems. Ex-
amples later in this chapter include finding the shortest route from one node to
another through a network, or finding the best order to execute a set of jobs on a
computer. In such a context a greedy algorithm works by choosing the arc, or the
job, that seems most promising at any instant; it never reconsiders this decision,
whatever situation may arise later. There is no need to evaluate alternatives, nor
to employ elaborate book-keeping procedures allowing previous decisions to be
undone. We begin the chapter with an everyday example where this tactic works
well.

6.1 Making change (1)
Suppose we live in a country where the following coins are available: dollars
(100 cents), quarters (25 cents), dimes (10 cents), nickels (5 cents) and pennies
(1 cent). Our problem is to devise an algorithm for paying a given amount to a
customer using the smallest possible number of coins. For instance, if we must
pay $2.89 (289 cents), the best solution is to give the customer 10 coins: 2 dollars,
3 quarters, 1 dime and 4 pennies. Most of us solve this kind of problem every
day without thinking twice, unconsciously using an obvious greedy algorithm:
starting with nothing, at every stage we add to the coins already chosen a coin of
the largest value available that does not take us past the amount to be paid.

187



Greedy Algorithms Chapter 6

The algorithm may be formalized as follows.

function {make-change}(n): set of coins
{Makes change for n units using the least possible
number of coins. The constant C specifies the coinagel

const C = {100, 25, 10, 5, 11
S - 0 {S is a set that will hold the solution}
s - 0 {s is the sum of the items in S}
while s X n do

x - the largest item in C such that s + x < n
if there is no such item then

return "no solution found"
S - S u la coin of value x}
s - s +X

return S

It is easy to convince oneself (but surprisingly hard to prove formally) that with the
given values for the coins, and provided an adequate supply of each denomination
is available, this algorithm always produces an optimal solution to our problem.
However with a different series of values, or if the supply of some of the coins is
limited, the greedy algorithm may not work; see Problems 6.2 and 6.4. In some
cases it may choose a set of coins that is not optimal (that is, the set contains more
coins than necessary), while in others it may fail to find a solution at all even
though one exists (though this cannot happen if we have an unlimited supply of
1-unit coins).

The algorithm is "greedy" because at every step it chooses the largest coin it
can, without worrying whether this will prove to be a sound decision in the long
run. Furthermore it never changes its mind: once a coin has been included in the
solution, it is there for good. As we shall explain in the following section, these are
the characteristics of this family of algorithms.

For the particular problem of making change, a completely different algorithm
is described in Chapter 8. This alternative algorithm uses dynamic programming.
The dynamic programming algorithm always works, whereas the greedy algorithm
may fail; however it is less straightforward than the greedy algorithm and (when
both algorithms work) less efficient.

6.2 General characteristics of greedy algorithms
Commonly, greedy algorithms and the problems they can solve are characterized
by most or all of the following features.

• We have some problem to solve in an optimal way. To construct the solution of
our problem, we have a set (or list) of candidates: the coins that are available,
the edges of a graph that may be used to build a path, the set of jobs to be
scheduled, or whatever.

c As the algorithm proceeds, we accumulate two other sets. One contains candi-
dates that have already been considered and chosen, while the other contains
candidates that have been considered and rejected.

188



Section 6.2 General characteristics of greedy algorithms

o There is a function that checks whether a particular set of candidates provides
a solution to our problem, ignoring questions of optimality for the time being.
For instance, do the coins we have chosen add up to the amount to be paid?
Do the selected edges provide a path to the node we wish to reach? Have all
the jobs been scheduled?

o A second function checks whether a set of candidates isfeasible, that is, whether
or not it is possible to complete the set by adding further candidates so as to
obtain at least one solution to our problem. Here too, we are not for the time
being concerned with optimality. We usually expect the problem to have at
least one solution that can be obtained using candidates from the set initially
available.

o Yet another function, the selection function, indicates at any time which of the
remaining candidates, that have neither been chosen nor rejected, is the most
promising.

o Finally an objectivefunction gives the value of a solution we have found: the
number of coins we used to make change, the length of the path we constructed,
the time needed to process all the jobs in the schedule, or whatever other value
we are trying to optimize. Unlike the three functions mentioned previously,
the objective function does not appear explicitly in the greedy algorithm.

To solve our problem, we look for a set of candidates that constitutes a solution,
and that optimizes (minimizes or maximizes, as the case may be) the value of the
objective function. A greedy algorithm proceeds step by step. Initially the set
of chosen candidates is empty. Then at each step we consider adding to this set
the best remaining untried candidate, our choice being guided by the selection
function. If the enlarged set of chosen candidates would no longer be feasible, we
reject the candidate we are currently considering. In this case the candidate that
has been tried and rejected is never considered again. However if the enlarged set
is still feasible, then we add the current candidate to the set of chosen candidates,
where it will stay from now on. Each time we enlarge the set of chosen candidates,
we check whether it now constitutes a solution to our problem. When a greedy
algorithm works correctly, the first solution found in this way is always optimal.

function greedy(C: set): set
{C is the set of candidates}
S - 0 {We construct the solution in the set S}
while C W 0 and not solution(S) do

x - select(C)
C - C \ {x}
iffeasible(S u {xJ) then S S u {x}

if solution(S) then return S
else return "there are no solutions"

189



Greedy Algorithms Chapter 6

It is clear why such algorithms are called "greedy": at every step, the procedure
chooses the best morsel it can swallow, without worrying about the future. It never
changes its mind: once a candidate is included in the solution, it is there for good;
once a candidate is excluded from the solution, it is never reconsidered.

The selection function is usually related to the objective function. For example,
if we are trying to maximize our profit, we are likely to choose whichever remaining
candidate has the highest individual value. If we are trying to minimize cost, then
we may select the cheapest remaining candidate, and so on. However, we shall
see that at times there may be several plausible selection functions, so we have to
choose the right one if we want our algorithm to work properly.

Returning for a moment to the example of making change, here is one way in
which the general features of greedy algorithms can be equated to the particular
features of this problem.

• The candidates are a set of coins, representing in our example 100, 25,10, 5 and
1 units, with sufficient coins of each value that we never run out. (However
the set of candidates must be finite.)

• The solution function checks whether the value of the coins chosen so far is
exactly the amount to be paid.

c A set of coins is feasible if its total value does not exceed the amount to be paid.

• The selection function chooses the highest-valued coin remaining in the set of
candidates.

• The objective function counts the number of coins used in the solution.

It is obviously more efficient to reject all the remaining 100-unit coins (say) at
once when the remaining amount to be represented falls below this value. Using
integer division to calculate how many of a particular value of coin to choose is also
more efficient than proceeding by successive subtraction. If either of these tactics
is adopted, then we can relax the condition that the available set of coins must be
finite.

6.3 Graphs: Minimum spanning trees

Let G = (N, A) be a connected, undirected graph where N is the set of nodes and
A is the set of edges. Each edge has a given nonnegative length. The problem is to
find a subset T of the edges of G such that all the nodes remain connected when
only the edges in T are used, and the sum of the lengths of the edges in T is as
small as possible. Since G is connected, at least one solution must exist. If G has
edges of length 0, then there may exist several solutions whose total length is the
same but that involve different numbers of edges. In this case, given two solutions
with equal total length, we prefer the one with least edges. Even with this proviso,

190



Section 6.3 Graphs: Minimum spanning trees

the problem may have several different solutions of equal value. Instead of talking
about length, we can associate a cost to each edge. The problem is then to find a
subset T of the edges whose total cost is as small as possible. Obviously this change
of terminology does not affect the way we solve the problem.

Let G' = (N, T) be the partial graph formed by the nodes of G and the edges
in T, and suppose there are n nodes in N. A connected graph with n nodes must
have at least n - 1 edges, so this is the minimum number of edges there can be in T.
On the other hand, a graph with n nodes and more than n - 1 edges contains at
least one cycle; see Problem 6.7. Hence if G' is connected and T has more than n -1
edges, we can remove at least one of these without disconnecting G', provided we
choose an edge that is part of a cycle. This will either decrease the total length of
the edges in T, or else leave the total length the same (if we have removed an edge
with length 0) while decreasing the number of edges in T. In either case the new
solution is preferable to the old one. Thus a set T with n or more edges cannot be
optimal. It follows that T must have exactly n -1 edges, and since G' is connected,
it must therefore be a tree.

The graph G' is called a minimum spanning tree for the graph G. This problem
has many applications. For instance, suppose the nodes of G represent towns, and
let the cost of an edge {a, b I be the cost of laying a telephone line from a to b. Then a
minimum spanning tree of G corresponds to the cheapest possible network serving
all the towns in question, provided only direct links between towns can be used
(in other words, provided we are not allowed to build telephone exchanges out in
the country between the towns). Relaxing this condition is equivalent to allowing
the addition of extra, auxiliary nodes to G. This may allow cheaper solutions to be
obtained: see Problem 6.8.

At first sight, at least two lines of attack seem possible if we hope to find a
greedy algorithm for this problem. Clearly our set of candidates must be the set A
of edges in G. One possible tactic is to start with an empty set T, and to select at
every stage the shortest edge that has not yet been chosen or rejected, regardless
of where this edge is situated in G. Another line of attack involves choosing a
node and building a tree from there, selecting at every stage the shortest available
edge that can extend the tree to an additional node. Unusually, for this particular
problem both approaches work! Before presenting the algorithms, we show how
the general schema of a greedy algorithm applies in this case, and present a lemma
for later use.

c The candidates, as already noted, are the edges in G.

• A set of edges is a solution if it constitutes a spanning tree for the nodes in N.

• A set of edges is feasible if it does not include a cycle.

• The selection function we use varies with the algorithm.

• The objective function to minimize is the total length of the edges in the solution.

191



Greedy Algorithms Chapter 6

We also need some further terminology. We say a feasible set of edges is
promising if it can be extended to produce not merely a solution, but an optimal
solution to our problem. In particular, the empty set is always promising (since an
optimal solution always exists). Furthermore, if a promising set of edges is already
a solution, then the required extension is vacuous, and this solution must itself be
optimal. Next, we say that an edge leaves a given set of nodes if exactly one end
of this edge is in the set. An edge can thus fail to leave a given set of nodes either
because neither of its ends is in the set, or-less evidently-because both of them
are. The following lemma is crucial for proving the correctness of the forthcoming
algorithms.

Proof Let U be a minimum spanning tree of G such that T c U. Such a U must exist since
T is promising by assumption. If v c U, there is nothing to prove. Otherwise, when
we add the edge v to U, we create exactly one cycle. (This is one of the properties
of a tree: see Section 5.5.) In this cycle, since v leaves B, there necessarily exists
at least one other edge, u say, that also leaves B, or the cycle could not close; see
Figure 6.1. If we now remove u, the cycle disappears and we obtain a new tree V
that spans G. However the length of v is by definition no greater than the length of
u, and therefore the total length of the edges in V does not exceed the total length of
the edges in U. Therefore V is also a minimum spanning tree of G, and it includes
v. To complete the proof, it remains to remark that T c V because the edge u that
was removed leaves B, and therefore it could not have been an edge of T. U

u in U

N\ B B

v of minimal length

Figure 6.1. A cycle is created if we add edge v to U

Lemma 6.3.1 Let G = (N, A) be a connected undirected graph where the length
of each edge is given. Let B c N be a strict subset of the nodes of G. Let T c A be
a promising set of edges such that no edge in T leaves B. Let v be the shortest edge
that leaves B (or one of the shortest if ties exist). Then T u {v } is promising.

192



Section 6.3 Graphs: Minimum spanning trees

6.3.1 Kruskal's algorithm

The set T of edges is initially empty. As the algorithm progresses, edges are added
to T. So long as it has not found a solution, the partial graph formed by the nodes of
G and the edges in T consists of several connected components. (Initially when T is
empty, each node of G forms a distinct trivial connected component.) The elements
of T included in a given connected component form a minimum spanning tree for
the nodes in this component. At the end of the algorithm only one connected
component remains, so T is then a minimum spanning tree for all the nodes of G.

To build bigger and bigger connected components, we examine the edges of
G in order of increasing length. If an edge joins two nodes in different connected
components, we add it to T. Consequently, the two connected components now
form only one component. Otherwise the edge is rejected: it joins two nodes in the
same connected component, and therefore cannot be added to T without forming
a cycle (because the edges in T form a tree for each component). The algorithm
stops when only one connected component remains.

To illustrate how this algorithm works, consider the graph in Figure 6.2. In in-
creasing order of length the edges are: {1, 21, {2, 31, {4, 51, {6, 71, {i, 41, {2, 51,
{4, 71, {3, 51, {2, 41, {3, 6}, {5, 71 and {5, 61. The algorithm proceeds as follows.

Step Edge Connected components
considered

Initialization - {1} {2} {3} {4} {51 {61 {7}
1 {1, 2} {1, 2} {3 {4} {5} {61 {7}
2 {2,3} {1, 2, 31 {4} {5} {6} {7}
3 {4, 5} {1, 2, 31 {4, 5} {61 {7}
4 {6, 7} {1, 2, 3} {4, 5} {6, 7}
5 {1,4} {1,2,3,4,5} {6,7}
6 {2,5} rejected
7 {4,7} {1,2,3,4,5,6,7}

When the algorithm stops, T contains the chosen edges {1, 21, {2, 31, {4, 51,
{6, 71, {1, 41 and {4, 71. This minimum spanning tree is shown by the heavy lines
in Figure 6.2; its total length is 17.

Theorem 6.3.2 Kruskal's algorithm finds a minimum spanning tree.

Proof The proof is by mathematical induction on the number of edges in the set T. We
shall show that if T is promising at any stage of the algorithm, then it is still
promising when an extra edge has been added. When the algorithm stops, T gives
a solution to our problem; since it is also promising, this solution is optimal.

193



Greedy Algorithms Chapter 6

Figure 6.2. A graph and its minimum spanning tree

z Basis: The empty set is promising because G is connected and so a solution
must exist.

• Induction step: Assume T is promising just before the algorithm adds a new
edge e = {u, v}. The edges in T divide the nodes of G into two or more
connected components; the node u is in one of these components, and v is in a
different component. Let B be the set of nodes in the component that includes
u. Now

- the set B is a strict subset of the nodes of G (since it does not include v, for
instance);

- T is a promising set of edges such that no edge in T leaves B (for an edge
in T either has both ends in B, or it has neither end in B, so by definition it
does not leave B); and

- e is one of the shortest edges that leaves B (for all the strictly shorter edges
have already been examined, and either incorporated into T, or rejected
because they had both ends in the same connected component).

Hence the conditions of Lemma 6.3.1are fulfilled, and we conclude that the set
T u {e} is also promising.

This completes the proof by mathematical induction that the set T is promising at
every stage of the algorithm, and hence that when the algorithm stops, T gives not
merely a solution to our problem, but an optimal solution. U

To implement the algorithm, we have to handle a certain number of sets, namely
the nodes in each connected component. Two operations have to be carried out
rapidly: find (x), which tells us in which connected component the node x is to
be found, and merge (A, B), to merge two connected components. We therefore use

194



Section 6.3 Graphs: Minimum spanning trees

disjoint set structures; see Section 5.9. For this algorithm it is preferable to represent
the graph as a vector of edges with their associated lengths rather than as a matrix
of distances; see Problem 6.9. Here is the algorithm.

function Kruskal(G = (N, A): graph; length: A - R+ ): set of edges
{initialization}
Sort A by increasing length
n - the number of nodes in N
T - 0 {will contain the edges of the minimum spanning tree}
Initialize n sets, each containing a different element of N
{greedy loop}
repeat

e - {u, v} - shortest edge not yet considered
ucomp -find(u)
vcomp -find (v)
if ucomp / vcompthen

merge(ucomp, vcomp)
T - T u {e}

until T contains n -1 edges
return T

We can evaluate the execution time of the algorithm as follows. On a graph with
n nodes and a edges, the number of operations is in

* 0 (a log a) to sort the edges, which is equivalent to 0 (a log n) because n - 1 <
a < n(n -1)/2;

0@(n) to initialize the n disjoint sets;

* 0 (2aoc(2a, n)) for all the find and merge operations, where oa is the slow-
growing function defined in Section 5.9 (this follows from the results in Sec-
tion 5.9 since there are at most 2a find operations and n - 1 merge operations
on a universe containing n elements); and

* at worst O(a) for the remaining operations.

We conclude that the total time for the algorithm is in 0 (a log n) because
0 (a (2a, n)) c 0 (log n). Although this does not change the worst-case analysis,
it is preferable to keep the edges in an inverted heap (see Section 5.7): thus the
shortest edge is at the root of the heap. This allows the initialization to be carried
out in a time in 0 (a), although each search for a minimum in the repeat loop now
takes a time in E) (loga)= E) (logn). This is particularly advantageous if the min-
imum spanning tree is found at a moment when a considerable number of edges
remain to be tried. In such cases, the original algorithm wastes time sorting these
useless edges.

195



Greedy Algorithms Chapter 6

6.3.2 Prim's algorithm

In Kruskal's algorithm the selection function chooses edges in increasing order of
length without worrying too much about their connection to previously chosen
edges, except that we are careful never to form a cycle. The result is a forest of trees
that grows somewhat haphazardly, until finally all the components of the forest
merge into a single tree. In Prim's algorithm, on the other hand, the minimum
spanning tree grows in a natural way, starting from an arbitrary root. At each stage
we add a new branch to the tree already constructed; the algorithm stops when all
the nodes have been reached.

Let B be a set of nodes, and T a set of edges. Initially, B contains a single
arbitrary node, and T is empty. At each step Prim's algorithm looks for the shortest
possible edge { u, v } such that u e B and v E N \ B. It then adds v to B and { u, v }
to T. In this way the edges in T form at any instant a minimum spanning tree for
the nodes in B. We continue thus as long as B f N. Here is an informal statement
of the algorithm.

function Prim(G = (N, A): graph; length: A - R+): set of edges
{initialization}
T- 0
B - {an arbitrary member of NJ
while B # N do

find e = {u, v} of minimum length such that
u e B and v E N \ B

T - T u {e}
B - B u {v}

return T

To illustrate the algorithm, consider once again the graph in Figure 6.2. We arbi-
trarily choose node 1 as the starting node. Now the algorithm might progress as
follows.

Step {u,v} B

Initialization - {1}
1 {1,2} {1,2}
2 {2,3} {1,2,3}
3 {1,4} {1,2,3,4}
4 {4,5} {1,2,3,4,5}
5 {4,7} {1,2,3,4,5,7}
6 {7,6} {1,2,3,4,5,6,7}

When the algorithm stops, T contains the chosen edges {1,2}, {2,3}, {1,4}, {4,5},
{4,7} and {7,6}. The proof that the algorithm works is similar to the proof of
Kruskal's algorithm.

196



Section 6.3 Graphs: Minimum spanning trees

Theorem 6.3.3 Prim's algorithmfinds a minimum spanning tree.

Proof The proof is by mathematical induction on the number of edges in the set T.
We shall show that if T is promising at any stage of the algorithm, then it is still
promising when an extra edge has been added. When the algorithm stops, T gives
a solution to our problem; since it is also promising, this solution is optimal.

c Basis: The empty set is promising.

• Induction step: Assume that T is promising just before the algorithm adds a
new edge e = {u, vl. Now B is a strict subset of N (for the algorithm stops
when B = N), T is a promising set of edges by the induction hypothesis, and
e is by definition one of the shortest edges that leaves B. Hence the conditions
of Lemma 6.3.1 are fulfilled, and T u {e} is also promising.

This completes the proof by mathematical induction that the set T is promising
at every stage of the algorithm. When the algorithm stops, T therefore gives an
optimal solution to our problem. U

To obtain a simple implementation on a computer, suppose the nodes of G are
numbered from 1 to n, so that N = {1, 2, .. ., nl. Suppose further that a symmetric
matrix L gives the length of each edge, with L[i, j]= co if the corresponding edge
does not exist. We use two arrays. For each node i E N \ B, nearest[i] gives the
node in B that is nearest to i, and mindist[i] gives the distance from i to this nearest
node. For a node i ( B, we set mindist[i]= -1. (In this way we can tell whether
a node is in B or not.) The set B, arbitrarily initialized to { 11, is not represented
explicitly; nearest[l] and mindist[1] are never used. Here is the algorithm.

function Prim (L [1 . . n, 1 . . n] ): set of edges
{initialization: only node 1 is in BI
T - 0 {will contain the edges of the minimum spanning tree}
for i = 2 to n do

nearest[i]- 1
mindist[i]- L[i, 1]

{greedy loop}
repeat n - 1 times

min- oo
for j- 2 to n do

if 0 < mindist[j]< min then min - mindist[j]
k- j

T - T u {I{nearest[k], k} }
mindist[k]- -1 {add k to B}
for j - 2 to n do

if L[j,k]< mindist[j] then
mindist[j]- L[j, k]
nearest[j]- k return T

197



Greedy Algorithms Chapter 6

The main loop of the algorithm is executed n -1 times; at each iteration the enclosed
for loops take a time in 0 (n). Thus Prim's algorithm takes a time in 0 (n 2 ).

We saw that Kruskal's algorithm takes a time in 0 (a log n), where a is the
number of edges in the graph. For a dense graph, a tends towards n(n -1)/2.
In this case, Kruskal's algorithm takes a time in 0 (n2 log n), and Prim's algorithm
is probably better. For a sparse graph, a tends towards n. In this case, Kruskal's
algorithm takes a time in G)(n logn), and Prim's algorithm as presented here is
probably less efficient. However Prim's algorithm, like Kruskal's, can be imple-
mented using heaps. In this case-again like Kruskal's algorithm-it takes a time
in 0 (a log n). There exist other algorithms more efficient than either Prim's or
Kruskal's; see Section 6.8.

6.4 Graphs: Shortest paths

Consider now a directed graph G = (N, A) where N is the set of nodes of G and
A is the set of directed edges. Each edge has a nonnegative length. One of the
nodes is designated as the source node. The problem is to determine the length of
the shortest path from the source to each of the other nodes of the graph. As in
Section 6.3 we could equally well talk about the cost of an edge instead of its length,
and pose the problem of finding the cheapest path from the source to each other
node.

This problem can be solved by a greedy algorithm often called Dijkstra's algo-
rithm. The algorithm uses two sets of nodes, S and C. At every moment the set S
contains those nodes that have already been chosen; as we shall see, the minimal
distance from the source is already known for every node in S. The set C contains
all the other nodes, whose minimal distance from the source is not yet known, and
which are candidates to be chosen at some later stage. Hence we have the invari-
ant property N = S u C. At the outset, S contains only the source itself; when the
algorithm stops, S contains all the nodes of the graph and our problem is solved.
At each step we choose the node in C whose distance to the source is least, and add
it to S.

We shall say that a path from the source to some other node is special if all the
intermediate nodes along the path belong to S. At each step of the algorithm, an
array D holds the length of the shortest special path to each node of the graph. At
the moment when we add a new node v to S, the shortest special path to v is also
the shortest of all the paths to v. (We shall prove this later.) When the algorithm
stops, all the nodes of the graph are in S, and so all the paths from the source to
some other node are special. Consequently the values in D give the solution to the
shortest path problem.

For simplicity, we again assume that the nodes of G are numbered from 1 to
n, so N = {1, 2,..., n} . We can suppose without loss of generality that node 1 is
the source. Suppose also that a matrix L gives the length of each directed edge:
L[i, j]> 0 if the edge (i, j)e A, and L[i, j]= co otherwise. Here is the algorithm.

198



Section 6.4 Graphs: Shortest paths

functionDijkstra(L[1..n,1..n]): array [2..n]
array Df2.. n]
{initialization}
C - {2, 3, . .. , n} {S = N \ C exists only implicitly
for i - 2 to n do D[i]- L[1, i]
{greedy loop}
repeat n - 2 times

v - some element of C minimizing D[v]
C - C \ {v} {and implicitly S - S u {v}}
for each w E C do

D[w]- min(D[w],D[v]+L[v,w])
return D

The algorithm proceeds as follows on the graph in Figure 6.3.

Step

Initialization
1
2
3

V C

- {2,3,4,5}
5 {2,3,4}
4 {2,3}
3 {2}

D

[50,30,100,10]
[50,30,20,10]
[40,30,20,10]
[35,30,20,10]

Clearly D would not change if we did one more iteration to remove the last element
of C. This is why the main loop is repeated only n - 2 times.

Figure 6.3. A directed graph

To determine not only the length of the shortest paths, but also where they pass,
add a second array P[2. . ni, where P[v] contains the number of the node that
precedes v in the shortest path. To find the complete path, follow the pointers P
backwards from a destination to the source. The necessary modifications to the
algorithm are simple:

199



Greedy Algorithms Chapter 6

c initialize P[i] to 1 for i = 2, 3, ... , n;

o replace the contents of the inner for loop by

if D[w]> D[v]+L[v, w] then D[w] D[v]+L[v, w]
PMw]- v

The proof that the algorithm works is again by mathematical induction.

Theorem 6.4.1 Dijkstra's algorithm finds the shortest pathsfrom a single source
to the other nodes of a graph.

Proof We prove by mathematical induction that

(a) if a node i X 1 is in S, then D[i] gives the length of the shortest path from the
source to i; and

(b) if a node i is not in S, then D[i] gives the length of the shortest special path
from the source to i.

• Basis: Initially only node 1, the source, is in S. so condition (a) is vacuously
true. For the other nodes, the only special path from the source is the direct
path, and D is initialized accordingly Hence condition (b) also holds when the
algorithm begins.

o Induction hypothesis: The induction hypothesis is that both conditions (a) and
(b) hold just before we add a new node v to S. We detail separately the induc-
tion steps for conditions (a) and (b).

o Induction step for condition (a): For every node already in S before the addition
of v, nothing changes, so condition (a) is still true. As for node v, it will now
belong to S. Before adding it to S. we must check that D[v] gives the length
of the shortest path from the source to v. By the induction hypothesis, D [v I
certainly gives the length of the shortest special path. We therefore have to
verify that the shortest path from the source to v does not pass through any of
the nodes that do not belong to S.

Suppose the contrary; that is, suppose that when we follow the shortest path
from the source to v, we encounter one or more nodes (not counting v itself)
that do not belong to S. Let x be the first such node encountered; see Figure 6.4.
Now the initial segment of this path, as far as x, is a special path, so the distance
to x is D [x], by part (b) of the induction hypothesis. The total distance to v via
x is certainly no shorter than this, since edge lengths are nonnegative. Finally
D [x] is not less than D[v], since the algorithm chose v before x. Therefore the
total distance to v via x is at least D [v], and the path via x cannot be shorter
than the shortest special path leading to v.

200



Section 6.4 Graphs: Shortest paths

S

shortest path

ecial path

Figure 6.4. The shortest path to v cannot visit x

We have thus verified that when v is added to S, part (a) of the induction
remains true.

o Induction step for condition (b): Consider now a node w, different from v, which
is not in S. When v is added to S, there are two possibilities for the shortest
special path from the source to w: either it does not change, or else it now
passes through v (and possibly through other nodes in S as well). In the
second case, let x be the last node of S visited before arriving at w. The length
of such a path is D[x]+L[x,w]. It seems at first glance that to compute the
new value of D [w] we should compare the old value of D[w] with the values
of D [x] +L [x, w] for every node x in S (including v). However for every node
x in S except v, this comparison was made when x was added to S. and D [x ]
has not changed since then. Thus the new value of D[w] can be computed
simply by comparing the old value with D [v I +L [v, w].

Since the algorithm does this explicitly, it ensures that part (b) of the induction

also remains true whenever a new node v is added to S.

To complete the proof that the algorithm works, note that when the algorithm stops,
all the nodes but one are in S (although the set S is not constructed explicitly). At this
point it is clear that the shortest path from the source to the remaining node is a
special path. C

Analysis of the algorithm. Suppose Dijkstra's algorithm is applied to a graph with
n nodes and a edges. Using the representation suggested up to now, the instance
is given in the form of a matrix L [L.. n, 1.. n]. Initialization takes a time in 0 (n).
In a straightforward implementation, choosing v in the repeat loop requires all
the elements of C to be examined, so we look at n - 1, n - 2, .. ., 2 values of D
on successive iterations, giving a total time in 0 (n 2 ). The inner for loop does
n - 2, n - 3, . . . 1 iterations, for a total also in 0 (n 2). The time required by this
version of the algorithm is therefore in 0 (n2 ).

If a << n2, we might hope to avoid looking at the many entries containing co in
the matrix L. With this in mind, it could be preferable to represent the graph by an
array of n lists, giving for each node its direct distance to adjacent nodes (like the

201



Greedy Algorithms Chapter 6

type lisgraph of Section 5.4). This allows us to save time in the inner for loop, since
we only have to consider those nodes w adjacent to v; but how are we to avoid
taking a time in Q(n 2 ) to determine in succession the n - 2 values taken by v?

The answer is to use an inverted heap containing one node for each element v
of C, ordered by the value of D[v]. Thus the element v of C that minimizes D[v]
will always be found at the root. Initialization of the heap takes a time in @(n).
The instruction " C - C \ {v I " consists of eliminating the root from the heap, which
takes a time in 0 (log n). As for the inner for loop, it now consists of looking, for
each element w of C adjacent to v, to see whether D[v] +L[v, w] is less than D[w].
If so, we must modify D [w ] and percolate w up the heap, which again takes a time
in 0 (log n). This does not happen more than once for each edge of the graph.

To sum up, we have to remove the root of the heap exactly n - 2 times and to
percolate at most a nodes, giving a total time in 0 ((a + n)log n). If the graph is
connected, a > n - 1, and the time is in O (a log n). The straightforward imple-
mentation is therefore preferable if the graph is dense, whereas it is preferable to
use a heap if the graph is sparse If a c ( i n 2 / log n), the choice of representation
may depend on the specific implementation. Problem 6.16 suggests a way to speed
up the algorithm by using a k-ary heap with a well-chosen value of k; other, still
faster algorithms are known; see Problem 6.17 and Section 6.8.

6.5 The knapsack problem (1)
This problem arises in various forms. In this chapter we look at the simplest version;
a more difficult variant will be introduced in Section 8.4.

We are given n objects and a knapsack. For i = 1, 2, .. ., n, object i has a
positive weight wi and a positive value vi. The knapsack can carry a weight not
exceeding W. Our aim is to fill the knapsack in a way that maximizes the value of
the included objects, while respecting the capacity constraint. In this first version
of the problem we assume that the objects can be broken into smaller pieces, so
we may decide to carry only a fraction xi of object i, where 0 < xi < 1. (If we are
not allowed to break objects, the problem is much harder.) In this case, object i
contributes xiwi to the total weight in the knapsack, and xiv, to the value of the
load. In symbols, the problem can be stated as follows:

n n

maximize 2 xivi subject to E xiwi < W
iil iil

where vi > 0, wi > 0 and 0 < xi < 1 for 1 < i < n. Here the conditions on vi and w1
are constraints on the instance; those on xi are constraints on the solution. We shall
use a greedy algorithm to solve the problem. In terms of our general schema, the
candidates are the different objects, and a solution is a vector (xi, . . ., x ) telling us
what fraction of each object to include. A feasible solution is one that respects the
constraints given above, and the objective function is the total value of the objects
in the knapsack. What we should take as the selection function remains to be seen.

If Zn= 1 wi < W, it is clearly optimal to pack all the objects in the knapsack.
We can therefore assume that in any interesting instance of the problem-' I1 wi > W.
It is also clear that an optimal solution must fill the knapsack exactly, for otherwise

202



Section 6.5 The knapsack problem (1)

we could add a fraction of one of the remaining objects and increase the value
of the load. Thus in an optimal solution = xiwi = W. Since we are hoping
to find a greedy algorithm that works, our general strategy will be to select each
object in turn in some suitable order, to put as large a fraction as possible of the
selected object into the knapsack, and to stop when the knapsack is full. Here is
the algorithm.

function knapsack(w[1..n],v[l..n],W): array [1..n]
{initialization}
fori =ltondox[i]- 0
weight- 0
{greedy loop}
while weight< W do

i - the best remaining object {see below-
if weight + w[i]< W then x[li]- 1

weight - weight + w[i]
else x[i]- (W - weight)/w[i]

weight- W
return x

There are at least three plausible selection functions for this problem: at each stage
we might choose the most valuable remaining object, arguing that this increases
the value of the load as quickly as possible; we might choose the lightest remaining
object, on the grounds that this uses up capacity as slowly as possible; or we might
avoid these extremes by choosing the object whose value per unit weight is as high
as possible. Figures 6.5 and 6.6 show how these three different tactics work in one
particular instance. Here we have five objects, and W = 100. If we select the objects
in order of decreasing value, then we choose first object 3, then object 5, and finally
we fill the knapsack with half of object 4. The value of the solution obtained in this
way is 66 + 60 + 40/2 = 146. If we select the objects in order of increasing weight,
then we choose objects 1,2, 3 and 4 in that order, and now the knapsack is full. The
value of this solution is 20 + 30 + 66 + 40 = 156. Finally if we select the objects in
order of decreasing vi /wi, we choose first object 3, then object 1, next object 2, and
finally we fill the knapsack with four-fifths of object 5. Using this tactic, the value
of the solution is 20 + 30 + 66 + 0.8 x 60 = 164.

n = 5, W = 100

w 10 20 30 40 50
v 20 30 66 40 60

v/w 2.0 1.5 2.2 1.0 1.2
Figure 6.5. An instance of the knapsack problem

This example shows that the solution obtained by a greedy algorithm that maxi-
mizes the value of each object it selects is not necessarily optimal, nor is the solution
obtained by minimizing the weight of each object that is chosen. Fortunately the

203



Greedy Algorithms Chapter 6

Select: xi Value

Max vi 0 0 1 0.5 1 146
Minw1  1 1 1 1 0 156
Max v1 /w1  1 1 1 0 0.8 164

Figure 6.6. Three greedy approaches to the instance in Figure 6.5

following proof shows that the third possibility, selecting the object that maximizes
the value per unit weight, does lead to an optimal solution.

Theorem 6.5.1 If objects are selected in order of decreasing vi lwi, then algorithm
knapsack finds an optimal solution.

Proof Suppose without loss of generality that the available objects are numbered in order
of decreasing value per unit weight, that is, that

Vi/W1 > V2/W2 > ... > Vn/wn

Let X = (xI, . . ., xn) be the solution found by the greedy algorithm. If all the xi are
equal to 1, this solution is clearly optimal. Otherwise, let j be the smallest index
such that xj < 1. Looking at the way the algorithm works, it is clear that xi 1
when i < j, that xi 0 when i > j, and that Yn 1 xiwi = W. Let the value of the
solution X be V(X) n 1 v xivi.

Now let Y = (yl,.yy) be any feasible solution. Since Y is feasible,
Y I yiwi 5< W, and hence Y" I (xi - yi)wi > 0. Let the value of the solution
Y be V(Y) Zn y iv1 . Now

n n
V(X) V(Y)= (xi- yi)vi Z(xi- yi)wiV

ii 11

When i < j, xi 1 and so xi - yt is positive or zero, while vi/wi 2 vj/wj; when
i > j, xi = 0 and so xi - yi is negative or zero, while vi /wi < vj/wj; and of course
when i j, vi/wi = vj/wj. Thusineverycase (xi -y)(v,/wi)> (x -yi)(vj/w,).
Hence n

V(X)-V(Y)' (vjlwqj) Y.(xi - Yi)wi ' °
il

We have thus proved that no feasible solution can have a value greater than V(X),
so the solution X is optimal. U

Implementation of the algorithm is straightforward. If the objects are already
sorted into decreasing order of vi/ wi, then the greedy loop clearly takes a time in
0 (n); the total time including the sort is therefore in 0 (n log n). As in Section 6.3.1,
it may be worthwhile to keep the objects in a heap with the largest value of vi / wI at
the root. Creating the heap takes a time in 0 (n), while each trip round the greedy
loop now takes a time in 0 (log n) since the heap property must be restored after
the root is removed. Although this does not alter the worst-case analysis, it may
be faster if only a few objects are needed to fill the knapsack.

204



Section 6.6 Scheduling

6.6 Scheduling
In this section we present two problems concerning the optimal way to schedule
jobs on a single machine. In the first, the problem is to minimize the average time
that a job spends in the system. In the second, the jobs have deadlines, and a
job brings in a certain profit only if it is completed by its deadline: our aim is to
maximize profitability. Both these problems can be solved using greedy algorithms.

6.6.1 Minimizing time in the system
A single server, such as a processor, a petrol pump, or a cashier in a bank, has
n customers to serve. The service time required by each customer is known in
advance: customer i will take time ti, 1 < i < n. We want to minimize the average
time that a customer spends in the system. Since n, the number of customers, is
fixed, this is the same as minimizing the total time spent in the system by all the
customers. In other words, we want to minimize

n

T = (time in system for customer i).

Suppose for example we have three customers, with t, = 5, t2  10 and t3  3.
There are six possible orders of service.

Order T

123: 5+(5+10)+(5+10+3) =38
132: 5 + (5+3)+(5+3+10)=31
213: 10+(10+5)+(10+5+3)=43
231: 10+(10+3)+(10+3+5)=41
3 1 2: 3 + (3 + 5) + (3 + 5 + 10) = 29 - optimal
321: 3+(3+10)+(3+10+5)=34

In the first case, customer 1 is served immediately, customer 2 waits while cus-
tomer 1 is served and then gets his turn, and customer 3 waits while both 1 and 2
are served and then is served last; the total time passed in the system by the three
customers is 38. The calculations for the other cases are similar.

In this case, the optimal schedule is obtained when the three customers are
served in order of increasing service time: customer 3, who needs the least time,
is served first, while customer 2, who needs the most, is served last. Serving the
customers in order of decreasing service time gives the worst schedule. However,
one example is not a proof that this is always so.

To add plausibility to the idea that it may be optimal to schedule the customers
in order of increasing service time, imagine a greedy algorithm that builds the
optimal schedule item by item. Suppose that after scheduling service for customers
il, 2. m , im we add customer j. The increase in T at this stage is equal to the sum of
the service times for customers il to i, (for this is how long customer j must wait
before receiving service), plus tj, the time needed to serve customer j. To minimize
this, since a greedy algorithm never undoes its previous decisions, all we can do
is to minimize tj. Our greedy algorithm is therefore simple: at each step, add to
the end of the schedule the customer requiring the least service among those who
remain.

205



Greedy Algorithms Chapter 6

Theorem 6.6.1 This greedy algorithm is optimal.

Proof Let P = P1 P2 * p, be any permutation of the integers from 1 to n, and let si = tp,.
If customers are served in the order P, then the service time required by the i-th
customer to be served is si, and the total time passed in the system by all the
customers is

T(P) = SI + (SI + S2)+(Sl + S2 + S3)+

= ns, + (n -1)s 2 + (n - 2)s3 +
n

= (n- k+1)Sk.
k=l

Suppose now that P does not arrange the customers in order of increasing service
time. Then we can find two integers a and b with a < b and Sa > Sb. In other
words, the a-th customer is served before the b-th customer even though the
former needs more service time than the latter; see Figure 6.7. If we exchange the
positions of these two customers, we obtain a new order of service P', which is
simply P with the integers Pa and Pb interchanged. The total time passed in the
system by all the customers if schedule P' is used is

T(P'),= (n -a+1)sb+(n -b+1)Sa (n-k±+)Sk.
k=l

kia,b

The new schedule is preferable to the old because

T(P)-T(P') = (n - a + 1)(sa - Sb)+(n - b + 1)(Sb - Sa)

= (b - a)(Sa - Sb)> 0.

The same result can be obtained less formally from Figure 6.7. Comparing sched-
ules P and P', we see that the first a - 1 customers leave the system at exactly the
same time in both schedules. The same is true of the last n - b customers. Cus-
tomer a now leaves when customer b used to, while customer b leaves earlier than
customer a used to, because Sb < Sa. Finally those customers served in positions
a + 1 to b -1 also leave the system earlier, for the same reason. Overall, P' is
therefore better than P.

Thus we can improve any schedule in which a customer is served before some-
one else who requires less service. The only schedules that remain are those ob-
tained by putting the customers in order of nondecreasing service time. All such
schedules are clearly equivalent, and therefore all optimal. O

Implementing the algorithm is so straightforward that we omit the details.
In essence all that is necessary is to sort the customers into order of nondecreasing
service time, which takes a time in 0 (n log n). The problem can be generalized to
a system with s servers, as can the algorithm: see Problem 6.20.

206



Section 6.6 Scheduling

I.a I a a +l .. b- I b b+I . n

P

PI

Figure 6.7. Exchanging two customers

6.6.2 Scheduling with deadlines
We have a set of n jobs to execute, each of which takes unit time. At any time
T = 1,2, ... we can execute exactly one job. Job i earns us a profit gi > 0 if and only
if it is executed no later than time di.

For example, with n = 4 and the following values:

i 1 2 3 4
gi 50 10 15 30
di 2 1 2 1

the schedules to consider and the corresponding profits are

Sequence Profit

1 50
2 10
3 15
4 30

1,3 65

Sequence Profit

2,1 60
2,3 25
3,1 65
4,1 80 - optimum
4,3 45

The sequence 3,2 for instance is not considered because job 2 would be executed at
time t = 2, after its deadline d2 = 1. To maximize our profit in this example, we
should execute the schedule 4,1.

A set of jobs isfeasible if there exists at least one sequence (also called feasible)
that allows all the jobs in the set to be executed no later than their respective dead-
lines. An obvious greedy algorithm consists of constructing the schedule step by
step, adding at each step the job with the highest value of gi among those not yet
considered, provided that the chosen set of jobs remains feasible.

In the preceding example we first choose job 1. Next, we choose job 4; the set
{1, 4} is feasible because it can be executed in the order 4,1. Next we try the set
{1, 3, 4}, which turns out not to be feasible; job 3 is therefore rejected. Finally we try
{1, 2, 4}, which is also infeasible, so job 2 is also rejected. Our solution-optimal in
this case-is therefore to execute the set of jobs { 1, 4}, which can only be done in
the order 4,1. It remains to be proved that this algorithm always finds an optimal
schedule and to find an efficient way of implementing it.

207



Greedy Algorithms Chapter 6

Let J be a set of k jobs. At first glance it seems we might have to try all the k!
permutations of these jobs to see whether J is feasible. Happily this is not the case.

Lemma 6.6.2 Let J be a set of k jobs. Suppose without loss of generality that the
jobs are numbered so that d, < d2 < ... < dk. Then the set J infeasible if and only
if the sequence 1, 2, . . ., k is feasible.

Proof The "if " is obvious. For the "only if ", suppose the sequence 1, 2,..., k is not feasible.
Then at least one job in this sequence is scheduled after its deadline. Let r be any
such job, so dr < r -1. Since the jobs are scheduled in order of nondecreasing
deadline, this means that at least r jobs have deadlines r - 1 or earlier. However
these are scheduled, the last one will always be late. a

This shows that it suffices to check a single sequence, in order of nondecreasing
deadlines, to know whether or not a set of jobs J is feasible.

Theorem 6.6.3 The greedy algorithm outlined earlier always finds an optimal
schedule.

Proof Suppose the greedy algorithm chooses to execute a set of jobs I, and suppose the
set J is optimal. Let SI and Sj be feasible sequences, possibly including gaps, for
the two sets of jobs in question. By rearranging the jobs in SI and those in Sj, we
can obtain two feasible sequences S and SJ, which also may include gaps, such
that every job common to I and J is scheduled at the same time in both sequences;
see Figure 6.8.

p y q x r SI

r S t v q w iS

after reorganization,

if this task is a

y p r q s

u P r v V q W IS

that one will be b

common tasks

Figure 6.8. Rearranging schedules to bring identical tasks together

208



Section 6.6 Scheduling

To see this, imagine that some job a occurs in both the feasible sequences SI and
Sj, where it is scheduled at times t, and tj respectively. If t1 = tj there is nothing
to do. Otherwise, suppose t1 < tj. Since the sequence Sj is feasible, it follows that
the deadline for job a is no earlier than tj. Modify sequence SI as follows: if there
is a gap in sequence SI at time tj, move job a back from time to into the gap at
time tj; if there is some job b scheduled in SI at time tj, exchange jobs a and b in
sequence SI. The resulting sequence is still feasible, since in either case a will be
executed by its deadline, and in the second case moving job b to an earlier time
can certainly do no harm. Now job a is scheduled at the same time tj in both the
modified sequence SI and in Sj. A similar argument applies when t1 > tj, except
that in this case it is Sj that has to be modified.

Once job a has been treated in this way, it is clear that we never need to move
it again. If sequences SI and Sj have m jobs in common, therefore, after at most m
modifications of either SI or Sj we can ensure that all the jobs common to I and J
are scheduled at the same time in both sequences. The resulting sequences S and
SJ may not be the same if I i J. So suppose there is a time when the job scheduled
in SI is different from that scheduled in SJ.

• If some job a is scheduled in SI opposite a gap in SJ, a does not belong to J.
The set J u ta Iis feasible, for we could put a in the gap, and it would be more
profitable than J. This is impossible since J is optimal by assumption.

• If some job b is scheduled in SJ opposite a gap in SI, the set I u {b} would
be feasible, so the greedy algorithm would have included b in I. This is also
impossible since it did not do so.

O The only remaining possibility is that some job a is scheduled in S' opposite a
different job b in SJ. In this case a does not appear in J and b does not appear
in I. There are apparently three possibilities.

- If 9a > Ytb, one could substitute a for b in J and improve it. This is
impossible because J is optimal.

- If 9a < b, the greedy algorithm would have selected b before considering
a since (I \ {a} ) U {b} would be feasible. This is also impossible since the
algorithm did not include b in I.

- The only remaining possibility is that 9a = 9b

We conclude that for each time slot the sequences SI and SJ either schedule no
jobs, or the same job, or two different jobs yielding the same profit. The total profit
from I is therefore equal to the profit from the optimal set J, so I is optimal too. U

For our first implementation of the algorithm, suppose without loss of gen-
erality that the jobs are numbered so that gi > 92 > ... > !n. The algorithm
can be implemented more efficiently (and more easily) if we suppose further that
n > 0 and di > 0, 1 < i < n, and that additional storage is available at the front of

209



Greedy Algorithms Chapter 6

the arrays d (that holds the deadlines) and j (in which we construct the solution).
These additional cells are known as "sentinels". By storing an appropriate value
in the sentinels we avoid repeated time-consuming range checks.

function sequence(d[O..n]): k, array [I..k]
array j[0.. n]
{The schedule is constructed step by step in
the array j. The variable k says how many jobs
are already in the schedule.}

d1[1- j[O]- 0 {sentinels}
k - j [1 ] - 1 {job 1 is always chosen}
{greedy loop}
for i - 2 to n do {decreasing order of 9 }

r- k
while d[j[r]]> max(d[iW,r) do r - r -1
if di> r then

form - kstep -ltor +ldoj[m+1 -jim]
j[r + I]- i
k - k+I

return k, j[l.. k]

The k jobs in the array j are in order of increasing deadline. When job i is being
considered, the algorithm checks whether it can be inserted into j at the appropriate
place without pushing some job already in j past its deadline. If so, i is accepted;
otherwise i is rejected. The exact values of the gi are unnecessary provided the
jobs are correctly numbered in order of decreasing profit. Figure 6.9 gives gi and di
for an example with six jobs, and Figure 6.10 illustrates how the algorithm works
on this example. (Figure 6.10 calls it the "slow" algorithm since we shall shortly
describe a better one.)

i 1 2 3 4 5 6
gi 20 15 10 7 5 3
di 3 1 1 3 1 3

Figure 6.9. An example with six jobs

Analysis of the algorithm is straightforward. Sorting the jobs into order of decreas-
ing profit takes a time in @ (n log n). The worst case for the algorithm is when
this procedure turns out also to sort the jobs by order of decreasing deadline, and
when they can all fit into the schedule. In this case, when job i is being considered
the algorithm looks at each of the k = i -1 jobs already in the schedule to find a
place for the newcomer, and then moves them all along one position. In terms of
the program above, there are Y_' k trips round the while loop and En _ ½ m trips
round the inner for loop. The algorithm therefore takes a time in Q (n2 ).

A more efficient algorithm is obtained if we use a different technique to verify
whether a given set of jobs is feasible. The new technique depends on the following
lemma.

210



Section 6.6 Scheduling

3 |

Initialization: Ft

Try 2:

1 3

21 1 1

Try 3: unchanged

1 3 3

Try 4: 2 1 I | 4 |

T

Try 5: unchanged

Try 6: unchanged

Optimal sequence: 2, 1, 4; value = 42

Figure 6.10. Illustration of the slow algorithm

In other words, starting with an empty schedule, consider each job in turn, and
add it to the schedule being built as late as possible, but no later than its deadline.
If a job cannot be scheduled in time to meet its deadline, then the set J is infeasible.

Proof The "if" is obvious. For the "only if", note first that if a feasible sequence exists at
all, then there exists a feasible sequence of length n. Since there are only n jobs to
schedule, any longer sequence must contain gaps, and we can always move a job
into an earlier gap without affecting the feasibility of the sequence.

When we try to add a new job, the sequence being built always contains at least
one gap. Suppose we are unable to add a job whose deadline is d. This can happen

d[j[i]]

I I I I I [i]
k

Lemma 6.6.4 A set of n jobs J is feasible if and only if we can construct afeasible
sequence including all the jobs in J as follows. Start with an empty schedule of
length n. Then for each job i c J in turn, schedule i at time t, where t is the largest
integer such that 1 < t < min(n, di) and the job to be executed at time t is not yet
decided.

211



Greedy Algorithms Chapter 6

only if all the slots from t = 1 to t = r are already allocated, where r = min(n, d).
Let s > r be the smallest integer such that the slot t = s is empty. The schedule
already built therefore includes s -1 jobs whose deadlines are earlier than s, no
job with deadline exactly s, and possibly others with deadlines later than s. The
job we are trying to add also has a deadline less than s. Hence J includes at least s
jobs whose deadline is s -1 or earlier. However these are scheduled, the last one
is sure to be late. i

The lemma suggests that we should consider an algorithm that tries to fill
one by one the positions in a sequence of length n. For any position t, define
nt = max { k < t position k is free}. Also define certain sets of positions as follows:
two positions i and j are in the same set if ni = nj; see Figure 6.11. For a given
set K of positions, let F(K) be the smallest member of K. Finally define a fictitious
position 0 that is always free.

Positions of the same set

ni = njI j

Free
position

Z Occupied
position

Figure 6.11. Sets of positions

As we assign new jobs to vacant positions, these sets merge to form larger sets:
disjoint set structures are intended for just this purpose. We obtain an algorithm
whose essential steps are the following:

(i) Initialization: Each position 0,1,2,..., n is in a different set and F(ti})= i,
0 • i • n.

(ii) Addition of a job with deadline d: Find the set that contains d; let this be set K.
If F(K)= 0 reject the job; otherwise:

- Assign the new job to position F(K).

- Find the set that contains F(K) -1. Call this set L (it cannot be the same
as K).

- Merge K and L. The value of F for this new set is the old value of F(L).

Figure 6.12 illustrates the working of this algorithm on the example given in
Figure 6.9.

212



Section 6.6 Scheduling

Initialization: I = min(6, max(di)) = 3

F= 0 1 2

(0 0 (0 0D
Try 1: dl = 3, assign task I to position 3

F: 0 2

000D
3)

Try 2: d2 = 1, assign task 2 to position I

F= 2

Try 3: d3 = 1, no free position available since the F value is 0

Try 4: d4 = 3, assign task 4 to position 2

F=

Try 5: d5 = 1, no free position available

Try 6: d6 = 3, no free position available

Optimal sequence: 2, 4, 1; value = 42

Figure 6.12. Illustration of the fast algorithm

Here is a more precise statement of the fast algorithm. To simplify the description,
we assume that the label of the set produced by a merge operation is necessarily the
label of one of the sets that were merged. The schedule first produced may contain
gaps; the algorithm ends by moving jobs forward to fill these.

0

213



Greedy Algorithms Chapter 6

function sequence2(d[L..n]): k, array [l..k]
array j, F[O.. n]
{initialization}
for i - 0 to n do j[ij- 0

F[i]- i
initialize set { i}

{greedy loop}
for i - 1 to n do {decreasing order of g I

k - find(min(n, d[i]))
m - FMk
if m : 0 then

j[m] i
I -find(m- 1)
F[k]- F1]
merge(k, 1) {the resulting set has label k or 1}

{it remains to compress the solution}
kg O
for i - 1 to n do

if j[i]> O then k - k + 1
j[k]- j[i]

return k, j[l.. k]

If the instance is given with the jobs already ordered by decreasing profit, so that an
optimal sequence can be obtained merely by calling the preceding algorithm, most
of the time will be spent manipulating disjoint sets. Since there are at most 2n find
operations and n merge operations to execute, the required time is in 0 (n o (2n, n)),
where a is the slow-growing function of Section 5.9. This is essentially linear. If, on
the other hand, the jobs are given in arbitrary order, then we have to begin by sorting
them, and obtaining the initial sequence takes a time in 0 (n log n).

6.7 Problems

Problem 6.1. Is selection sort (see Section 2.4) a greedy algorithm? If so, what
are the various functions involved (the function to check feasibility, the selection
function, and so on)?

Problem 6.2. The English coinage before decimalization included half-crowns
(30 pence), florins (24 pence), shillings (12 pence), sixpences (6 pence), threepences
(3 pence), and pennies (not to mention ha'pennies and farthings, worth respectively
2 and 4 pence). Show that with these coins the greedy algorithm of Section 6.1
does not necessarily produce an optimal solution, even when an unlimited supply
of coins of each denomination is available.

Problem 6.3. The Portuguese coinage includes coins for 1, 22, 5,10, 20, 25 and 50
escudos. However prices are always for an integer number of escudos. Prove or
give a counterexample: when an unlimited supply of coins of each denomination
is available, the greedy algorithm of Section 6.1 always finds an optimal solution.

214



Section 6.7 Problems

Problem 6.4. Suppose the coinage includes the values given in Section 6.1, but you
have run out of nickels. Show that using the greedy algorithm with the remaining
values does not necessarily produce an optimal solution.

Problem 6.5. Prove or give a counter-example: provided that each coin in the
series is worth at least twice the next lower denomination, that the series includes a
1-unit coin, and that an unlimited supply of coins of each denomination is available,
the greedy algorithm of Section 6.1 always finds an optimal solution.

Problem 6.6. Suppose the available denominations are 1, p, p2 ., pfn, where
p > 1 and n > 0 are integers. Prove or give a counter-example: with this series of
denominations and an unlimited supply of coins of each denomination, the greedy
algorithm of Section 6.1 always finds an optimal solution.

Problem 6.7. Prove that a graph with n nodes and more than n -1 edges must
contain at least one cycle.

Problem 6.8. Suppose the cost of laying a telephone cable from point a to point b
is proportional to the Euclidean distance from a to b. A certain number of towns
are to be connected at minimum cost. Find an example where it costs less to lay
the cables via an exchange situated in between the towns than to use only direct
links.

Problem 6.9. What can you say about the time required by Kruskal's algorithm if,
instead of providing a list of edges, the user supplies a matrix of distances, leaving
to the algorithm the job of working out which edges exist?

Problem 6.10. Suppose Kruskal's algorithm and Prim's algorithm are implemented
as shown in Sections 6.3.1 and 6.3.2 respectively. What happens (a) in the case of
Kruskal's algorithm (b) in the case of Prim's algorithm if by mistake we run the
algorithm on a graph that is not connected?

Problem 6.11. A graph may have several different minimum spanning trees.
Is this the case for the graph in Figure 6.2? If so, where is this possibility reflected
in the algorithms explained in Sections 6.3.1 and 6.3.2?

Problem 6.12. The problem of finding a subset T of the edges of a connected graph
G such that all the nodes remain connected when only the edges in T are used, and
the sum of the lengths of the edges in T is as small as possible, still makes sense
even if G may have edges with negative lengths. However, the solution may no
longer be a tree. Adapt either Kruskal's algorithm or Prim's algorithm to work on
a graph that may include edges of negative length.

Problem 6.13. Show that Prim's algorithm can, like Kruskal's algorithm, be im-
plemented using heaps. Show that it then takes a time in O(alogn).

Problem 6.14. In Dijkstra's algorithm, when we add a new node v to S. let w be
a node not in S. Is it possible that the new shortest special path from the source to
w should pass first by v and then by some other node of S?

215



Greedy Algorithms Chapter 6

Problem 6.15. Show by giving an explicit example that if the edge lengths can
be negative, then Dijkstra's algorithm does not always work correctly. Is it still
sensible to talk about shortest paths if negative distances are allowed?

Problem 6.16. In the analysis of the implementation of Dijkstra's algorithm that
uses a heap, we saw that up to a nodes can be percolated, whereas less than n
roots are eliminated. Eliminating the root has for effect to sift down the node
that takes its place. In general, percolating up is somewhat quicker than sifting
down, since at each level we compare the value of a node to the value of its parent,
rather than making comparisons with both children. Using an k-ary heap (see
Section 5.7 and Problem 5.23) may make percolation run faster still, at the cost of
slowing down sifting. Let k = max(2, [a/n]). Show how to use a k-ary heap to
calculate the shortest paths from a source to all the other nodes of a graph in a
time in O(alogk n). Note that this gives 0(n2 ) if a n2 and 0(alogn) if a n.
It therefore gives the best of both worlds.

Problem 6.17. A Fibonacci heap, mentioned in Section 5.8, has the following prop-
erties. A heap containing n items can be built in a time in 0 (n); finding the largest
item, inserting a new item, increasing the value of an item and restoring the heap
property, and merging two heaps all take an amortized time in 0(1); and deleting
any item, including in particular the largest, from a heap containing n items takes
an amortized time in 0 (log n). An inverted Fibonacci heap is similar, except that
the corresponding operations involve decreasing the value of an item, and finding
or deleting the smallest item. Show how an inverted Fibonacci heap can be used
to implement Dijkstra's algorithm in a time in 0 (a + n log n).

Problem 6.18. In Section 6.5 we assumed that we had available n objects num-
bered 1 to n. Suppose instead that we have n types of object available, with an
adequate supply of each type. Formally, this simply replaces the old constraint
o < xi < 1 by the looser constraint xi > 0. Does the greedy algorithm of Section 6.5
still work? Is it still necessary?

Problem 6.19. Prove or give a counter-example: for the problem of scheduling
with deadlines of Section 6.6.1, scheduling the customers in order of decreasing
service time leads to the worst possible schedule.

Problem 6.20. As in Section 6.6.1 we have n customers. Customer i, 1 < i < n,
requires a known service time ti. Without loss of generality, suppose the customers
are numbered so that t1 5 t2 s ... < tn. If there are s identical servers, prove that
to minimize the total (and hence the average) time spent in the system by the
customers, server j, I < j < s, should serve customers j, j + s, j + 2s, ... in that
order.

Problem 6.21. Let PI, P2,..., Pn be n programs to be stored on a disk. Program Pi
requires si kilobytes of storage, and the capacity of the disk is D kilobytes, where
D < 1si s.

(a) We want to maximize the number of programs held on the disk. Prove or
give a counter-example: we can use a greedy algorithm that selects programs in
order of nondecreasing si.

216



Section 6.8 References and further reading

(b) We want to use as much of the capacity of the disk as possible. Prove or
give a counter-example: we can use a greedy algorithm that selects programs in
order of nonincreasing si.

Problem 6.22. Let PF, P2 ,...,Pn be n programs to be stored on a tape. Program Pi
requires Si kilobytes of storage; the tape is long enough to hold all the programs. We
know how often each program is used: a fraction 7Ti of requests concern program
i (and so Yt' vi = 1). Information is recorded along the tape at constant density,
and the speed of the tape drive is also constant. After a program is loaded, the tape
is rewound to the beginning. If the programs are held in the order il, i2 . in the
average time required to load a program is therefore

n Mi ~
j=l k-1

where the constant c depends on the recording density and the speed of the drive.
We want to minimize T using a greedy algorithm. Prove or give a counter-example
for each of the following: we can select the programs (a) in order of nondecreasing
si; (b) in order of nonincreasing iTs; (c) in order of nonincreasing Trir /Si.

Problem 6.23. Suppose the two schedules SI and SJ introduced in the proof of
optimality in Section 6.6.2 are given in the form of arrays SI[1 . .r] and SJ[1 . . r],
where r = maxi<i n di. An array element holds i if job i is to be executed at the
corresponding moment, and 0 represents a gap in the schedule. Write an algorithm
that produces the schedules SI and SJ in arrays SI and SJ respectively.

6.8 References and further reading

Edmonds (1971) introduced the notion of a greedy algorithm. A discussion of the
greedy change-making algorithm can be found in Wright (1975) and Chang and
Korsh (1976). We shall come back to this problem in Section 8.2, when we provide
an algorithm that is slower, but that is guaranteed to return the optimal solution in
all cases.

The problem of minimum spanning trees has a long history, which is discussed
in Graham and Hell (1985). The first algorithm proposed (which we have not de-
scribed) is due to Borfivka (1926). The algorithm to which Prim's name is attached
was invented by Jarnik (1930) and rediscovered by Prim (1957) and Dijkstra (1959).
Kruskal's algorithm comes from Kruskal (1956). Other more sophisticated algo-
rithms have been given by Yao (1975), Cheriton and Tarjan (1976) and Tarjan (1983);
see also the next paragraph.

The implementation of Dijkstra's algorithm that takes a time in 0(n 2 ) is from
Dijkstra (1959). The details of the improvement suggested in Problem 6.16, which
uses k-ary heaps, can be found in Johnson (1977). Similar improvement for the
minimum spanning tree problem is suggested in Johnson (1975). Faster algorithms
for both these problems are given in Fredman and Tarjan (1987); in particular, use
of the Fibonacci heap allows them to implement Dijkstra's algorithm in a time in
0 (a + n log n). Other ideas concerning shortestpaths canbe found inTarjan (1983).

217



218 Greedy Algorithms Chapter 6

The solution to Problem 6.8 involves the notion of Steiner trees. The problem of
finding a minimum Steiner tree is XP-hard-see Section 12.5.5-and thus proba-
bly much harder than finding a minimum spanning tree. For more on this problem
see Garey, Graham and Johnson (1977) and Winter (1987).

An important greedy algorithm that we have not discussed is used to derive
optimal Huffman codes; see Schwartz (1964). Other greedy algorithms for a variety
of problems are described in Horowitz and Sahni (1978).



Chapter 7

Divide-and-Conquer

Divide-and-conquer is a technique for designing algorithms that consists of decom-
posing the instance to be solved into a number of smaller subinstances of the same
problem, solving successively and independently each of these subinstances, and
then combining the subsolutions thus obtained to obtain the solution of the origi-
nal instance. Two questions that naturally spring to mind are "Why would anyone
want to do this?" and "How should we solve the subinstances?" The efficiency of
the divide-and-conquer technique lies in the answer to this latter question.

7.1 Introduction: Multiplying large integers
Consider again the problem of multiplying large integers. Recall that the classic
algorithm (Figure 1.1) that most of us learn in school requires a time in 0 (n2 ) to mul-
tiply n-figure numbers. We are so used to this algorithm that perhaps you never
even questioned its optimality. Can we do better? Multiplication a la russe (Fig-
ure 1.2) offers no improvement in the running time. Another algorithm discussed
in Section 1.2, which we called the "divide-and-conquer" technique (Figure 1.3),
consisted of reducing the multiplication of two n-figure numbers to four multipli-
cations of n -figure numbers. Unfortunately, the resulting algorithm does not yield
any improvement over the classic multiplication algorithm either unless we are
cleverer. To outperform the classic algorithm, and thus fully appreciate the virtues
of divide-and-conquer, we must find a way to reduce the original multiplication
not to four but to three half-size multiplications.

219



Divide-and-Conquer Chapter 7

We illustrate the process with the example used in Section 1.2: the multiplica-
tion of 981 by 1234. First we pad the shorter operand with a nonsignificant zero to
make it the same length as the longer one; thus 981 becomes 0981. Then we split
each operand into two halves: 0981 gives rise to w = 09 and x = 81, and 1234 to
y = 12 and z = 34. Notice that 981 = 102 W + x and 1234 = 102 y + z. Therefore,
the required product can be computed as

981 x 1234 = (102 w + x)x(102 y + z)

= 10 4 wy + 102 (WZ + Xy)+XZ

= 1080000 + 127800 + 2754 = 1210554.

If you think we have merely restated the algorithm of Section 1.2 in more symbols,
you are perfectly correct. The above procedure still needs four half-size multipli-
cations: wy, wz, xy and xz.

The key observation is that there is no need to compute both wz and xy; all we
really need is the sum of these two terms. Is it possible to obtain wz + xy at the
cost of a single multiplication? This seems impossible until we remember that we
also need the values of wy and xz to apply the above formula. With this in mind,
consider the product

r = (w + x)x(y + z)= wy + (wz + xy)+xz.

After only one multiplication, we obtain the sum of all three terms needed to
calculate the desired product. This suggests proceeding as follows.

p = wy=09xl2 =108
q = xz= 81x34 = 2754
r = (w+x)x(y+z) =90x46 4140,

and finally
981 x 1234 = 104p + 102 (r - p - q)+q

= 1080000 + 127800 + 2754 1210554.

Thus the product of 981 and 1234 can be reduced to three multiplications of two-fig-
ure numbers (09 x 12, 81 x 34 and 90 x 46) together with a certain number of shifts
(multiplications by powers of 10), additions and subtractions.

To be sure, the number of additions-counting subtractions as if they were
additions-is larger than with the original divide-and-conquer algorithm of Sec-
tion 1.2. Is it worth performing four more additions to save one multiplication?
The answer is no when we are multiplying small numbers like those in our exam-
ple. However, it is worthwhile when the numbers to be multiplied are large, and
it becomes increasingly so when the numbers get larger. When the operands are
large, the time required for the additions and shifts becomes negligible compared
to the time taken by a single multiplication. It thus seems reasonable to expect
that reducing four multiplications to three will enable us to cut 25% of the com-
puting time required for large multiplications. As we shall see, our saving will be
significantly better.

220



Section 7.1 Introduction: Multiplying large integers

To help grasp what we have achieved, suppose a given implementation of the
classic multiplication algorithm requires a time h(n)= cn 2 to multiply two n-fig-
ure numbers, for some constant c that depends on the implementation. (This is
a simplification since in reality the time required would have a more complicated
form, such as cn

2 + bn + a.) Similarly, let g(n) be the time taken by the divide-
and-conquer algorithm to multiply two n-figure numbers, not counting the time
needed to perform the three half-size multiplications. In other words, g (n) is the
time needed for the additions, shifts and various overhead operations. It is easy
to implement these operations so that g(n)e (5)(n). Ignore for the moment what
happens if n is odd or if the numbers are not the same length.

If each of the three half-size multiplications is carried out by the classic algo-
rithm, the time needed to multiply two n-figure numbers is

3h(n12)+g(n)= 3c(n/2)2+g(n)= 3cn2+ g(n) = 3h(n)+g(n).

Because h(n) E(n 2 ) and g(n)e 0(n), the term g(n) is negligible compared to
4h(n) when n is sufficiently large, which means that we have gained about 25%
in speed compared to the classic algorithm, as we anticipated. Although this im-
provement is not to be sneezed at, we have not managed to change the order of the
time required: the new algorithm still takes quadratic time.

To do better than this, we come back to the question posed in the opening
paragraph: how should the subinstances be solved? If they are small, the classic
algorithm may still be the best way to proceed. However, when the subinstances
are sufficiently large, might it not be better to use our new algorithm recursively?
The idea is analogous to profiting from a bank account that compounds interest
payments! When we do this, we obtain an algorithm that can multiply two n-figure
numbers in a time t (n)= 3t (n /2) +g(n) when n is even and sufficiently large. This
is similar to the recurrence we studied in Section 4.7.1 and Example 4.7.10; solving
it yields t (n) C 9) (n1gI n is a power of 2). We have to be content with conditional
asymptotic notation because we have not yet addressed the question of how to
multiply numbers of odd length; see Problem 7.1.

Since lg 3 1.585 is smaller than 2, this algorithm can multiply two large in-
tegers much faster than the classic multiplication algorithm, and the bigger n, the
more this improvement is worth having. A good implementation will probably not
use base 10, but rather the largest base for which the hardware allows two "digits"
to be multiplied directly. Recall that the performance of this algorithm and of the
classic algorithm are compared empirically at the end of Section 2.7.3.

An important factor in the practical efficiency of this approach to multiplica-
tion, and indeed of any divide-and-conquer algorithm, is knowing when to stop
dividing the instances and use the classic algorithm instead. Although the divide-
and-conquer approach becomes more worthwhile as the instance to be solved gets
larger, it may in fact be slower than the classic algorithm on instances that are too
small. Therefore, a divide-and-conquer algorithm must avoid proceeding recur-
sively when the size of the subinstances no longer justifies this. We come back to
this issue in the next section.

221



Divide-and-Conquer Chapter 7

For simplicity, several important issues have been swept under the rug so far.
How do we deal with numbers of odd length? Even though both halves of the
multiplier and the multiplicand are of size n/2, it can happen that their sum over-
flows and is of size 1 bigger. Therefore, it was slightly incorrect to claim that
r = (w + x)x(y + z) involves a half-size multiplication. How does this affect the
analysis of the running time? How do we multiply two numbers of different sizes?
Are there arithmetic operations other than multiplication that we can handle more
efficiently than by using classic algorithms?

Numbers of odd length are easily multiplied by splitting them as nearly down
the middle as possible: an n-figure number is split into a [n/2J-figure number and
a [n/21-figure number. The second question is trickier. Consider multiplying 5678
by 6789. Our algorithm splits the operands into w = 56, x = 78, y = 67 and z = 89.
The three half-size multiplications involved are

p = wy = 56 x 67

q = xz = 78 x 89, and

r = (w + x)x(y + z)= 134 x 156.

The third multiplication involves three-figure numbers, and thus it is not really half-
size compared with the original multiplication of four-figure numbers. However,
the size of w + x and y + z cannot exceed 1 + [n/21.

To simplify the analysis, let t (n) denote the time taken by this algorithm in
the worst case to multiply two numbers of size at most n (rather than exactly n).
By definition, t (n) is a nondecreasing function. When n is sufficiently large, our
algorithm reduces the multiplication of two numbers of size at most n to three
smaller multiplications p = wy, q = xz and r = (w + x) x (y + z) of sizes at most
Ln/2J, In/21 and 1 + [n/21, respectively, in addition to easy manipulations that
take a time in 0 (n). Therefore, there exists a positive constant c such that

t(n)< t(Ln/2J)+t(dn/21)+t(1 + [n/21)+cn

for all sufficiently large n. This is precisely the recurrence we studied in Exam-
ple 4.7.14, which yields the now-familiar t (n) e 0 (n1g 3

). Thus it is always possible
to multiply n-figure numbers in a time in 0 (n1g 3

). A worst-case analysis of this
algorithm shows that in fact t (n) c O (n 1g3), but this is of limited interest because
even faster multiplication algorithms exist; see Problems 7.2 and 7.3.

Turning to the question of multiplying numbers of different size, let u and v
be integers of size m and n, respectively. If m and n are within a factor of two
of each other, it is best to pad the smaller operand with nonsignificant zeros to
make it the same length as the other operand, as we did when we multiplied 981
by 1234. However, this approach is to be discouraged when one operand is much
larger than the other. It could even be worse than using the classic multiplication
algorithm! Without loss of generality, assume that m • n. The divide-and-conquer
algorithm used with padding and the classic algorithm take time in e (nlg3 ) and
G(mn), respectively, to compute the product of u and v. Considering that the

222



Section 7.2 The general template

hidden constant of the former is likely to be larger than that of the latter, we see
that divide-and-conquer with padding is slower than the classic algorithm when
m < nfg(3

/
2

), and thus in particular when m < /n.

Nevertheless, it is simple to combine both algorithms to obtain a truly better
algorithm. The idea is to slice the longer operand v into blocks of size m and to
use the divide-and-conquer algorithm to multiply u by each block of v, so that the
divide-and-conquer algorithm is used to multiply pairs of operands of the same
size. The final product of u and v is then easily obtained by simple additions and
shifts. The total running time is dominated by the need to perform [n /rmn multi-
plications of m-figure numbers. Since each of these smaller multiplications takes
a time in O(m'g3 ) and since [ n/rn E IO (n/rm), the total running time to multiply
an n-figure number by an mr-figure number is in O (nmlg(3 

2)) when m < n.
Multiplication is not the only interesting operation involving large integers.

Modular exponentiation is crucial for modern cryptography; see Section 7.8. Inte-
ger division, module operations, and the calculation of the integer part of a square
root can all be carried out in a time whose order is the same as that required for
multiplication; see Section 12.4. Some other important operations, such as calculat-
ing the greatest common divisor, may well be inherently harder to compute; they
are not treated here.

7.2 The general template
Multiplying large integers is not an isolated example of the benefit to be reaped
from the divide-and-conquer approach. Consider an arbitrary problem, and let
adhoc be a simple algorithm capable of solving the problem. We ask of adhoc that
it be efficient on small instances, but its performance on large instances is of no
concern. We call it the basic subalgorithm. The classic multiplication algorithm is an
example of a basic subalgorithm.

The general template for divide-and-conquer algorithms is as follows.

function DC(x)
if x is sufficiently small or simple then return adhoc(x)
decompose x into smaller instances x1 , x2, * * - Xe

for i - 1 to l? do yi - DC(xi)
recombine the YL 's to obtain a solution y for x
return y

Some divide-and-conquer algorithms do not follow this outline exactly: for in-
stance, they could require that the first subinstance be solved before the second
subinstance is formulated; see Section 7.5.

The number of subinstances, 1?, is usually small and independent of the particu-
lar instance to be solved. When e = 1, it does not make much sense to "decompose x
into a smaller instance xl " and it is hard to justify calling the technique divide-and-
conquer. Nevertheless, it does make sense to reduce the solution of a large instance
to that of a smaller one. Divide-and-conquer goes by the name of simplification in
this case; see Sections 7.3 and 7.7. When using simplification, it is sometimes pos-
sible to replace the recursivity inherent in divide-and-conquer by an iterative loop.

223



Divide-and-Conquer Chapter 7

Implemented in a conventional language such as Pascal on a conventional ma-
chine that runs an unsophisticated compiler, an iterative algorithm is likely to be
somewhat faster than the recursive version, although only by a constant multi-
plicative factor. On the other hand, it may be possible to save a substantial amount
of storage in this way: for an instance of size n, the recursive algorithm uses a stack
whose depth is often in 0(lg n) and in bad cases even in 0(n).

For divide-and-conquer to be worthwhile, three conditions must be met. The
decision when to use the basic subalgorithm rather than to make recursive calls
must be taken judiciously, it must be possible to decompose an instance into subin-
stances and to recombine the subsolutions fairly efficiently, and the subinstances
should as far as possible be of about the same size. Most divide-and-conquer
algorithms are such that the size of the 4 subinstances is roughly n/b for some
constant b, where n is the size of the original instance. For example, our divide-
and-conquer algorithm for multiplying large integers needs a time in a (n) to de-
compose the original instance into three subinstances of roughly half-size and to
recombine the subsolutions: f = 3 and b = 2.

The running-time analysis of such divide-and-conquer algorithms is almost
automatic, thanks to Examples 4.7.13 and 4.7.16. Let g(n) be the time required by
DC on instances of size n, not counting the time needed for the recursive calls. The
total time t (n) taken by this divide-and-conquer algorithm is something like

t(n)= ?t(n .b)+g(n)

provided n is large enough. If there exists an integer k such that .g(n) O(nk),
then Example 4.7.16 applies to conclude that

[(3(nk) if l < bk

t(n) () (nklogn) if ? = bk (7.1)
[(nflog, i) if f > bk.

The techniques used in Section 4.7.6 and Example 4.7.14 generally apply to yield the
same conclusion even if some of the subinstances are of a size that differs from L n / b
by at most an additive constant, and in particular if some of the subinstances are
of size [n /b]. As an example, our divide-and-conquer algorithm for large integer
multiplication is characterized by l? = 3, b = 2 and k = 1. Since 4 > bk, the third
case applies and we get immediately that the algorithm takes a time in 0 (n

l
g3)

with no need to worry about the fact that two of the subinstances are of size I n/21
and 1 + [n/21 rather than [n/2J. In more complicated cases when g(n) is not in
the exact order of a polynomial, Problem 4.44 may apply.

It remains to see how to determine whether to divide the instance and make
recursive calls, or whether the instance is so simple that it is better to invoke the
basic subalgorithm directly. Although this choice does not affect the order of the
execution time of the algorithm, we are also concerned to make the multiplicative
constant hidden in the 0) notation as small as possible. With most divide-and-
conquer algorithms, this decision is based on a simple threshold, usually denoted no.
The basic subalgorithm is used to solve any instance whose size does not exceed no.

224



Section 7.2 The general template

We return to the problem of multiplying large integers to see why the choice
of threshold is important, and how to choose it. To avoid clouding the essential
issues, we use a simplified recurrence formula for the running time of the divide-
and-conquer algorithm for multiplying large integers:

t(n) I h(n) if n < no
13t([n/2])+g(n) otherwise,

where h(n)e 6(n2) and g(n)e 0((n).
For the sake of argument, consider an implementation where h (n)= n2 mi-

croseconds and g(n)= 16n microseconds. Suppose we are given two 5000-figure
numbers to multiply. If the divide-and-conquer algorithm proceeds recursively
until it obtains subinstances of size 1, that is if no = 1, it takes more than 41 sec-
onds to compute the product. This is ridiculous, since the same numbers can be
multiplied in 25 seconds using the classic algorithm. The classic algorithm slightly
outperforms the divide-and-conquer algorithm even to multiply numbers with
as many as 32 789 figures, when both algorithms require more than a quarter of
an hour of computing time for a single multiplication! Must we conclude that
divide-and-conquer allows us to go from a quadratic algorithm to an algorithm
whose execution time is in 0 (nlg3 ), but only at the cost of an increase in the hidden
constant so enormous that the new algorithm is never economic on instances of
reasonable size? Fortunately not: to continue our example, 5000-figure numbers
can be multiplied in just over 6 seconds, provided we choose the threshold no in-
telligently; in this case no = 64 is a good choice. With the same threshold, it takes
hardly more than two minutes to multiply two 32 789-figure numbers.

Choosing the best threshold is complicated by the fact that the optimal value
generally depends not only on the algorithm concerned, but also on the particular
implementation. Moreover, there is in general no uniformly best value of the
threshold. In our example it is best to use the classic algorithm to multiply 67-fig-
ure numbers whereas it is best to recur once to multiply 66-figure numbers. Thus
67 is better than 64 as threshold in the first case whereas the opposite is true in the
second case. We shall in future abuse the term "optimal threshold" to mean nearly
optimal.

So how shall we choose the threshold? Given a particular implementation, the
optimal threshold can be determined empirically We vary the value of the thresh-
old and the size of the instances used for our tests and time the implementation on a
number of cases. It is often possible to estimate an optimal threshold by tabulating
the results of these tests or by drawing a few diagrams. However, changes in the
value of the threshold over a certain range may have no effect on the efficiency
of the algorithm when only instances of some specific size are considered. For in-
stance, it takes exactly the same time to multiply two 5000-figure numbers when the
threshold is set anywhere between 40 and 78, since any such value for the threshold
causes the recursion to stop when subinstances reach size 40, down from size 79,
at the 7th level of recursion. Nevertheless, these thresholds are not equivalent in
general since 41-figure numbers take 17% longer to multiply with the threshold
set to 40 rather than to 64. Therefore, it is usually not enough simply to vary the

225



Divide-and-Conquer Chapter 7

threshold for an instance whose size remains fixed. This empirical approach may
require considerable amounts of computer (and human!) time. We once asked stu-
dents in an algorithmics course to implement the divide-and-conquer algorithm
for multiplying large integers and to compare it with the classic algorithm. Several
groups tried to estimate the optimal threshold empirically, each group using in
the attempt more than 5000 dollars worth of machine time! On the other hand, a
purely theoretical calculation of the optimal threshold is rarely possible, given that
it varies from one implementation to another.

The hybrid approach, which we recommend, consists of determining theoreti-
cally the form of the recurrence equations, and then finding empirically the values
of the constants used in these equations for the implementation at hand. The op-
timal threshold can then be estimated by finding the size n of the instance for
which it makes no difference whether we apply the classic algorithm directly or
whether we go on for one more level of recursion; see Problem 7.8. This is why
we chose no = 64: the classic multiplication algorithm requires h (64)= 642 = 4096
microseconds to multiply two 64-figure numbers, whereas if we use one level of
recursion in the divide-and-conquer approach, the same multiplication requires
g(64)= 16 x 64 - 1024 microseconds in addition to three multiplications of 32-fig-
ure numbers by the classic algorithm, at a cost of h(32)= 322 = 1024 microseconds
each, for the same total of 3h(32)+g(64)= 4096 microseconds.

One practical difficulty arises with this hybrid technique. Even though the clas-
sic multiplication algorithm requires quadratic time, it was an oversimplification to
state that h(n) = cn2 for some constant c that depends on the implementation. It is
more likely that there exist three constants a, b and c such that h (n) = cn2 + bn + a.
Although bn + a becomes negligible compared to cn2 when n is large, the clas-
sic algorithm is in fact used precisely on instances of moderate size. It is therefore
usually insufficient merely to estimate the higher-order constant c. Instead, it is
necessary to measure h(n) a number of times for several different values of n to
estimate all the necessary constants. The same remark applies to g(n).

7.3 Binary search
Binary searching predates computers. In essence, it is the algorithm used to look
up a word in a dictionary or a name in a telephone directory. It is probably the
simplest application of divide-and-conquer, so simple in fact that strictly speaking
this is an application of simplification rather than divide-and-conquer: the solution
to any sufficiently large instance is reduced to that of a single smaller one, in this
case of half size.

Let T[I . . n] be an array sorted into nondecreasing order; that is, T[i] < T [j]
whenever 1 < i • j < n. Let x be some item. The problem consists of finding x
in the array T if indeed it is there. If x is not in the array, then instead we want to
find the position where it might be inserted. Formally, we wish to find the index
i such that 1 < i < n + 1 and T[i - 1]< x < T[i], with the logical convention that
T[0]= -oo and T[n + 1]= +-o. (By logical convention, we mean that these values
are not in fact present in the array.) The obvious approach to this problem is to
look sequentially at each element of T until we either come to the end of the array
or find an item no smaller than x.

226



Section 7.3 Binary search

function sequential(T[I.. n], x)
{Sequential search for x in array T}
for i 1 to n do

if T[i]> x then return i
return n + I

This algorithm clearly takes a time in 0(r), where r is the index returned. This is
Q(n) in the worst case and 0(1) in the best case. If we assume that the elements
of T are distinct, that x is indeed somewhere in the array, and that it is to be found
with equal probability at each possible position, then the average number of trips
round the loop is (n + 1) /2; see Problem 7.9. On the average, therefore, as well as
in the worst case, sequential search takes a time in 0 (n).

To speed up the search, we should look for x either in the first half of the
array or in the second half. To find out which of these searches is appropriate, we
compare x to an element in the middle of the array. Let k = [n/21. If x < T[k],
then the search for x can be confined to T 1 .. k]; otherwise it is sufficient to search
T [k + 1. . n]. To avoid repeated tests in each recursive call, it is better to verify at
the outset if the answer is n + 1, that is if x lies to the right of T. We obtain the
following algorithm, illustrated in Figure 7.1.

1 2 3 4 5 6 7 8 9 10 11

-5 -2 0 3 8 8 9 12 12 26 31 x < T[k]?

i k j no
i k j yes
i k j yes

ik j no

ij Ei= j: stop
Figure 7.1. Binary search for x 12 in T[1. .11]

function binsearch(T[1 . . n], x)
if n = 0 or x> T n] then return n + 1
else return binrec(T[1 . .n], x)

function binrec(T[i.. .j], x)
{Binary search for x in subarray T[i . .j]

with the promise that T[i -1]< x < T[j]}
if i = j then return i
k- (i + j) 2
if x < T[k] then return binrec(T[i . .k], x)

else return binrec(TI[ k + 1. .j], x)

Let t(m) be the time required for a call on binrec(T[i . .j], x), where m j - i + 1
is the number of elements still under consideration in the search. The time required
for a call on binsearch(T[1 . .n], x) is clearly t(n) up to a small additive constant.

227



Divide-and-Conquer Chapter 7

When m > 1, the algorithm takes a constant amount of time in addition to one
recursive call on m /21 or ym/2j elements, depending whether or not x < TIjk].
Therefore, t(m)= t(m/2)+g(m) when m is even, where g(m)e 0(1)= 0(m0 ).
By our general analysis of divide-and-conquer algorithms, using Equation 7.1 with
e = 1, b = 2 and k = 0, we conclude that t (in) 0 (log m). Therefore, binary search
can be accomplished in logarithmic time in the worst case. It is easy to see that this
version of binary search also takes logarithmic time even in the best case.

Because the recursive call is dynamically at the end of the algorithm, it is easy
to produce an iterative version.

function biniter(T[l . . n], x)
{Iterative binary search for x in array TI
if x > T[n] then return n + 1
i 1; j- n
while i < j do

{ T[i- I]< x < T[j] }
k - (i + j): 2
if x < T[k] then j k

else i - k + 1
return i

The analysis of this algorithm is identical to that of its recursive counterpart binsearch.
Exactly the same array locations are probed (except when n = 0; see Problem 7.10),
and the same sequences of values are assumed by i, j and k. Therefore, iterative
binary search also takes logarithmic time in the worst case as well as in the best
case. This algorithm can be modified to make it faster in the best case (constant
time), at the cost of making it slightly slower (albeit still logarithmic) in the worst
case, but this is to the detriment of average-case performance on large instances;
see Problem 7.11.

7.4 Sorting

Let T[l. . n] be an array of n elements. Our problem is to sort these elements into
ascending order. We have already seen that the problem can be solved by selection
sorting and insertion sorting (Section 2.4), or by heapsort (Section 5.7). Recall that
an analysis both in the worst case and on the average shows that the latter method
takes a time in 0 (n log n), whereas both the former methods take quadratic time.
There are several classic algorithms for sorting that follow the divide-and-conquer
template. It is interesting to note how different they are: significant freedom for
creativity remains even after deciding to attempt solving a given problem by divide-
and-conquer. We study two of them now-mergesort and quicksort-leaving yet
another for Chapter 11.

7.4.1 Sorting by merging

The obvious divide-and-conquer approach to this problem consists of separating
the array T into two parts whose sizes are as nearly equal as possible, sorting these
parts by recursive calls, and then merging the solutions for each part, being careful

228



Section 7.4 Sorting

to preserve the order. To do this, we need an efficient algorithm for merging two
sorted arrays U and V into a single array T whose length is the sum of the lengths
of U and V. This can be achieved more efficiently-and more easily-if additional
storage is available at the end of both the arrays U and V to be used as a sentinel.
(This technique works only if we can set the sentinel to a value guaranteed to
be bigger than every element in U and V, which we denote below by cc see
Problem 7.13.)

procedure merge(U[1.. m + 1], V[1.. n + 1], T[1.. m + n])
{Merges sorted arrays U[1 .. m] and V[1 .. n] into T[1 .. m + n]);

U[m + 1] and V[n + 1] are used as sentinels}
i, j 1
U[m + 1], V[n + 1] - oo

for k - 1 to m + n do
if U[i]< V[j]

then T[k]- U[i]; i - i + 1
else T[kb V[j]; j - j + 1

The merge sorting algorithm is as follows, where we use insertion sort (insert) from
Section 2.4 as the basic subalgorithm. For the sake of efficiency, it may be better if
the intermediate arrays U and V are global variables.

procedure mergesort(T[1.. n])
if n is sufficiently small then insert(T)
else

array U[1. .1 + Ln/21], V[1. .1 + [n/21]
U[1.. [n/21] - T[l.. [n/21]
V[1.. [n/21]- T[I + [n/2J.. n]
mergesort(U[I.. [n/2111)
mergesort(V[1.. [n/21])
merge(U, V, T)

Figure 7.2 shows how merge sorting works.
This sorting algorithm illustrates well all the facets of divide-and-conquer.

When the number of elements to be sorted is small, a relatively simple algorithm is
used. On the other hand, when this is justified by the number of elements, merge-
sort separates the instance into two subinstances half the size, solves each of these
recursively, and then combines the two sorted half-arrays to obtain the solution to
the original instance.

Let t (n) be the time taken by this algorithm to sort an array of n elements. Sepa-
rating T into U and V takes linear time. It is easy to see that merge( U, V, T) also takes
linear time. Consequently, t(n)= t([n/2J)+t(fn/2J)+g(n), where g(n)e 0(n).
This recurrence, whichbecomes t(n)= 2t(n/2)+g(n) when n is even, is a special
case of our general analysis for divide-and-conquer algorithms. Equation 7.1 ap-
plies with P = 2, b = 2 and k = 1. Since P = bk, the second case applies to yield
t(n) O )(nlogn). Thus, the efficiency of mergesort is similar to that of heapsort.
Merge sorting may be slightly faster in practice, but it requires significantly more

229



Divide-and-Conquer Chapter 7

Array to be sorted

3 11411 5 9 2 6 5 3 5 8 9]

The array is split into two halves

31 41 15 91 1216 5 31518 9

One recursive call on mergesort for each half

112 3 3 4 5 5 5 6 8 9 9

One call on merge

11 2 3345556899

The array is now sorted

Figure 7.2. mergesort

storage for the intermediate arrays U and V. Recall that heapsort can sort in-place,
in the sense that it needs only a small constant number of working variables. Merge
sorting can also be implemented in-place, but at the cost of such an increase in the
hidden constant that this is only of theoretical interest; see Problem 7.14.

The merge sorting algorithm illustrates the importance of creating subinstances
of roughly equal size when developing divide-and-conquer algorithms. Consider
the following variation on mergesort. (The dummy call to badmergesort
(V[1.. 1]) is included only to stress similarity with the original mergesort algo-
rithm.)

procedure badmergesort( T [ 1 . .n])
if n is sufficiently small then insert(T)
else

array U[1..n],V[1..2]
U [ I. .n - 1] i T [ 1. .n - 1]
V[1]- T[n]
badmergesort(U[1 . . n - 1])
badmergesort (V [ 1 . .1])
merge U, V, T)

Let i(n) be the time needed to sort n elements with this modified algorithm. It is
clear that i(n)= i(n - 1)+ i(1)+(n), where g(n) 03(n). This recurrence yields
t(n) (-)(n2 ). Thus simply forgetting to balance the sizes of the subinstances can

230



Section 7.4 Sorting

be disastrous for the efficiency of an algorithm obtained using divide-and-conquer.
In fact, badmergesort is nothing but an inefficient implementation of insertion sort!

7.4.2 Quicksort

The sorting algorithm invented by Hoare, usually known as quicksort, is also based
on the principle of divide-and-conquer. Unlike mergesort, most of the nonrecursive
part of the work to be done is spent constructing the subinstances rather than
combining their solutions. As a first step, this algorithm chooses as pivot one of
the items in the array to be sorted. The array is then partitioned on either side
of the pivot: elements are moved so that those greater than the pivot are to its
right, whereas the others are to its left. If now the sections of the array on either
side of the pivot are sorted independently by recursive calls of the algorithm, the
final result is a completely sorted array, no subsequent merge step being necessary.
To balance the sizes of the two subinstances to be sorted, we would like to use
the median element as the pivot. (For a definition of the median, see Section 7.5.)
Unfortunately, finding the median takes more time than it is worth. For this reason
we simply use an arbitrary element of the array as the pivot, hoping for the best.

Designing a linear time pivoting algorithm is no challenge. However, it is
crucial in practice that the hidden constant be small if quicksort is to be competitive
with other sorting techniques such as heapsort. Suppose subarray T[i. . j] is to
be pivoted around p = T[i]. One good way of pivoting consists of scanning the
subarray just once, but starting at both ends. Pointers k and I are initialized to i
and j + 1, respectively. Pointer k is then incremented until T[k] > p, and pointer I
is decremented until TEI] < p. Now T[k] and TEI] are interchanged. This process
continues as long as k < 1. Finally, T[iI and Tlt ] are interchanged to put the pivot
in its correct position.

procedure pivot(T[i. . j];var 1)
{Permutes the elements in array T[i. .J] and returns a value I such

that, at the end, i • I < j, T[k]< p for all i < k < 1, T[l]= p,
and T[k]> p for all I < k < j, where p is the initial value of T[i]}

p - T[i]
k- i; 1 -j+l
repeat k k + 1 until T[k]> p or k > j
repeat I - 1 1 until T[l]< p
while k < I do

swap T[k] and T[l]
repeat k - k + 1 until T[k]> p
repeat I - I -1 until T[l]< p

swap T[i] and T[l]

Now here is the sorting algorithm. To sort the entire array T, simply call
quicksort(T[I . . n]).

231



Divide-and-Conquer Chapter 7

procedure quicksort(T[i. .j])
{Sorts subarray T[i. . j] into nondecreasing order}
if j - i is sufficiently small then insert(T[i. . j])
else

pivot(T[i .. j], 1)
quicksort(T[i.. I -1])
quicksort(T[Il + 1.. j])

Figure 7.3 shows how pivot and quicksort work.
Quicksort is inefficient if it happens systematically on most recursive calls that

the subinstances T [ i. . I - I I and T [ I + 1 . .j ] are severely unbalanced. In the worst
case, for example if T is already sorted before the call to quicksort, we get I = i
each time, which means a recursive call on an instance of size 0 and another on an
instance whose size is reduced only by 1. This gives rise to a recurrence similar to
the one we encountered in the analysis of badmergesort, the unbalanced version of
mergesort. Once again the running time is quadratic. Thus quicksort takes a time in
Q(n2 ) in the worst case to sort n elements.

On the other hand, if the array to be sorted is initially in random order, it is
likely that most of the time the subinstances to be sorted will be sufficiently well
balanced. To determine the average time required by quicksort to sort an array of n
items, we must make an assumption about the probability distribution of all n-item
instances. The most natural assumption is that the elements of T are distinct and
that each of the n! possible initial permutations of the elements is equally likely.
It must be stressed, however, that this assumption can be inadequate-or even
plainly wrong-for some applications, in which case the analysis that follows does
not apply. This is the case, for instance, if your application often needs to sort
arrays that are already almost sorted.

Let t(m) be the average time taken by a call on quicksort(T[i .j]), where
m = j - i + 1 is the number of elements in the subarray. In particular,
quicksort(T[1 n]) requires time t(n) to sort all n elements of the array. By our
assumption on the instance probability distribution, the pivot chosen by the algo-
rithm when requested to sort T[1 . . n] lies with equal probability in any position
with respect to the other elements of T. Therefore, the value of I returned by the
pivoting algorithm after the initial call pivot (T [1. . n], 1) can be any integer between
1 and n, each value having equal probability 1/n. This pivoting operation takes
linear time g(n) e 0(n). It remains to sort recursively two subarrays of size 1- 1
and n -1, respectively. It can be shown that the probability distribution on the
subarrays is still uniform; see Problem 7.16. Therefore, the average time required
to execute these recursive calls is t (1 - 1) + t (n - 1). Consequently,

1n
t(n)= 1 (g(n)+t(l -1)+t(n -1))

n=11

whenever n is large enough to warrant the recursive approach. In this formula,
n is the probability that any given value of I between 1 and n is returned by the
top-level call to pivot, and g(n)+t(1 -1)+t(n -1) is the expected time to sort n
elements conditional on this value of 1 being returned by that call.

232



Section 7.4 Sorting

Array to be sorted

431 41115191216151315189

The array is pivoted about its

first element p = 3

1311114111519121615139518[9]

Find first element larger than

pivot (underlined) and last element

not larger than pivot (overlined)

313 1 4 1 5 9 2T6 5 3 5 8 9

Swap those elements

!31113111519121615141518 9]

Scan again in both directions

1311113111519121615 4589

Swap

33132195654589

Scan

131113111219151615141518 9]

The pointers have crossed

(overline on left of underline):

swap pivot with overline

121 13 1 13 91516 5 415 879

Pivoting is now complete

Recursively sort subarrays on

each side of pivot

11233411311415556899

The array is now sorted

Figure 7.3. quicksort

233



Divide-and-Conquer Chapter 7

To make the formula more explicit, let no be the threshold above which the
recursive approach is used, meaning that insertion sort is used whenever there are
no more than no elements to sort. Furthermore, let d be a constant (depending on
the implementation) such that g (n) < dn whenever n > no. Taking g(n) out of
the summation, we have

1 n
t(n)< dn + - (t(1 -1)+t(n -1)) for n > no.

=1

Noting that the term t (k) appears twice for each 0 < k < n - 1, a little manipulation
yields

2n -1

t(n)< dn+- E (k) for n > no. (7.2)
k =0

An equation of this type is more difficult to analyse than the linear recurrences
we saw in Section 4.7. In particular, Equation 7.1 does not apply this time. By anal-
ogy with mergesort, it is nevertheless reasonable to hope that t (n) is in O (n log n):
on the average the subinstances are not too badly unbalanced and the solution
would be 0 (n log n) if they were as well balanced as with mergesort. Proving
this conjecture provides a beautiful application of the technique of constructive
induction (Section 1.6.4). To apply this technique, we postulate the existence of a
constant c, unknown as yet, such that t (n) < c n log n for all n 2 2. We find an
appropriate value for this constant in the process of proving its existence by gener-
alized mathematical induction. We start at n = 2 because n log n is undefined or
zero for smaller values of n; alternatively, we could start at n = no + 1.

Proof Let t(n) be the time required by quicksort to sort n elements on the average.
Let d and no be constants such that Equation 7.2 holds. We wish to prove that
t (n) < c n log n for all n 2 2, provided c is a well-chosen constant. We proceed by
constructive induction. Assume without loss of generality that no 2 2.

o Basis: Consider any integer n such that 2 < n < no. We have to show
that t (n) < c n log n. This is easy since we still have complete freedom to
choose the constant c and the number of basis cases is finite. It suffices to
choose c at least as large as t (n) / (n log n). Thus, our first constraint on
c is

C t (n) forall n such that2 < n < no. (7.3)
n log n

234



Section 7.4 Sorting

o Induction step: Consider any integer n > no. Assume the induction hypoth-
esisthatt(k)< cklogkforallksuchthat2 < k < n. Wewishtoconstrainc
so that t (n) < c n log n follows from the induction hypothesis. Let a stand
for t(O)+t(1). Starting with Equation 7.2,

2 n -
t(n) < dn + - t(k)

dn + 2 (t(O)+t(1)+ Et(k))

<dn +-+- 2 . c k log k by the induction hypothesis
<d n + =2c

< dn + 2a + 2c ' xlog x dx (see Figure 7.4)

dn+2a +2c ~x2 log X X2 n

n n [ 2 4 12

(recall that "log" denotes the natural logarithm)

2a 2c n2 logn n2
<dn±+-+ 4)

n n 2 4

2a en
=dn±o +cnlogn- 2

=c nlogn -(2-d -n

It follows that t(n)< c nlogn provided c/2- d -2a/n 2 is nonnegative,
which is equivalent to saying that c Ž 2d + 4a/n 2 . Since we consider here
only the case n > no, all is well provided

c > 2d + 4a7
(fln o + 1)2(74

which is our second and final constraint on c.

Putting together the constraints given by Equations 7.3 and 7.4, it suffices to set

c= max 2d+ 4 (t () +t(1)) max t (n) 12 < n < no (75)
(no + 1)2 nlogn

to conclude the proof by constructive induction that t (n) < c n log n for all n > 2,
and therefore that t (n) E O (n log n).

If you are puzzled or unconvinced, we urge you to work for yourself a proof by
ordinary-as opposed to constructive-generalized mathematical induction that

235



Divide-and-Conquer Chapter 7

1 2 3 4 n 2 ,I- I 1 ,

Figure 7.4. Summing monotonic functions

t (n) < c n log n for all n > 2, this time using the explicit value for c given by Equa-
tion 7.5. E

Quicksort can therefore sort an array of n distinct elements in an average time
in 0 (n log n). In practice, the hidden constant is smaller than those involved in
heapsort or in merge sort. If an occasional long execution time can be tolerated,
this is an excellent general-purpose sorting algorithm. Can quicksort be modified
so as to take a time in 0 (n log n) even in the worst case? The answer is yes but no.
Even if the median of TN i. . j] is chosen as pivot, which can be done in linear time
as we shall see in Section 7.5, quicksort as described here still takes quadratic time
in the worst case, which occurs if all the elements to be sorted are equal. A simple
modification to the algorithm suffices to prevent this bad behaviour, although it is
challenging to program it correctly and efficiently. For this, we need a new

procedure pivotbis(T[i . .j], p;var k, 1)

that partitions T into three sections using p as pivot: after pivoting, the elements
in T[i . . k] are smaller than p, those in T[k + 1 . .1 - 1] are equal to p, and those
in TNI. . j] are larger than p. The values of k and I are returned by pivotbis. Af-
ter pivoting with a call on pivotbis(T[i . . j], T[i], k, 1), it remains to call quicksort
recursively on T[i . . k] and T l . .1]. With this modification, sorting an array of
equal elements takes linear time. More interestingly, quicksort now takes a time in
0 (n log n) even in the worst case if the median of T [ i. .j] is chosen as pivot in
linear time. However, we mention this possibility only to point out that it should be

236



Section 7.5 Finding the median

shunned: the hidden constant associated with this "improved" version of quicksort
is so large that it results in an algorithm worse than heapsort in every case!

7.5 Finding the median

Let T [1 . .n] be an array of integers and let s be an integer between 1 and n. The s-th
smallest element of T is defined as the element that would be in the s-th position
if T were sorted into nondecreasing order. Given T and s, the problem of finding
the s-th smallest element of T is known as the selection problem. In particular,
the median of T[1.. .n] is defined as its [n/21-th smallest element. When n is odd
and the elements of T are distinct, the median is simply that element in T such
that there are as many items in T smaller than it as there are items larger than it.
For instance, the median of [3,1,4,1,5,9,2,6,5] is 4 since 3, 1, 1 and 2 are smaller
than 4 whereas 5, 9, 6 and 5 are larger.

What could be easier than to find the smallest element of T or to calculate
the mean of all the elements? However, it is not obvious that the median can
be found so easily. The naive algorithm for determining the median of T [1 . . n]
consists of sorting the array and then extracting its [n/2]-th entry. If we use
heapsort or mergesort, this takes a time in S (n log W). Can we do better? To answer
this question, we study the interrelation between finding the median and selecting
the s-th smallest element.

It is obvious that any algorithm for the selection problem can be used to find
the median: simply select the En/21-th smallest. Interestingly, the converse holds
as well. Assume for now the availability of an algorithm median(T[1 . .n]) that
returns the median of T. Given an array T and an integer s, how could this
algorithm be used to determine the s-th smallest element of T? Let p be the me-
dian of T. Now pivot T around p, much as for quicksort, but using the pivotbis
algorithm introduced at the end of the previous section. Recall that a call on
pivotbis(T[i. . j], p;var k, I) partitions T[i. . j] into three sections: T is shuffled
so the elements in T[i. . k] are smaller than p, those in T[k + 1.. 1 -1] are equal
to p, and those in T[l. . j] are larger than p. After a call on pivotbis(T, p, k, 1), we
are done if k < s < I as the s-th smallest element of T is then equal to p. If s • k,
the s-th smallest element of T is now the s-th smallest element of T[1.. k]. Finally,
if s > 1, the s-th smallest element of T is now the (s - l + l)-st smallest element
of T[l . . n]. In any case, we have made progress since either we are done, or the
subarray to be considered contains less than half the elements, by virtue of p being
the median of the original array.

There are strong similarities between this approach and binary searching (Sec-
tion 7.3), and indeed the resulting algorithm can be programmed iteratively rather
than recursively. The key idea is to use two variables i and j, initialized to 1 and n
respectively, and to ensure that at every moment i <s < i and the elements in
T[1 . . i - 1] are smaller than those in T[i . .j], which are in turn smaller than those
in T[j + 1.. n]. The immediate consequence of this is that the desired element
resides in T[i ..j]. When all the elements in T[i . .j] are equal, we are done.

Figure 7.5 illustrates the process. For simplicity, the illustration assumes pivotbis
is implemented in a way that is intuitively simple even though a really efficient
implementation would proceed differently.

237



Divide-and-Conquer Chapter 7

Array in which to find 4th smallest element

3114115l9l2l6[5 3 518j9f

Pivot array around its median p = 5 using pivotbis

3j1 4 1f24351515119689

Only part left of pivot is still relevant since 4 < 6

3I1 4 I12 3 ... ....

Pivot that part around its median p = 2

1 1\23 4 3 I I.......

Only part right of pivot is still relevant since 4 > 4

Pivot that part around its median p 3

.. I.0 J]3 ~ 4 % -I .. .. -

Answer is 3 because the pivot is in the 4th position

Figure 7.5. Selection using the median

function selection (T [1 . . n], s)
{Finds the s-th smallest element in T, 1 < s < n}
i - 1; j - n
repeat

{Answer lies in T[i.. j] }
p - median(T[i..j])
pivotbis(T[i..j], p, k, I)
if s < k then j - k
else if s > I then i - I

else return p

By an analysis similar to that of binary search, the above algorithm selects the
required element of T after going round the repeat loop a logarithmic number of
times in the worst case. However, trips round the loop no longer take constant

238



Section 7.5 Finding the median

time, and indeed this algorithm cannot be used until we have an efficient way to
find the median, which was our original problem. Can we modify the algorithm
to avoid resort to the median?

First, observe that our algorithm still works regardless of which element of T is
chosen as pivot (the value of p). It is only the efficiency of the algorithm that depends
on the choice of pivot: using the median assures us that the number of elements
still under consideration is at least halved each time round the repeat loop. If we
are willing to sacrifice speed in the worst case to obtain an algorithm reasonably
fast on the average, we can borrow another idea from quicksort and simply choose
T[i] as pivot. In other words, replace the first instruction in the loop with

p - T[i].

This causes the algorithm to spend quadratic time in the worst case, for example
if the array is in decreasing order and we wish to find the smallest element. Nev-
ertheless, this modified algorithm runs in linear time on the average, under our
usual assumption that the elements of T are distinct and that each of the n! pos-
sible initial permutations of the elements is equally likely. (The analysis parallels
that of quicksort; see Problem 7.18). This is much better than the time required
on the average if we proceed by sorting the array, but the worst-case behaviour is
unacceptable for many applications.

Happily, this quadratic worst case can be avoided without sacrificing linear
behaviour on the average. The idea is that the number of trips round the loop
remains logarithmic provided the pivot is chosen reasonably close to the median.
A good approximation to the median can be found quickly with a little cunning.
Consider the following algorithm.

function pseudomed(T[1 . . n])
{Finds an approximation to the median of array T}
if n < 5 then return adhocmed(T)
z [n/51
array Z[1..z]
for i - I to z do Z[i]- adhocmed(T[5i - 4..5i])
return selection(Z, [z/2])

Here, adhocmed is an algorithm specially designed to find the median of at most
five elements, which can be done in a time bounded above by a constant, and
selection(Z, [z/2]) determines the exact median of array Z. Let p be the value
returned by a call on pseudomed(T). How far from the true median of T can p be
when n > 5?

As in the algorithm, let z be [ n/5 1, the number of elements in the array Z cre-
ated by the call on pseudomed(T). For each i between 1 and z, Z[i] is by definition
the median of T[5i - 4.. 5i], and therefore at least three elements out of the five in
this subarray are less than or equal to it. Moreover, since p is the true median of Z.
at least z /2 elements of Z are less than or equal to p. By transitivity (T[j] < Z [i] < p
implies that T[j] < p), at least 3z/2 elements of T are less than or equal to p. Since
z = [n/5J > (n - 4) /5, we conclude that at least (3n - 12) /10 elements of T are

239



Divide-and-Conquer Chapter 7

less than or equal to p, and therefore at most the (7n + 12) /10 remaining elements
of T are strictly larger than p. Similar reasoning applies to the number of elements
of T that are strictly smaller than p.

Although p is probably not the exact median of T, we conclude that its rank
is approximately between 3n / 10 and 7n / 10. To visualize how these factors arise,
although nothing in the execution of the algorithm pseudomed really corresponds to
this illustration, imagine as in Figure 7.6 that the elements of T are arranged in five
rows, with the possible exception of at most four elements left aside. Now suppose
each of the [n/51 columns as well as the middle row are sorted by magic, the
smallest elements going to the top and to the left, respectively. The middle row
corresponds to the array Z in the algorithm and the element in the circle corresponds
to the median of this array, which is the value of p returned by the algorithm.
Clearly, each of the elements in the box is less than or equal to p. The conclusion
follows since the box contains approximately three-fifths of one-half of the elements
of T.

* a * SSS

Figure 7.6. Visualization of the pseudomedian

We now analyse the efficiency of the selection algorithm presented at the beginning
of this section when the first instruction in its repeat loop is replaced by

p - pseudomed(T[i .. ]) .

Let t (n) be the time required in the worst case by a call on selection(TII . . n], s).
Consider any i and j such that 1 < i < j < n. The time required to complete the
repeat loop with these values for i and j is essentially t(m), where m = j - i + 1
is the number of elements still under consideration. When n > 5, calculating
pseudomed(T) takes a time in t([n/5J)+O(n) because the array Z can be con-
structed in linear time since each call to adhocmed takes constant time. The call
to pivotbis also takes linear time. At this point, either we are finished or we have to
go back round the loop with at most (7n + 12)/10 elements still to be considered.
Therefore, there exists a constant d such that

t(n)< dn + t(Ln/51)+ max{t(m) I m < (7n + 12) /10} (7.6)

provided n > 5.
Equation 7.1 does not help us solve this recurrence, so once again we resort to

constructive induction. This time, even guessing the answer in asymptotic notation
requires insight. (Recall that the obvious try when we analysed quicksort was

240



Section 7.5 Finding the median

o (n log n) because we had analysed mergesort already, and it worked; no such luck
this time.) With some experience, the fact that + -7 < 1 is a telltale that t(n) may
well be linear in n, which is clearly the best we could hope for; see Problem 7.19.

Theorem 7.5.1 The selection algorithm used with pseudomedfinds the s-th small-
est among n elements in a time in 0 (n) in the worst case. In particular, the median
can befound in linear time in the worst case.

Proof Let t(n) and d be as above. Clearly, t(n)e Q(n) since the algorithm must look at
each element of T at least once. Thus it remains to prove that t(n)e 0(n). Let us
postulate the existence of a constant c, unknown as yet, such that t(n) < en for
all n 2 1. We find an appropriate value for this constant in the process of proving
its existence by generalized mathematical induction. Constructive induction will
also be used to determine the constant no that separates the basis case from the
induction step. For now, our only constraint is no > 5 because Equation 7.6 only
applies when n > 5. (We shall discover that the obvious choice no = 5 does not
work.)

• Basis: Consider any integer n such that 1 < n • no. We have to show that
t (n) c en. This is easy since we still have complete freedom to choose the
constant c and the number of basis cases is finite. It suffices to choose c at
least as large as t(n)/n. Thus, our first constraint on c is

C > t(n)/n for all n such that 1 • n < no. (7.7)

c Induction step: Consider any integer n > no. Assume the induction hy-
pothesis that t(m)< cm when 1 < m < n. We wish to constrain c so
that t (n) < en follows from the induction hypothesis. Starting with Equa-
tion 7.6, and because 1 < (7n + 12) /10 < n when n > no > 5,

t(n) s dn + t ( n/5J) + max{t(m) I m < (7n + 12) /101
<dn + cn/5 + (7n + 12)c/10 by the induction hypothesis

=9cn/10 + dn + 6c/5

= en - (/10 - d - 6c/5n) n.

It follows that t (n) n provided c /10 - d - 6c /5n > 0, which is equivalent
to (1 - 12/n) c 2 10d. This is possible provided n > 13 (so 1 - 12/n > 0),
in which case c must be no smaller than 10d/ (1 - 12/n). Keeping in mind
that n > no, any choice of no > 12 is adequate, provided c is chosen
accordingly. More precisely, all is well provided no > 12 and

l0d
c 12 (7.8)

1 - no-i-

which is our second and final constraint on c and no. For instance, the
induction step is correct if we take no = 12 and c > 130d, or no = 23 and
C > 20d, or no = 131 and c > 11d.

241



Divide-and-Conquer Chapter 7

Putting together the constraints given by Equations 7.7 and 7.8, and choosing
no = 23 for the sake of definiteness, it suffices to set

c = max(20d, max{t(m)/m 11 < m < 23})

to conclude the proof by constructive induction that t (n) < cn for all n > 1. A

7.6 Matrix multiplication
Let A and B be two n x n matrices to be multiplied, and let C be their product.
The classic matrix multiplication algorithm comes directly from the definition

n

Cii = E AikBkj-
k-l

Each entry in C is calculated in a time in 0((n), assuming that scalar addition and
multiplication are elementary operations. Since there are n2 entries to compute,
the product AB can be calculated in a time in 0 (n

3
).

Towards the end of the 1960s, Strassen caused a considerable stir by improving
this algorithm. From an algorithmic point of view, this breakthrough is a landmark
in the history of divide-and-conquer, even though the equally surprising algorithm
for multiplying large integers (Section 7.1) was discovered almost a decade earlier.
The basic idea behind Strassen's algorithm is similar to that earlier one. First we
show that two 2 x 2 matrices can be multiplied using less than the eight scalar
multiplications apparently required by the definition. Let

A al a12 ) and B bl b 2 )
a2l a22 b2l b22

be two matrices to be multiplied. Consider the following operations, each of which
involves just one multiplication.

ml = (a2l + a22 - all) (b2 2 - b12 + bil)

m2 = alib

m3 = al 2 b 2 l

m4 = (all - a2 l) (b22 - b12) (7.9)

m5 = (a2l + a22 ) (bl 2 - bit)

m6 = (al2 - a2 l + all - a22) b2 2

m7 = a2 2 (bli + b2 2 - b 12 - b 2 l)

We leave the reader to verify that the required product AB is given by the following
matrix.

C- (n2+m 3  ni1 + m 2 + m5+m6'\
C +=m2 + m 4 m7 ml + m2 + m4 + m5 (7.10)

It is therefore possible to multiply two 2 x 2 matrices using only seven scalar mul-
tiplications. At first glance, this algorithm does not look very interesting: it uses

242



Section 7.7 Exponentiation

a large number of additions and subtractions compared to the four additions that
are sufficient for the classic algorithm.

If we now replace each entry of A and B by an n x n matrix, we obtain an algo-
rithm that can multiply two 2n x 2n matrices by carrying out seven multiplications
of n x n matrices, as well as a number of additions and subtractions of n x n matri-
ces. This is possible because the 2 x 2 algorithm does not rely on the commutativity
of scalar multiplication. Given that large matrices can be added much faster than
they can be multiplied, saving one multiplication more than compensates for the
supplementary additions.

Let t (n) be the time needed to multiply two n x n matrices by recursive use
of Equations 7.9 and 7.10. Assume for simplicity that n is a power of 2. Since
matrices can be added and subtracted in a time in 0(n 2 ), t(n)= 7t(n/2)+g(n),
where g (n) E 0 (n2 ). This recurrence is another instance of our general analysis for
divide-and-conquer algorithms. Equation 7.1 applies with f = 7, b = 2 and k = 2.
Since p > bk, the third case yields t(n)e 0(n1 g7 ). Square matrices whose size is
not a power of 2 are easily handled by padding them with rows and columns of
zeros, at most doubling their size, which does not affect the asymptotic running
time. Since lg 7 < 2.81, it is thus possible to multiply two n x n matrices in a time
in 0 (n2

.
8 1 ), provided scalar operations are elementary.

Following Strassen's discovery, a number of researchers attempted to improve
the constant co such that it is possible to multiply two n x n matrices in a time
in 0 (n ). The obvious thing to try first was to multiply two 2 x 2 matrices with
six scalar multiplications. But in 1971 Hopcroft and Kerr proved this is impossible
when the commutativity of multiplication cannot be used. The next thing to try was
to find a way to multiply two 3 x 3 matrices with at most 21 scalar multiplications.
This would yield a recursive algorithm to multiply n x n matrices in a time in
0(nflg 3 21), asymptotically faster than Strassen's algorithm since log3 21 < log 2 7.
Unfortunately, this too is impossible.

Almost a decade passed before Pan discovered a way to multiply two 70 x 70
matrices with 143 640 scalar multiplications-compare this with the 343 000 re-
quired by the classic algorithm-and indeed log7 0 143640 is a tiny bit smaller
than lg 7. This discovery launched the so-called decimal war. Numerous algo-
rithms, asymptotically more and more efficient, were discovered subsequently.
For instance, it was known at the end of 1979 that matrices could be multiplied in
a time in 0(n2 5 21813 ); imagine the excitement in January 1980 when this was im-
proved to ) (n2

5 2 18 0 1
). The asymptotically fastest matrix multiplication algorithm

known at the time of writing goes back to 1986 when Coppersmith and Winograd
discovered that it is possible, at least in theory, to multiply two n-x n matrices in a
time in 0 (n 2

.
376 ). Because of the hidden constants involved, however, none of the

algorithms found after Strassen's is of much practical use.

7.7 Exponentiation

Let a and n be two integers. We wish to compute the exponentiation x = a'.
For simplicity, we shall assume throughout this section that n > 0. If n is small,
the obvious algorithm is adequate.

243



Divide-and-Conquer Chapter 7

function exposeq(a, n)
r- a
for i - ton -I do r -ax r
return r

This algorithm takes a time in 63(n) since the instruction r - a x r is executed
exactly n -1 times, provided the multiplications are counted as elementary operations.
However, on most computers, even small values of n and a cause this algorithm
to produce integer overflow. For example, 1517 does not fit in a 64-bit integer.

If we wish to handle larger operands, we must take account of the time required
for each multiplication. Let M(q, s) denote the time needed to multiply two inte-
gers of sizes q and s. For our purpose, it does not matter whether we consider the
size of integers in decimal digits, in bits, or in any other fixed basis larger than 1.
Assume for simplicity that qi s q2 and sI < s2 imply that M(ql,sI)< M(q2 ,s2 ).
Let us estimate how much time our algorithm spends multiplying integers when
exposeq(a, n) is called. Let m be the size of a. First note that the product of two
integers of size i and j is of size at least i + j - 1 and at most i + j; see Problem 7.24.
Let ri and mi be the value and the size of r at the beginning of the i-th time round
the loop. Clearly, r1 = a and therefore ml = m. Since ri+I = ari, the size of ri+l
is at least m + mi -1 and at most m + mi. The demonstration by mathematical
induction that im - i + 1 < mi < im for all i follows immediately. Therefore, the
multiplication performed the i-th time round the loop concerns an integer of size
m and an integer whose size is between im - i + 1 and imu, which takes a time be-
tween M(m, im - i + 1) and M(m, im). The total time T(m, n) spent multiplying
when computing a' with exposeq is therefore

ELM(m,im- i-+ 1)< T(m,n)< EM(M, im) (7.11)
i-l i=l

where m is the size of a. This is a good estimate on the total time taken by exposeq
since most of the work is spent performing these multiplications.

If we use the classic multiplication algorithm (Section 1.2), then M (q, s) E 03 (qs).
Let c be such that M(q, s)< c qs.

n-l n-1

T(m,n) E M(m, im) < cm im
iil iil

n-I

=cm 2 
Zi<cm

2 n 2

Thus, T(m, n)e O(m2 n2 ). It is equally easy to show from Equation 7.11 that
T(m,n)e Q(m 2 n2 ) and therefore T(m,n) ) (m 2n 2 ); see Problem 7.25. On the
other hand, if we use the divide-and-conquer multiplication algorithm described
earlier in this chapter, M(q,s)e 0(sqlg(3

12)) when s > q, and a similar argument
yields T(m,n)e 0(mig3 n2).

The key observation for improving exposeq is that an - (a"/ 2 )2 when n is even.
This is interesting because an/2 can be computed about four times faster than an

244



Section 7.7 Exponentiation

with exposeq, and a single squaring (which is a multiplication) is sufficient to obtain
the desired result from a'12. This yields the following recurrence.

a ~if n =1
a"l (aa' 2 )2  if n is even

a x an 1 otherwise

For instance,

a2 9 =aa 2 8 = a(a 14
)2= a((a 7

)2)2 a((a(aa2)2) 2,

which involves only three multiplications and four squarings instead of the 28 mul-
tiplications required with exposeq. The above recurrence gives rise to the following
algorithm.

function expoDC(a, n)
if n = 1 then return a
if n is even then return [expoDC(a, n/2)]2

return a x expoDC(a, n - 1)

To analyse the efficiency of this algorithm, we first concentrate on the number of
multiplications (counting squarings as multiplications) performed by a call on
expoDC(a, n). Notice that the flow of control of the algorithm does not depend
on the value of a, and therefore the number of multiplications is a function only of
the exponent n; let us denote it by N(n).

No multiplications are performed when n = 1, so N(1)= 0. When n is even,
one multiplication is performed (the squaring of an/2) in addition to the N(n/2)
multiplications involved in the recursive call on expoDC(a, n/2). When n is odd,
one multiplication is performed (that of a by an 1) in addition to the N(n -1)
multiplications involved in the recursive call on expoDC (a, n - 1). Thus we have
the following recurrence.

[0 if n=1
N(n) N(n/2)+1 if n is even (7.12)

N(n - 1) +1 otherwise

An unusual feature of this recurrence is that it does not give rise to an increasing
function of n. For example,

N(15) = N(14)+1 = N(7)+2 = N(6)+3 = N(3)+4 = N(2)+5

whereas = N(1)+6 = 6

N(16) = N(8) +1 = N(4) +2 = N(2) +3 = N(1) +4 = 4.

This function is not even eventually nondecreasing; see Problem 7.26. Therefore,
Equation 7.1 cannot be used directly.

To handle such a recurrence, it is useful to bound the function from above and
below with nondecreasing functions. When n > 1 is odd,

245

N(n)= N(n - 1)+l = N((n - 1)/2)+2 = N([n/2])+2.



Divide-and-Conquer Chapter 7

On the other hand, when n is even, N(n)= N(Ln121)+l since Ln/2J = n/2 in that
case. Therefore,

N(Ln/21)+1 < N(n)< N([n/2J)+2 (7.13)

for all n > 1. Let N1 and N2 be functions defined by

N, (n) =50 if fl=1 (7.14)
XNj(Ln/2J)+i otherwise

for i = 1 and i = 2. Using Equation 7.13, it is easy to prove by mathematical
induction that N1 (n) < N(n) < N 2 (n) for all n; see Problem 7.27. But now both N1

and N2 are nondecreasing (also an easy proof by mathematical induction). More-
over, Ln/21 = n/2 when n >1 is a power of 2. Equation 7.1 applies to Ni (n) and
N2 (n) with f = 1, b = 2 and k = 0 to yield that both these functions are in E) (log n).
We conclude that N (n) is in 0 (log n) as well. Recall that exposeq required a number
of multiplications in 0() to perform the same exponentiation. Therefore, expoDC
is more efficient than its rival using this criterion. It remains to be seen if it is
also significantly better when the time spent on those multiplications is taken into
account.

Let M (q, s) denote again the time needed to multiply two integers of sizes
q and s, and let T(m, n) now denote the time spent multiplying by a call on
expoDC(a, n), where m is the size of a. Recall that the size of a' is at most im.
Inspection of the algorithm expoDC yields the following recurrence.

0 if n = 1
T(m,n)< T(m,n/2)+M(mn/2,mn/2) if n iseven (7.15)

T(m,n -1)+M(m, (n -1)m) otherwise

As with the recurrence for N, this implies that

T(m,n)< T(m, Ln/2J)+M(mLn/2J,mLn/21)+M(m, (n -1)m)

foralln > 1. If M(q,s)e ( (sq0-1) forsomeconstant ocwhens > q (a = 2withthe
classic multiplication algorithm whereas a = lg 3 with divide-and-conquer multi-
plication), Problem 7.29 shows that T(m, n) O(m' n 1). Amatchinglowerbound
is easier to obtain. The last or next to last multiplication performed by expoDC (a, n),
depending whether n is even or odd, consists of squaring d,121, an integer of size
greater than (m -1) Ln/2. This costs at least M((m - 1)Ln/2, (m -1)Ln/21),
which is in Q(((m -1)Ln/2J)Y) and therefore in 0(man'). We conclude that
T(m,n) c (m lna).

To summarize, the following table gives the time to compute an, where m is
the size of a, depending whether we use exposeq or expoDC, and whether we use
the classic or divide-and-conquer (D&C) multiplication algorithm.

exposeq

expoDC

multiplication

classic D&C

a (m 2 n 2 ) 6(mlg 3 n 2 )

E)(m 2n2 ) E)(m 1g3 n 1g3 )

246



Section 7.8 Putting it all together: Introduction to cryptography

It is interesting that nothing is gained-except perhaps a constant factor in speed-
by being only half-clever: both exposeq and expoDC take a time in O (m2 n2) if the
classic multiplication algorithm is used. This is true even though expoDC uses
exponentially fewer multiplications than expose.

As for binary searching, the algorithm expoDC requires only one recursive call
on a smaller instance. It is therefore an example of simplification rather than of
divide-and-conquer. However, this recursive call is not at the dynamic end of the
algorithm since a multiplication remains to be performed after it. This makes it
harder to find an iterative version. Nevertheless, such an algorithm exists, corre-
sponding intuitively to calculating a2 9 = al a4 a8 a16. We give it without further
ado, noting that this simple version systematically makes two useless multiplica-
tions, including the very last squaring of x.

function expoiter(a, n)
i -n; r -1; x- a
while i > 0 do

if i is odd then r - rx
x - x2

i - i . 2
return r

7.8 Putting it all together: Introduction to cryptography

Looking back at the previous section, it is disappointing that an exponential reduc-
tion in the number of multiplications required to compute a" does not translate
into a spectacular saving in running time. Nevertheless, there are applications for
which it is reasonable to count all multiplications at the same cost. This is the case
if we are interested in modular arithmetic, that is in the calculation of an modulo
some third integer z. Recall that x mod z denotes the remainder of the integer
division of x by z. For instance, 25 mod 7 = 4 because 25 = 3 x 7 + 4. If x and y
are two integers between 0 and z -1, and if z is an integer of size m, the mod-
ular multiplication xy mod z involves one ordinary integer multiplication of two
integers of size at most m, yielding an integer of size at most 2m, followed by a
division of the product by z, an integer of size m, to compute the remainder of
the division. Therefore, the time taken by each modular multiplication is rather
insensitive to the two numbers actually involved. Two elementary properties of
modular arithmetic will be used; see Problem 7.30.

xy mod z = [(x mod z)x(y mod z)] mod z

and
(x mod z)Y mod z = xy mod z

Thus, expose, expoDC and expoiter can be adapted to compute a' mod z in modu-
lar arithmetic without ever having to manipulate integers larger than max(a, z2 ).
For this, it suffices to reduce modulo z after each multiplication. For example,
expoiter gives rise to the following algorithm.

247



Divide-and-Conquer Chapter 7

function expomod(a, n, z)
{Computes all mod z}
i- n; r- 1; x- amodz
while i > 0 do

if i is odd then r - rx mod z
x - x2 mod z
i -i . 2

return r

The analysis in the previous section applies mutatis mutandis to conclude that this
algorithm needs only a number of modular multiplications in 0 (log n) to compute
an mod z. A more precise analysis shows that the number of modular multiplica-
tions is equal to the number of bits in the binary expansion of n, plus the number of
these bits that are equal to 1; it is thus approximately equal to 2 lg n for a typical n.
In contrast, the algorithm corresponding to exposeq requires n - 1 such multiplica-
tions for all n. For definiteness, say we wish to compute a' mod z where a, n and
z are 200-digit numbers and that numbers of that size can be multiplied modulo
z in one millisecond. Our algorithm expomod typically computes an mod n in less
than one second. The algorithm corresponding to exposeq would require roughly
10179 times the age of the Universe for the same task!

Impressive as this is, you may well wonder who needs to compute such huge
modular exponentiations in real life. It turns out that modern cryptography, the
art and science of secret communication over insecure channels, depends crucially
on this. Consider two parties, whom we shall call Alice and Bob, and assume that
Alice wishes to send some private message m to Bob over a channel susceptible
to eavesdropping. To prevent others reading the message, Alice transforms it into
a ciphertext c, which she sends to Bob. This transformation is the result of an
enciphering algorithm whose output depends not only on the message m but also
on another parameter k known as the key. Classically, this key is secret information
that has to be established between Alice and Bob before secret communication can
take place. From c and his knowledge of k, Bob can reconstruct Alice's actual
message m. Such secrecy systems rely on the hope that an eavesdropper who
intercepts c but does not know k will be unable to determine m from the available
information.

This approach to cryptography has been used with more or less success through-
out history. Its requirement that the parties must share secret information prior to
communication may be acceptable to the military and diplomats, but not to the or-
dinary citizen. In the era of the electronic super-highway, it is desirable for any two
citizens to be able to communicate privately without prior coordination. Can Alice
and Bob communicate secretly in full view of a third party if they do not share a
secret before the communication is established? The age of public-key cryptography
was launched when the thought that this may be possible came to Diffie, Hellman
and Merkle in the mid-seventies. Here, we present the amazingly simple solution
discovered a few years later by Rivest, Shamir and Adleman, which became known
as the RSA cryptographic system after the names of its inventors.

248



Section 7.8 Putting it all together: Introduction to cryptography

Consider two 100-digit prime numbers p and q chosen randomly by Bob;
see Section 10.6.2 for an efficient algorithm capable of testing the primality of such
large numbers. Let z be the product of p and q. Bob can compute z efficiently from
p and q. However, no known algorithm can recompute p and q from z within
the lifetime of the Universe, even using the fastest computer available at the time
of writing. Let (P be (p - 1) (q - 1). Let n be an integer chosen randomly by Bob
between 1 and z - 1 that has no common factors with (h. (It is not necessary for Bob
to verify explicitly that n has the desired property because he will soon find out if
it does not.) Elementary number theory tells us that there exists a unique integer
s between 1 and z - 1 such that ns mod (P = 1. Moreover, s is easy to compute
from n and (P-see Problem 7.31-and its existence is proof that n and (P have
no common factors. If s does not exist, Bob has to choose randomly a new value
for n; each attempt has a good probability of success. The key theorem is that
ax mod z = a whenever 0 • a < z and x mod (P = 1.

To allow Alice or anyone else to communicate with him privately, Bob makes
public his choice of z and n, but he keeps s secret. Let m be a message that Alice
wishes to transmit to Bob. Using standard encoding such as ASCII, Alice transforms
her message into a bit string, which she interprets as a number a. Assume for
simplicity that 0 < a < z -1; otherwise she can slice her message m into chunks
of appropriate size. Next, Alice uses algorithm expomod to compute c = an mod z,
which she sends to Bob over an insecure channel. Using his private knowledge
of s, Bob obtains a, and thus Alice's message m, with a call on expomod(c, s, z).
This works because

cS mod z = (an mod z)s mod z = (a')' mod z = a" 5 mod z = a.

Now consider the eavesdropper's task. Assuming she has intercepted all com-
munications between Alice and Bob, she knows z, n and c. Her purpose is to
determine Alice's message a, which is the unique number between 0 and z -1
such that c = an mod z. Thus she has to compute the n-th root of c modulo z.
No efficient algorithm is known for this calculation: modular exponentiations can
be computed efficiently with expomod but it appears that the reverse process is
infeasible. The best method known today is the obvious one: factorize z into p
and q, compute (P as (p - 1)(q - 1), use Problem 7.31 to compute s from n and (P,
and compute a = cS mod z exactly as Bob would have done. Every step in this
attack is feasible but the first: factorizing a 200-digit number is beyond the reach of
current technology. Thus Bob's advantage in deciphering messages intended for
him stems from the fact that he alone knows the factors of z, which are necessary
to compute (P and s. This knowledge does not come from his factorizing skills but
rather from the fact that he chose z's factors in the first place, and computed z from
them.

At the time of writing, the safety of this cryptographic scheme has not been
established mathematically: factorizing may turn out to be easy or not even nec-
essary to break the scheme. Moreover, an efficient factorizing algorithm is known,
but it requires the availability of a quantum computer, a device whose construction
is beyond the reach of current technology; see Section 12.6. Nevertheless, the secret

249



Divide-and-Conquer Chapter 7

system we just described is widely considered to be one of the best inventions in
the history of cryptography.

7.9 Problems

Problem 7.1. Consider an algorithm whose running time t(n) on instances of
size n is such that t(n)= 3t(n/2)-+ g (n) when n is even and sufficiently large,
where g(n)c 0(n). This is the recurrence we encountered early in our study of
the divide-and-conquer algorithm to multiply large integers in Section 7.1, before
we had discussed how to handle operands of odd length. Recall that solving it
yields t(n)e 0(nlg

3 I n is a power of 2). Because t(n)= 3t(n/2)+g(n) holds for
all sufficiently large even values of n rather than merely when n is a power of 2,
however, it may be tempting to conclude that t (n) e E) (n1g 3 I n is even). Show that
this conclusion could be premature without more information on the behaviour of
t(n) when n is odd. On the other hand, give a simple and natural condition on
t(n) that would allow the conclusion that it is in () (nlg 3 ) unconditionally.

Problem 7.2. In Section 7.1 we saw a divide-and-conquer algorithm to multiply
two n-figure integers in a time in 6 (n1g 3). The key idea was to reduce the required
multiplication to three half-size multiplications. Show that the operands to be
multiplied can be separated into three parts rather than two, so as to obtain the
required product after five multiplications of integers of size approximately n/3
rather than the nine submultiplications that would appear necessary at first sight.
Analyse the efficiency of the divide-and-conquer algorithm suggested by this idea.
Is it better than our algorithm from Section 7.1?

Problem 7.3. Generalize the algorithm suggested in Problem 7.2 by showing that
the multiplication of two n-figure integers can be reduced to 2k - 1 multiplications
of integers about k times shorter, for any integer constant k. Conclude that there
exists an algorithm A, that can multiply two n-figure integers in a time in 0(no,)
for every real number a > 1.

Problem 7.4. Use a simple argument to prove that Problem 7.3 would be impos-
sible if it required algorithm A, to take a time in 0(nf).

Problem 7.5. Continuing Problem 7.3, consider the following algorithm for mul-
tiplying large integers.

function supermul(u, v)
{We assume for simplicity u and v are the same size}
n - size of u and v
c - 1 + (lglgn)/lgn
return A, (u, v)

At first glance this algorithm seems to multiply two n-figure integers in a time in
O (n log n) since na = n lg n when c = 1 + (lg lg n) / lg n. Find at least two funda-
mental errors in this analysis of supermul.

250



Section 7.9 Problems

Problem 7.6. If you have not yet worked out Problems 4.6, 4.7 and 4.8, now is the
time!

Problem 7.7. What happens to the efficiency of divide-and-conquer algorithms if,
instead of using a threshold to decide when to revert to the basic subalgorithm, we
recur at most r times, for some constant r, and then use the basic subalgorithm?

Problem 7.8. Let a and b be positive real constants. For each positive real num-

ber s, consider the function fs l2° W ->O defined by

fS ( - Iax 2  if x<s
5) 63fs(xI2)+bx otherwise.

Prove by mathematical induction that if u = 4b/a and if v is an arbitrary positive
real constant, then fi (x) < fv (x) for every positive real number x.
Note: The constant u was chosen so that au2 = 3a(u/2)2+bu. This problem illus-
trates the rule according to which the optimal threshold in a divide-and-conquer
algorithm can be estimated by finding the size n of the instance for which it makes
no difference whether we apply the basic subalgorithm directly or whether we go
on for one more level of recursion. Things are not so simple in practice because the
size of subinstances cannot be halved indefinitely, but this rule remains an excellent
guideline nevertheless.

Problem 7.9. Consider the sequential search algorithm sequential from Section 7.3
that finds some element x in array T[1. . n]. Assuming the elements of T are
distinct, that x is indeed somewhere in the array, and that it is to be found with
equal probability at each possible position, prove that the average number of trips
round the loop is (n + 1)/2. .

Problem 7.10. The recursive algorithm binsearch for binary search (Section 7.3)
handles search in an empty array T[1 . . 0] as a special case (explicit test for n = 0).
Convince yourself that this test is not necessary in the iterative version biniter,
regardless of the outcome of the comparison between x and T [0], provided it is al-
lowable to consult the value of T[0] (meaning that there mustbeno range checks).

Problem 7.11. Quick inspection of the iterative binary search algorithm biniter in
Section 7.3 shows what is apparently an inefficiency. Suppose T contains 17 distinct
elements and x = T[13]. On the first trip round the loop, i = 1, j = 17, and k = 9.
The comparison between x and T[9] causes the assignment i - 10 to be executed.
On the second trip round the loop i = 10, j = 17, and k = 13. A comparison is then
made between x and T[13]. This comparison could allow us to end the search
immediately, but no test is made for equality, and so the assignment j - 13 is
carried out. Two more trips round the loop are necessary before we leave with
i = j = 13. In contrast, algorithm Binary Search from Section 4.2.4 leaves the loop
immediately after it finds the element it is looking for.
Thus biniter systematically makes a number of trips round the loop in 0 (log n),
regardless of the position of x in T, whereas Binary Search may make only one or
two trips round the loop if x is favourably situated. On the other hand, a trip round

251



Divide-and-Conquer Chapter 7

the loop in Binary Search takes a little longer to execute on the average than a trip
round the loop in biniter. To determine which algorithm is asymptotically better,
analyse precisely the average number of trips round the loop that each makes.
For simplicity, assume that T contains n distinct elements and that x appears in T,
occupying each possible position with equal probability. Prove the existence of a
constant c such that on the average Binary Search saves at most c trips round the
loop compared with biniter. In conclusion, which is the better algorithm when the
instance is arbitrarily large?

Problem 7.12. Let T[1.. n] be a sorted array of distinct integers, some of which
may be negative. Give an algorithm that can find an index i such that 1 < i < n
and T[i]= i, provided such an index exists. Your algorithm should take a time in
o (log n) in the worst case.

Problem 7.13. The use of sentinels in algorithm merge requires the availability
of an additional cell in the arrays to be merged; see Section 7.4.1. Although this
is not an issue when merge is used within mergesort, it can be a nuisance in other
applications. More importantly, our merging algorithm can fail if it is not possible
to guarantee that the sentinels are strictly greater than any possible value in the
arrays to be merged.

(a) Give an example of arrays U and V that are sorted but where the result of
merge(U, V, T) is not what it should be. What is the contents of T after this
pathological call? (You are allowed the value co in arrays U and V and you
may wish to specify the values of U and V outside the bounds of the arrays.)

(b) Give a procedure for merging that does not use sentinels. Your algorithm must
work correctly in linear time provided the arrays U and V are sorted prior to
the call.

Problem 7.14. In Section 7.4.1 we saw an algorithm merge capable of merging two
sorted arrays U and V in linear time, that is, in a time in the exact order of the sum
of the lengths of U and V. Find another merging algorithm that achieves the same
goal, also in linear time, but without using an auxiliary array: the sections T[l .. k]
and T[k + 1 . n] of an array are sorted independently, and you have to sort the
whole array T[1 . . n ] using only a fixed amount of additional storage.

Problem 7.15. Rather than separate T[I . n] into two half-size arrays for the pur-
pose of merge sorting, we might choose to separate it into three arrays of size n : 3,
(n + 1) .3 and (n + 2) : 3, to sort each of these recursively, and then to merge the
three sorted arrays. Give a more formal description of this algorithm and analyse
its execution time.

Problem 7.16. Consider an array T[l..n]. As in the average-case analysis of
quicksort, assume that the elements of T are distinct and that each of the n! pos-
sible initial permutations of the elements is equally likely. Consider a call on
pivot(T[I . . n], 1). Prove that each of the (1 -1)! possible permutations of the el-
ements in T[1 . . I 1] is equally likely after the call. Prove the similar statement
concerning T[1 + 1, n].

252



Section 7.9 Problems

Problem 7.17. Give a linear-time algorithm for implementing pivotbis from Sec-
tions 7.4.2 and 7.5. Your algorithm should scan the array only once, and no auxiliary
arrays should be used.

Problem 7.18. Prove that the selection algorithm of Section 7.5 takes linear time on
the average if we replace the first instruction in the repeat loop with " p - T[i] ".
Assume that the elements of the array are distinct and that each of the possible
initial permutations of the elements is equally likely.

Problem 7.19. Let al, a2,..., ak be positive real numbers whose sum is strictly
less than 1. Consider a function f: N -l > such that

f(n)sf([ainJ)+f([a2 nJ)+ * +f(Lakn.l)+cn

for some positive c and all sufficiently large n. Prove by constructive induction
thatf(n) 0(n).
Would the above work in general if the ai's sum to exactly I? Justify your answer
with an easy argument.

Problem 7.20. An array T contains n elements. You want to find the m smallest,
where m is much smaller than n. Would you

(a) sort T and pick the first m,

(b) call select (T, i) for i = 1, 2, . . ., m, or

(c) use some other method?

Justify your answer.

Problem 7.21. The array T is as in the previous problem, but now you want the
elements of rank [n/21, En/21 + 1. [n/21 + m -1. Would you

(a) sort T and pick the appropriate elements,

(b) use select m times, or

(c) use some other method?

Justify your answer.

Problem 7.22. The number of additions and subtractions needed to calculate the
product of two 2 x 2 matrices using Equations 7.9 and 7.10 seems at first to be 24.
Show that this can be reduced to 15 by using auxiliary variables to avoid recalcu-
lating terms such as ml + m2 + M4 .

Problem 7.23. Assuming n is a power of 2, find the exact number of scalar addi-
tions and multiplications needed by Strassen's algorithm to multiply two n x n ma-
trices. (Use the result of Problem 7.22.) Your answer will depend on the threshold
used to stop making recursive calls. Bearing in mind what you learnt in Section 7.2,
propose a threshold that minimizes the number of scalar operations.

253



Divide-and-Conquer Chapter 7

Problem 7.24. We say that an integer x is of (decimal) size n if 10"1 < x < 10" - 1.
Prove that the product of two integers of size i and j is of size at least i + j 1
and at most i + j. Prove that this rule applies equally well in any fixed basis b 2 2,
when we say that an integer x is of size n if b"-1 < x < bn - 1.

Problem 7.25. Let T(m, n) be the time spent multiplying when computing a'
with a call on exposeq(a, n), where m is the size of a; see Section 7.7. Use Equa-
tion 7.11 with M(q, s) E E((qs) to conclude that T(m, n) (E- Q(m 2 n 2 ).

Problem 7.26. Consider the function N(n) given by Equation 7.12, which counts
the number of multiplications needed to compute a" with algorithm expoDC from
Section 7.7. We saw that N(15)> N(16). Prove the existence of an infinity of in-
tegers n such that N(n)> N(n + 1). Conclude that this function is not eventually
nondecreasing.

Problem 7.27. Use Equations 7.12, 7.13 and 7.14 to prove that

Ni(n)< N(n)< N2 (n)

for all n and both N1 (n) and N2 (n) are nondecreasing functions.

Problem 7.28. Algorithm expoDC from Section 7.7 does not always minimize the
number of multiplications-including squarings-to calculate a". For instance, it
calculates a15 as a(a(a a 2 ) 2 )2 , which requires six multiplications. Show that in fact
a 15 can be calculated with as few as five multiplications. Resist the temptation to
use the formula a15 = ((((a 2 )2 )2 )2) /a and claim that a division is just another form
of multiplication!

Problem 7.29. Let T(m, n) be given by Equation 7.15. This is the time spent
multiplying when calling expoDC (a, n), where m is the size of a; see Section 7.7.
If M(q, s) c (sq0 1 ) for some constant ot when s 2 q, prove that

T(m,n)r= 0(mono).

Problem 7.30. Consider any integers x, y and z such that z is positive. Prove
that

xy mod z = [(x mod z)x(y mod z)] mod z

and

(x mod z)y mod z = xy mod z.

Hint: write x as qz + r, where r = x mod z and q = x . z.

Problem 7.31. Let u and v be two positive integers and let d be their greatest
common divisor.

(a) Prove that there exist integers a and b such that au + bv = d.

254



Section 7.9 Problems

[Hint: Suppose without loss of generality that u > v. If u = v, then d = v and
the result is immediate (take a = 0 and b = 1). Otherwise, let w = u mod v.
Note that v < u and w < v. First show that d is also the greatest common
divisor of v and w, which is why Euclid's algorithm computes the greatest
common divisor correctly. By mathematical induction, now let a' and b' be
such that a'v + b'w = d. Finally take a = b' and b = a' - (u - v)b'. It re-
mains to prove that au + bv = d as desired.]

(b) Give an efficient algorithm to compute d, a and b from u and v. Your algo-
rithm should not calculate d before starting work on a and b.
[Hint: The hint above is relevant.]

(c) Consider two integers n and 4 such that gcd(n, >)) 1. Give an efficient algo-
rithm to determine an integer s such that ns mod 4) 1.
[Hint: Using the previous subproblem, compute s and t such that ns + tH = 1.]

Problem 7.32. In this problem, you are invited to work out a toy example of
encipherment and decipherment using the RSA public-key cryptographic system;
see Section 7.8. Assume Bob chooses his two "large" prime numbers to be p = 19
and q = 23. He multiplies them to obtain z = 437. Next, he chooses randomly
n = 13. Compute D = (p - 1)(q - 1) and use Problem 7.31 to find the unique s
between 1 and z - 1 such that ns mod 4 1. Bob makes z and n public, but he
keeps s secret.
Next, suppose Alice wishes to send cleartext message m = 123 to Bob. She looks
up Bob's z = 437 and n = 13 in the public directory. Use expomod to compute the
ciphertext c = m I mod z. Alice sends c to Bob. Use Bob's secret s to decipher
Alice's message: compute c' mod z with expomod. Is your answer m = 123 as it
should be?
Of course, much bigger numbers would be used in real life.

Problem 7.33. Consider the matrix

F (° 1).

Let i and j be any two integers. What is the product of the vector (i, j) and the
matrix F? What happens if i and j are two consecutive numbers from the Fibonacci
sequence? Use this idea to invent a divide-and-conquer algorithm to calculate this
sequence, and analyse its efficiency (1) counting all arithmetic operations at unit
cost, and (2) counting a time in 0(sql-1) to multiply integers of size q and s
when s > q. Recall that the size of the n-th Fibonacci number is in ( (n).

Problem 7.34. Represent the polynomial p(n)= ao + aln + a2n
2 + . + adnd of

degree d by an array P [0.. d] containing its coefficients. Suppose you already have
an algorithm capable of multiplying a polynomial of degree k by a polynomial of
degree 1 in a time in 0 (k), as well as another algorithm capable of multiplying two
polynomials of degree k in a time in 0 (k log k). Let n, n2,..., n.a be integers. Give
an efficient algorithm based on divide-and-conquer to find the unique polynomial
p (n) of degree d whose coefficient of highest degree is 1, such that p (n1 ) = p (n2 )
... = p(nd)= 0. Analyse the efficiency of your algorithm.

255



Divide-and-Conquer Chapter 7

Problem 7.35. Let Til. . n] be an array of n integers. An integer is a majority
element in T if it appears strictly more than n/2 times in T. Give an algorithm that
can decide whether an array T[1. . n] contains a majority element, and if so find it.
Your algorithm must run in linear time in the worst case.

Problem 7.36. Rework Problem 7.35 with the supplementary constraint that the
only comparisons allowed between the elements of T are tests of equality. You
may therefore not assume that an order relation exists between the elements.

Problem 7.37. If you could not manage Problem 7.36, try again but allow your
algorithm to take a time in 0 (n log n) in the worst case.

Problem 7.38. are to organize a tournament involving n competitors. Each com-
petitor must play exactly once against each possible opponent. Moreover, each
competitor must play exactly one match every day, with the possible exception of
a single day when he or she does not play at all.

(a) If n is a power of 2, give an algorithm to construct a timetable allowing the
tournament to be finished in n - 1 days.

(b) For any integer n > 1 give an algorithm to construct a timetable allowing
the tournament to be finished in n - 1 days if n is even, or in n days if n
is odd. For example, Figure 7.7 gives possible timetables for tournaments in-
volving five and six players.

Day

1
2

(n = 5) 3
4
5

Day

1

2

(n =6) 3
4
5

Player
1 2 3 4 5

2 1 - 5 4
3 5 1 - 2
4 3 2 1 -
5 - 4 3 1
- 4 5 2 3

Player
1 2 3 4 5 6

2 1 6 5 4 3
3 5 1 6 2 4
4 3 2 1 6 5
5 6 4 3 1 2
6 4 5 2 3 1

Figure 7.7. Timetables for five and six players

Problem 7.39. You are given the Cartesian coordinates of n points in the plane.
Give an algorithm capable of finding the closest pair of points in a time in 0 (n log n)
in the worst case.

256



Section 7.10 References and further reading

Problem 7.40. Consider an array T[1. . n] and an integer k between 1 and n.
Use simplification to design an efficient algorithm to interchange the first k and
the last n - k elements of T without making use of an auxiliary array. Analyse the
running time of your algorithm.

Problem 7.41. An n-tally is a circuit that takes n bits as input and produces
1 + hIg n] bits as output. It counts (in binary) the number of bits equal to 1 among
the inputs. For example, if n = 9 and the inputs are 011001011, the output is
0101. An (i, j)-adder is a circuit that has one i-bit input, one j-bit input, and one
[1 + max (i, j) I-bit output. It adds its two inputs in binary. For example, if i = 3,
j = 5, and the inputs are 101 and 10111 respectively, the output is 011100. It is al-
ways possible to construct an (ii, j) -adder using exactly max (i, j) 3-tallies. For this
reason the 3-tally is often called a full adder.

(a) Using full adders and (i, j)-adders as primitive elements, show how to build
an efficient n-tally.

(b) Give the recurrence, including the initial conditions, for the number of 3-tallies
needed to build your n-tally. Do not forget to count the 3-tallies that are part
of any (i, j)-adders you might have used.

(c) Using the 0 notation, give the simplest possible expression for the number of
3-tallies needed in the construction of your n-tally. Justify your answer.

Problem 7.42. A switch is a circuit with two inputs, a control, and two outputs.
It connects input A with output A and input B with output B, or input A with output
B and input B with output A, depending on the position of the control; see Fig-
ure 7.8. Use these switches to construct a network with n inputs and n outputs
able to implement any of the n! possible permutations of the inputs. The number
of switches used must be in 0 (n log n).

A - A A A

B_ B B B

Figure 7.8. Switches

7.10 References and further reading

The algorithm for multiplying large integers in a time in 0(n15 9 ) is attributed
to Karatsuba and Ofman (1962). A practical algorithm for the rapid multipli-
cation of integers with up to 10,000 decimal digits is given in Pollard (1971).
The fastest known algorithm, which can multiply two n-figure integers in a time in
o (n log n log log n), is due to Schonhage and Strassen (1971); its details are spelled
out in Brassard, Monet and Zuffellato (1986). A good survey of algorithms for large

257



Divide-and-Conquer Chapter 7

integer multiplication is given in the 1981 second edition of Knuth (1969), which
includes the answer to Problems 7.2 and 7.3. See also Borodin and Munro (1975)
and Turk (1982).

The technique to determine the optimal threshold at which to use the basic sub-
algorithm rather than continuing to divide the subproblems is original to Brassard
and Bratley (1988). The solution to Problem 7.11 is also given in Brassard and Brat-
ley (1988); it provides yet another nice application of the technique of constructive
induction.

Quicksort is from Hoare (1962). Mergesort and quicksort are discussed in detail
in Knuth (1973), which is a compendium of sorting techniques. Problem 7.14 was
solved by Kronrod; see the solution to Exercise 18 of Section 5.2.4 of Knuth (1973).
The algorithm linear in the worst case for selection and for finding the median is
due to Blum, Floyd, Pratt, Rivest and Tarjan (1972).

The algorithm that multiplies two n x n matrices in a time in 0 (n2
.
8 1 ) comes

from Strassen (1969). Subsequent efforts to do better than Strassen's algorithm
began with the proof by Hopcroft and Kerr (1971) that seven multiplications are
necessary to multiply two 2 x 2 matrices in a noncommutative structure; the first
positive success was obtained by Pan (1980), and the algorithm that is asymptoti-
cally the most efficient known at present is by Coppersmith and Winograd (1990).

The thought that secure communication over insecure channels can be achieved
without prior agreement on a secret came independently to Merkle (1978) and
Diffie and Hellman (1976). The RSA public-key cryptographic system described
in Section 7.8, invented by Rivest, Shamir and Adleman (1978), was first pub-
lished by Gardner (1977); be warned however that the challenge issued there was
successfully taken up by Atkins, Graff, Lenstra and Leyland in April 1994 after
eight months of calculation on more than 600 computers throughout the world.
The efficient algorithm capable of breaking this system on a quantum computer
is due to Shor (1994). For more information about cryptology, consult the intro-
ductory papers by Kahn (1966) and Hellman (1980) and the books by Kahn (1967),
Denning (1983), Kranakis (1986), Koblitz (1987), Brassard (1988), Simmons (1992),
Schneier (1994) and Stimson (1995). For an approach to cryptography that remains
secure regardless of the eavesdropper's computing power, consult Bennett, Bras-
sard and Ekert (1992). The natural generalization of Problem 7.28 is examined in
Knuth (1969).

The solution to Problem 7.33 can be found in Gries and Levin (1980) and Ur-
banek (1980). Problem 7.39 is solved in Bentley (1980), but consult Section 10.9 for
more on this problem. Problem 7.40 is solved in Gries (1981); see also Brassard and
Bratley (1988).

258



Chapter 8

Dynamic Programming

In the previous chapter we saw that it is often possible to divide an instance into
subinstances, to solve the subinstances (perhaps by dividing them further), and
then to combine the solutions of the subinstances so as to solve the original instance.
It sometimes happens that the natural way of dividing an instance suggested by
the structure of the problem leads us to consider several overlapping subinstances.
If we solve each of these independently, they will in turn create a host of identical
subinstances. If we pay no attention to this duplication, we are likely to end up
with an inefficient algorithm; if, on the other hand, we take advantage of the dupli-
cation and arrange to solve each subinstance only once, saving the solution for later
use, then a more efficient algorithm will result. The underlying idea of dynamic
programming is thus quite simple: avoid calculating the same thing twice, usually
by keeping a table of known results that fills up as subinstances are solved.

Divide-and-conquer is a top-down method. When a problem is solved by
divide-and-conquer, we immediately attack the complete instance, which we then
divide into smaller and smaller subinstances as the algorithm progresses. Dynamic
programming on the other hand is a bottom-up technique. We usually start with
the smallest, and hence the simplest, subinstances. By combining their solutions,
we obtain the answers to subinstances of increasing size, until finally we arrive at
the solution of the original instance.

259



Dynamic Programming Chapter 8

We begin the chapter with two simple examples of dynamic programming that
illustrate the general technique in an uncomplicated setting. The following sections
pick up the problems of making change, which we met in Section 6.1, and of filling
a knapsack, encountered in Section 6.5.

8.1 Two simple examples

8.1.1 Calculating the binomial coefficient
Consider the problem of calculating the binomial coefficient

I ifk=O ork=n

(kn) = (n 1) + (n-1) if 0 < k < n
0 otherwise.

Suppose 0 < k < n. If we calculate (nk) directly by

function C(n, k)
if k = O or k = n then return I
else return C(n -1, k - ) +C(n -1, k)

many of the values C(i, j), i < n, j < k, are calculated over and over. For exam-
ple, the algorithm calculates C(5,3) as the sum of C(4,2) and C(4,3). Both these
intermediate results require us to calculate C(3,2). Similarly the value of C(2,2)
is used several times. Since the final result is obtained by adding up a number of

is, the execution time of this algorithm is sure to be in Q ((nk)) . We met a similar
phenomenon before in the algorithm Fibrec for calculating the Fibonacci sequence;
see Section 2.7.5.

If, on the other hand, we use a table of intermediate results-this is of course
Pascal's triangle-we obtain a more efficient algorithm; see Figure 8.1. The table
should be filled line by line. In fact, it is not even necessary to store the entire table:
it suffices to keep a vector of length k, representing the current line, and to update

this vector from left to right. Thus to calculate (') the algorithm takes a time in
9 (nk) and space in 0((k), if we assume that addition is an elementary operation.

0 1 2 3 ... k-l k

0

2

n

l I
1 2 1

C(n -1,k -1) C(n- 1,k)

\n +
C(n. k)

Figure 8.1. Pascal's triangle

260



Section 8.1 Two simple examples

8.1.2 The World Series
Imagine a competition in which two teams A and B play not more than 2n- 1
games, the winner being the first team to achieve n victories. We assume that there
are no tied games, that the results of each match are independent, and that for any
given match there is a constant probability p that team A will be the winner, and
hence a constant probability q = 1 - p that team B will win.

Let P ( i, j) be the probability that team A will win the series given that they still
need i more victories to achieve this, whereas team B still need j more victories
if they are to win. For example, before the first game of the series the probability
that team A will be the overall winner is P(n, n): both teams still need n victories
to win the series. If team A require 0 more victories, then in fact they have already
won the series, and so P(0, i)= 1, 1 < i < n. Similarly if team B require 0 more
victories, then they have already won the series, and the probability that team A
will be the overall winners is zero: so P(i, 0)= 0, 1 < i < n. Since there cannot
be a situation where both teams have won all the matches they need, P(0, () is
meaningless. Finally, since team A win any given match with probability p and
lose it with probability q,

P(ij)= pP(i- 1,j)+qP(ij -1), i > 1, j > 1.

Thus we can compute P (i, j) as follows.

function P(i, j)
if i = 0 then return 1
else if j = 0 then return 0
else return pP(i -1, j)+qP(i, j -1)

Let T(k) be the time needed in the worst case to calculate P(i, j), where k i + j.
With this method, we see that

T(1) = c

T(k) < 2T(k- 1)+d, k > 1

where c and d are constants. Rewriting T(k -1) in terms of T(k - 2), and so on,
we find

T(k) < 4T(k - 2)+2d + d, k > 2

< 2k lT(1)+(2k 2+ 2 k-3 + -*** + 2 + 1)d

= 2 k 1C + (2 k 1 - 1)d

= 2k(c/2 + d/2)-d.

T (k) is therefore in 0 (2 k), which is 0 (4fl) if i = j = n. In fact, if we look at the way
the recursive calls are generated, we find the pattern shown in Figure 8.2, which
is identical to that obtained in the naive calculation of the binomial coefficient. To
see this, imagine that any call P(m, n) in the figure is replaced by C(m + n, n).

261



Dynamic Programming Chapter 8

Thus P(i, j) is replaced by C(i + j, j), P- l, j) by C(i + j - 1, j), and P(i, j - 1)
by C (i + j - 1, j - 1). Now the pattern of calls shown by the arrows corresponds
to the calculation

C(i + j, j)= C(i + j - 1, j)+C(i + j - 1, j - 1)

of a binomial coefficient. The total number of recursive calls is therefore exactly

2('+j) - 2; see Problem 8.1. To calculate the probability P(n, n) that team A will

win given that the series has not yet started, the required time is thus in Q ((n

P(i, j) k matches left

calls
P(i -,j) P(ij- 1) k -I matches left

that call 1
P(i - 2,j) P(i - Ij - 1) P(ij - 2) k - 2 matches left

etc.

Figure 8.2. Recursive calls made by a call on P(i, j)

Problem 1.42 asks the reader to show that (n2n) 2 4n / (2n + 1). Combining these re-
sults, we see that the time required to calculate P(n, n) is in 0(4f) and in Q(4"/n).
The method is therefore not practical for large values of n. (Although sporting
competitions with n > 4 are the exception, this problem does have other applica-
tions!)

To speed up the algorithm, we proceed more or less as with Pascal's triangle:
we declare an array of the appropriate size and then fill in the entries. This time,
however, instead of filling the array line by line, we work diagonal by diagonal.
Here is the algorithm to calculate P (n, n).

function series(n, p)
array P [O.. n, O.. n]
q - -p
{Fill from top left to main diagonal}
for s - 1 to n do

P[O,sII 1; P[s,O]- O
for k - I to s - I do

P[k, s - k]- pP[k - 1, s - k]+qP[k, s - k - 1]
{Fill from below main diagonal to bottom right}
for s - 1 to n do

fork- ton -sdo
P[s+k,n -k]- pP[s+k-1,n- k]+qP[s+k,n- k -]

return Pin, n]

Since the algorithm has to fill an n x n array, and since a constant time is required
to calculate each entry, its execution time is in e (n2 ). As with Pascal's triangle, it is
easy to implement this algorithm so that storage space in 0(n) is sufficient.

262



Section 8.2 Making change (2)

8.2 Making change (2)
Recall that the problem is to devise an algorithm for paying a given amount to a
customer using the smallest possible number of coins. In Section 6.1 we described a
greedy algorithm for this problem. Unfortunately, although the greedy algorithm is
very efficient, it works only in a limited number of instances. With certain systems
of coinage, or when coins of a particular denomination are missing or in short
supply, the algorithm may either find a suboptimal answer, or not find an answer
at all.

For example, suppose we live where there are coins for 1, 4 and 6 units. If we
have to make change for 8 units, the greedy algorithm will propose doing so using
one 6-unit coin and two 1-unit coins, for a total of three coins. However it is clearly
possible to do better than this: we can give the customer his change using just two
4-unit coins. Although the greedy algorithm does not find this solution, it is easily
obtained using dynamic programming.

As in the previous section, the crux of the method is to set up a table containing
useful intermediate results that are then combined into the solution of the instance
under consideration. Suppose the currency we are using has available coins of n
different denominations. Let a coin of denomination i, 1 < i < n, have value di
units. We suppose, as is usual, that each di > 0. For the time being we shall also
suppose that we have an unlimited supply of coins of each denomination. Finally
suppose we have to give the customer coins worth N units, using as few coins as
possible.

To solve this problem by dynamic programming, we set up a table
c [1. ..nO.. N], with one row for each available denomination and one column
for each amount from 0 units to N units. In this table c [ i, j] will be the minimum
number of coins required to pay an amount of j units, 0 < j < N, using only coins
of denominations 1 to i, 1 < i < n. The solution to the instance is therefore given
by c [n, N] if all we want to know is how many coins are needed. To fill in the table,
note first that c [ i, 0] is zero for every value of i. After this initialization, the table
can be filled either row by row from left to right, or column by column from top
to bottom. To pay an amount j using coins of denominations 1 to i, we have in
general two choices. First, we may choose not to use any coins of denomination i,
even though this is now permitted, in which case c [i, j] = c [i - 1, j1]. Alternatively,
we may choose to use at least one coin of denomination i. In this case, once we have
handed over the first coin of this denomination, there remains to be paid an amount
of j -di units. To pay this takes c[i,j - di] coins, so c[i,j]= 1 + c[i,j -di. Since
we want to minimize the number of coins used, we choose whichever alternative
is the better. In general therefore

c[i, j]= min(c[i -1, j], 1 + c[i, j - di]).

When i = 1 one of the elements to be compared falls outside the table. The same is
true when j < di. It is convenient to think of such elements as having the value + oo.
If i = 1 and j < dl, then both elements to be compared fall outside the table. In
this case we set c [i, j] to + co to indicate that it is impossible to pay an amount j
using only coins of type 1.

263



Dynamic Programming Chapter 8

Figure 8.3 illustrates the instance given earlier, where we have to pay 8 units
with coins worth 1, 4 and 6 units. For example, c [3,8] is obtained in this case as
the smaller of c [2,8] = 2 and 1 + c [3,8 - d3] = 1 + c [3,2] = 3. The entries elsewhere
in the table are obtained similarly. The answer to this particular instance is that we
can pay 8 units using only two coins. In fact the table gives us the solution to our
problem for all the instances involving a payment of 8 units or less.

Amount: 0 1 2 3 4 5 6 7 8

di = 1 0 1 2 3 4 5 6 7 8
d2 =4 0 1 2 3 1 2 3 4 2
d3 =6 0 1 2 3 1 2 1 2 2

Figure 8.3. Making change using dynamic programming

Here is a more formal version of the algorithm.

function coins (N)
{Gives the minimum number of coins needed to make
change for N units. Array d[Il . .n] specifies the coinage:
in the example there are coins for 1, 4 and 6 units. }

array d[1. .n] = [1, 4,6]
array c[1..n,O..NJ
for i - ito n doc[i,0]- 0
for i - 1 to n do

for j - 1 to N do
c[i,j] - if i = 1 and j < d[i] then +oo

else if i = 1 then 1 + c[,j - d[l]]
else if j < d[i] then c[i -1, j]
else min(c[i -1,j], 1 + c[ij - d[i]])

return c[n,N]

If an unlimited supply of coins with a value of 1 unit is available, then we can
always find a solution to our problem. If this is not the case, there may be values
of N for which no solution is possible. This happens for instance if all the coins
represent an even number of units, and we are required to pay an odd number of
units. In such instances the algorithm returns the artificial result + co. Problem 8.9
invites the reader to modify the algorithm to handle a situation where the supply
of coins of a particular denomination is limited.

Although the algorithm appears only to say how many coins are required to
make change for a given amount, it is easy once the table c is constructed to discover
exactly which coins are needed. Suppose we are to pay an amount j using coins
of denominations 1,2,...,i. Then the value of c [i,j] says how many coins are
needed. If c[i, j]= c [i -1, j], no coins of denomination i are necessary, and we
move up to c[i - 1,j] to see what to do next; if c[ij]= 1 + c[ij - di], then we
hand over one coin of denomination i, worth di, and move left to c[i, j - di] to
see what to do next. If c[i -1, j] and 1 + c[i, j - di] are both equal to c[i, j], we

264



Section 8.3 The principle of optimality

may choose either course of action. Continuing in this way, we eventually arrive
back at c[O, 0], and now there remains nothing to pay. This stage of the algorithm
is essentially a greedy algorithm that bases its decisions on the information in the
table, and never has to backtrack.

Analysis of the algorithm is straightforward. To see how many coins are needed
to make change for N units when n different denominations are available, the
algorithm has to fill up an n x (N + 1) array, so the execution time is in W(nN).
To see which coins should be used, the search back from c [En, N] to c [0 O] makes
n- 1 steps to the row above (corresponding to not using a coin of the current
denomination) and c [n, N] steps to the left (corresponding to handing over a coin).
Since each of these steps can be made in constant time, the total time required is in
O(n + c[n,N]).

8.3 The principle of optimality

The solution to the problem of making change obtained by dynamic programming
seems straightforward, and does not appear to hide any deep theoretical consid-
erations. However it is important to realize that it relies on a useful principle
called the principle of optimality, which in many settings appears so natural that it
is invoked almost without thinking. This principle states that in an optimal se-
quence of decisions or choices, each subsequence must also be optimal. In our
example, we took it for granted, when calculating c [ i, j] as the lesser of c [ i - 1, j]
and 1 + c[i, j - di], that if c[ i, j] is the optimal way of making change for j units
using coins of denominations 1 to i, then c [ i - 1, j] and c [ i, j - di] must also give
the optimal solutions to the instances they represent. In other words, although the
only value in the table that really interests us is c En, N], we took it for granted that
all the other entries in the table must also represent optimal choices: and rightly
so, for in this problem the principle of optimality applies.

Although this principle may appear obvious, it does not apply to every prob-
lem we might encounter. When the principle of optimality does not apply, it will
probably not be possible to attack the problem in question using dynamic program-
ming. This is the case, for instance, when a problem concerns the optimal use of
limited resources. Here the optimal solution to an instance may not be obtained
by combining the optimal solutions to two or more subinstances, if the resources
used in these subsolutions add up to more than the total resources available.

For example, if the shortest route from Montreal to Toronto passes through
Kingston, then that part of the journey from Montreal to Kingston must also follow
the shortest possible route, as must the part of the journey from Kingston to Toronto.
Thus the principle of optimality applies. However if the fastest way to drive from
Montreal to Toronto takes us through Kingston, it does not necessarily follow that
it is best to drive as fast as possible from Montreal to Kingston, and then to drive
as fast as possible from Kingston to Toronto. If we use too much petrol on the first
half of the trip, we may have to fill up somewhere on the second half, losing more
time than we gained by driving hard. The sub-trips from Montreal to Kingston,
and from Kingston to Toronto, are not independent, since they share a resource, so
choosing an optimal solution for one sub-trip may prevent our using an optimal
solution for the other. In this situation, the principle of optimality does not apply.

265



Dynamic Programming Chapter 8

For a second example, consider the problem of finding not the shortest, but the
longest simple route between two cities, using a given set of roads. A simple route is
one that never visits the same spot twice, so this condition rules out infinite routes
round and round a loop. If we know that the longest simple route from Montreal
to Toronto passes through Kingston, it does not follow that it can be obtained by
taking the longest simple route from Montreal to Kingston, and then the longest
simple route from Kingston to Toronto. It is too much to expect that when these
two simple routes are spliced together, the resulting route will also be simple. Once
again, the principle of optimality does not apply.

Nevertheless, the principle of optimality applies more often than not. When it
does, it can be restated as follows: the optimal solution to any nontrivial instance
of a problem is a combination of optimal solutions to some of its subinstances. The
difficulty in turning this principle into an algorithm is that it is not usually obvious
which subinstances are relevant to the instance under consideration. Coming back
to the example of finding the shortest route, how can we tell whether the subin-
stance consisting of finding the shortest route from Montreal to Ottawa is relevant
when we want the shortest route from Montreal to Toronto? This difficulty prevents
our using an approach similar to divide-and-conquer starting from the original in-
stance and recursively finding optimal solutions to the relevant subinstances, and
only to these. Instead, dynamic programming efficiently solves every subinstance
to figure out which ones are in fact relevant; only then are these combined into an
optimal solution to the original instance.

8.4 The knapsack problem (2)
As in Section 6.5, we are given a number of objects and a knapsack. This time,
however, we suppose that the objects may not be broken into smaller pieces, so we
may decide either to take an object or to leave it behind, but we may not take a
fraction of an object. For i = 1, 2,..., n, suppose that object i has a positive weight
wi and a positive value vi. The knapsack can carry a weight not exceeding W. Our
aim is again to fill the knapsack in a way that maximizes the value of the included
objects, while respecting the capacity constraint. Let xi be 0 if we elect not to take
object i, or 1 if we include object i. In symbols the new problem may be stated as:

n n

maximize E xiv1  subject to 2 xiwi < W
iil iil

where vi > 0, wi > 0 and xi E {0, 11 for 1 < i < n. Here the conditions on vi and
wi are constraints on the instance; those on xi are constraints on the solution. Since
the problem closely resembles the one in Section 6.5, it is natural to enquire first
whether a slightly modified version of the greedy algorithm we used before will
still work. Suppose then that we adapt the algorithm in the obvious way, so that
it looks at the objects in order of decreasing value per unit weight. If the knapsack
is not full, the algorithm should select a complete object if possible before going on
to the next.

Unfortunately the greedy algorithm turns out not to work when xi is required
to be 0 or 1. For example, suppose we have three objects available, the first of which

266



Section 8.4 The knapsack problem (2)

weighs 6 units and has a value of 8, while the other two weigh 5 units each and
have a value of 5 each. If the knapsack can carry 10 units, then the optimal load
includes the two lighter objects for a total value of 10. The greedy algorithm, on
the other hand, would begin by choosing the object that weighs 6 units, since this
is the one with the greatest value per unit weight. However if objects cannot be
broken the algorithm will be unable to use the remaining capacity in the knapsack.
The load it produces therefore consists of just one object with a value of only 8.

To solve the problem by dynamic programming, we set up a table
V[L. .nO.. W], with one row for each available object, and one column for each
weight from 0 to W. In the table, V[ji, j] will be the maximum value of the objects
we can transport if the weight limit is j, 0 • j < W, and if we only include objects
numbered from 1 to i, 1 • i < n. The solution of the instance can therefore be
found in V[n, W].

The parallel with the problem of making change is close. As there, the prin-
ciple of optimality applies. We may fill in the table either row by row or column
by column. In the general situation, V [ i, j] is the larger (since we are trying to
maximize value) of V[i - 1, i] and V[i - 1, j - wi] + vi. The first of these choices
corresponds to not adding object i to the load. The second corresponds to choosing
object i, which has for effect to increase the value of the load by vi and to reduce the
capacity available by wi. Thus we fill in the entries in the table using the general
rule

V[i, j]= max(V[i - 1, j], V[i - 1, j - wi]+vi).

For the out-of-bounds entries we define V[0, j] to be 0 when j > 0, and we define
V [ i, j ] to be - oo for all i when j < 0. The formal statement of the algorithm, which
closely resembles the function coins of the previous section, is left as an exercise for
the reader; see Problem 8.11.

Figure 8.4 gives an example of the operation of the algorithm. In the figure
there are five objects, whose weights are respectively 1, 2, 5, 6 and 7 units, and
whose values are 1, 6, 18, 22 and 28. Their values per unit weight are thus 1.00,
3.00, 3.60, 3.67 and 4.00. If we can carry a maximum of 11 units of weight, then the
table shows that we can compose a load whose value is 40.

Weight limit: 0 1 2 3 4 5 6 7 8 9 10 11

w,=1,v= 1 0 1 1 1 1 1 1 1 1 1 1 1
w2 =2,V2 =6 0 1 6 7 7 7 7 7 7 7 7 7
W3 = 5,v 3 = 18 0 1 6 7 7 18 19 24 25 25 25 25
w4 = 6, v4 = 22 0 1 6 7 7 18 22 24 28 29 29 40
w5 = 7,v5 = 28 0 1 6 7 7 18 22 28 29 34 35 40

Figure 8.4. The knapsack using dynamic programming

Just as for the problem of making change, the table V allows us to recover not
only the value of the optimal load we can carry, but also its composition. In our
example, we begin by looking at V[5, 11]. Since V[5, 11]= V[4, 11] but V[5, 11]k
V [4, 11 - W5] +V5, an optimal load cannot include object 5. Next V[4, 11] 5 V[3, 11]

267



Dynamic Programming Chapter 8

but V[4, 11] V[3, 11 - W4 ]+V 4 , so an optimal load must include object 4. Now
V[3,5PA V[2,5] but V[3,5]= V[2,5 - W3]+V3, so we must include object 3. Con-
tinuing thus, we find that V[2, 0]= V[1, 0] and V[1, 0] V[0, 0], so the optimal load
includes neither object 2 nor object 1. In this instance, therefore, there is only one
optimal load, consisting of objects 3 and 4.

In this example the greedy algorithm would first consider object 5, since this
has the greatest value per unit weight. The knapsack can carry one such object.
Next the greedy algorithm would consider object 4, whose value per unit weight
is next highest. This object cannot be included in the load without violating the
capacity constraint. Continuing in this way, the greedy algorithm would look at
objects 3, 2 and 1, in that order, finally ending up with a load consisting of objects
5, 2 and 1, for a total value of 35. Once again we see that the greedy algorithm does
not work when objects cannot be broken.

Analysis of the dynamic programming algorithm is straightforward, and closely
parallels the analysis of the algorithm for making change. We find that a time in
6 (nW) is necessary to construct the table V, and that the composition of the optimal
load can then be determined in a time in 0 (n + W).

8.5 Shortest paths
Let G = (N, A) be a directed graph; N is the set of nodes and A is the set of edges.
Each edge has an associated nonnegative length. We want to calculate the length
of the shortest path between each pair of nodes. Compare this to Section 6.4 where
we were looking for the length of the shortest paths from one particular node, the
source, to all the others.

As before, suppose the nodes of G are numbered from 1 to n, so
N U1,2,...,nl, and suppose a matrix L gives the length of each edge, with
L[i,i]= 0 for i = 1,2,...,n, L[i,j]> 0 for all i and j, and L[i,j]= co if the edge
(i, j) does not exist.

The principle of optimality applies: if k is a node on the shortest path from i
to j, then the part of the path from i to k, and the part from k to j, must also be
optimal.

We construct a matrix D that gives the length of the shortest path between
each pair of nodes. The algorithm initializes D to L, that is, to the direct distances
between nodes. It then does n iterations. After iteration k, D gives the length of
the shortest paths that only use nodes in { 1, 2, . . ., k} as intermediate nodes. After
n iterations, D therefore gives the length of the shortest paths using any of the
nodes in N as an intermediate node, which is the result we want. At iteration k,
the algorithm must check for each pair of nodes (i, j) whether or not there exists
a path from i to j passing through node k that is better than the present optimal
path passing only through nodes in { 1, 2,..., k - 1}. If Dk represents the matrix D
after the k-th iteration (so Do = L), the necessary check can be implemented by

Dk [li, j] = min(Dk-I [i, j], Dk 1 [i, k] +Dk <[k, j]),

where we use the principle of optimality to compute the length of the shortest path
from i to j passing through k. We have also tacitly used the fact that an optimal
path through k does not visit k twice.

268



Section 8.5 Shortest paths

At the k-th iteration the values in the k-th row and the k-th column of D do
not change, since D[k, k] is always zero. It is therefore not necessary to protect
these values when updating D. This allows us to get away with using only a single
n x n matrix D, whereas at first sight it might seem necessary to use two such
matrices, one containing the values of Dk 1 and the other the values of Dk, or even
a matrix n x n x n.

The algorithm, known as Floyd's algorithm, follows.

function Floyd(L[l.. n, 1..n]): array [1.. n,1. n]
array D[L..n,1 ..n]
D - L
for k - 1 to n do

for i - 1 to n do
for j - 1 to n do

D[i,j]- min(D[i, j],D[i, k]+D[kj])
return D

Figure 8.5 gives an example of the way the algorithm works.

0 5 soo 00
50 0 15 51

DO = L = 30 oo 0 5
15 oo 5 0

0 5 oco co 0 5 20 10
Di 50 0 15 5 D 50 0 15 5

130 35 0 15 130 35 0 15
15 20 5 0 15 20 5 0

0 5 20 10 0 5 15 10
I 45 0 15 5 20 0 10 5

13 130 35 0 15 D4-30 35 0 15
15 20 5 0 15 20 5 0

5 15

Figure 8.5. Floyd's algorithm at work

269



Dynamic Programming Chapter 8

It is obvious that this algorithm takes a time in E) (n3 ). We can also use Dijkstra's
algorithm to solve the same problem; see Section 6.4. In this case we have to apply
the algorithm n times, each time choosing a different node as the source. If we
use the version of Dijkstra's algorithm that works with a matrix of distances, the
total computation time is in n x 0 (n 2 ), that is, in 0)(n 3 ). The order is the same as
for Floyd's algorithm, but the simplicity of the latter means that it will probably
have a smaller hidden constant and thus be faster in practice. Compilers are good
at optimizing for-loops, too. On the other hand, if we use the version of Dijkstra's
algorithm that works with a heap, and hence with lists of the distances to adjacent
nodes, the total time is in n x 0 ((a + n)log n), that is, in 0 ((an + n2 )log n), where
a is the number of edges in the graph. If the graph is sparse (a << n2 ), it may be
preferable to use Dijkstra's algorithm n times; if the graph is dense (a n2 ), it is
better to use Floyd's algorithm.

We usually want to know where the shortest path goes, not just its length.
In this case we use a second matrix P. all of whose elements are initialized to 0.
The innermost loop of the algorithm becomes

if D[i, k]+D[k, j]< D[i, j] then D[i, j] - D[i, k]+D[k, j]
P[i,j]- k

When the algorithm stops, P[i, j] contains the number of the last iteration that
caused a change in D[i,j]. To recover the shortest path from i to j, look at P[ij].
If P [i, j] ,= O then D [i, j] never changed, and the shortest path is directly along the
edge (i, j); otherwise, if P[i, j]= k, the shortest path from i to j passes through k.
Look recursively at P [i, k] and P [k, j] to find any other intermediate nodes along
the shortest path.

If we take the graph of Figure 8.5 as an example, P becomes

0 0 4 2

P 4 0 4 0
- 1 0 0.

0 1 0 0

Since P [1, 3] 4, the shortest path from 1 to 3 passes through 4. Looking now at
P[ 1, 4] and P [4,3], we discover that between 1 and 4 we have to go via 2, but that
from 4 to 3 we proceed directly. Finally we see that the trips from 1 to 2, and from
2 to 4, are also direct. The shortest path from 1 to 3 is thus 1, 2,4,3.

If we allow edges in the graph to have negative lengths, the notion of "shortest
path" loses much of its meaning: if the graph includes a cycle whose total length
is negative, then the more often we go round the negative cycle, the shorter our
path will be! Problem 8.17 asks what happens to Floyd's algorithm if we give it a
graph with negative edges, but no negative cycles. Even if a graph has negative
cycles, it still makes sense to ask for the shortest simple paths. (Remember that a
simple path is one that never visits the same node twice.) No efficient algorithm is
known for finding shortest simple paths in graphs that may have edges of negative
length. The situation is the same for the problem of finding longest simple paths,
mentioned in Section 8.3: no efficient algorithm is known. These problems are both
J- P complete; see Chapter 12.

270



Section 8.6 Chained matrix multiplication

8.6 Chained matrix multiplication
Recall that the product C of a p x q matrix A and a q x r matrix B is the p x r
matrix given by

q

Cij = akbkj, 1 < i < p, 1< j <r.
k=l

Algorithmically, we can express this as

for i - 1 to p do
for j - 1 to r do

C[i,j]- 0
for k - 1 to q do

C[i, j] - C[i, j]+A[i, k]B[k, j]

from which it is clear that a total of pqr scalar multiplications are required to
calculate the matrix product using this algorithm. (In this section we shall not
consider the possibility of using a better matrix multiplication algorithm, such as
Strassen's algorithm, described in Section 7.6.)

Suppose now we want to calculate the product of more than two matrices.
Matrix multiplication is associative, so we can compute the matrix product

M = MIM2 ... Mn

in a number of ways, which all give the same answer:

M = (... ((M 1M2)M 3 )... MO)

= (Ml(M2 (M3  (Mn-IM,) *..

= (.*. ((MlM 2 )(M 3 M 4 )). ),

and so on. However matrix multiplication is not commutative, so we are not
allowed to change the order of the matrices in these arrangements.

The choice of a method of computation can have a considerable influence on
the time required. Suppose, for example, that we want to calculate the product
ABCD of four matrices, where A is 13 x 5, B is 5 x 89, C is 89 x 3, and D is 3 x 34.
To measure the efficiency of the different methods, we count the number of scalar
multiplications involved. As programmed above, there will be an equal number of
scalar additions, plus some housekeeping, so the number of scalar multiplications
is a good indicator of overall efficiency. For instance, using M = ((AB)C)D, we
calculate successively

AB 5785 multiplications
(AB) C 3471 multiplications

((AB)C)D 1326 multiplications

for a total of 10 582 scalar multiplications. There are five essentially different ways of
calculating the product in this case: when the product is expressed as (AB) (CD), we
do not differentiate between the method that calculates AB first and CD second,

271



Dynamic Programming Chapter 8

and the one that starts with CD and then calculates AB, since they both require
the same number of multiplications. For each of these five methods, here is the
corresponding number of scalar multiplications:

((AB)C)D 10582
(AB) (CD) 54201
(A(BC))D 2 856
A((BC)D) 4055
A(B(CD)) 26418

The most efficient method is almost 19 times faster than the slowest.
To find directly the best way to calculate the product, we could simply paren-

thesize the expression in every possible fashion and count each time how many
scalar multiplications are required. Let T(n) be the number of essentially different
ways to parenthesize a product of n matrices. Suppose we decide to make the first
cut between the i-th and the (i + 1)-st matrices of the product, thus:

M = (MIM2 .. Mi ) (Mi+ IMi,2 .. M.) )

There are now T(i) ways to parenthesize the left-hand term and T(n - i) ways
to parenthesize the right-hand term. Any of the former may be combined with
any of the latter, so for this particular value of i there are T (i) T (n - i) ways of
parenthesizing the whole expression. Since i can take any value from 1 to n - 1,
we obtain finally the following recurrence for T(n):

n-l

T (n)= T (i) T(n - i).
iil

Adding the obvious initial condition T (1) = 1, we can use the recurrence to calculate
any required value of T. The following table gives some values of T(n).

n 1 2 3 4 5 10 15
T(n) 1 1 2 5 14 4862 2674440

The values of T(n) are called the Catalan numbers.
For each way that parentheses can be inserted in the expression for M, it takes

a time in Q(n) to count the number of scalar multiplications required (at least,
if we do not try to be subtle). Since T(n) is in Q(4"/n2 ) (combine the results
of Problems 8.24 and 1.42), finding the best way to calculate M using the direct
approach requires a time in Q(4n / n). This method is therefore impracticable for
large values of n: there are too many ways in which parentheses can be inserted
for us to look at them all.

A little experimenting shows that none of the obvious greedy algorithms will
allow us to compute matrix products in an optimal way; see Problem 8.20. Fortu-
nately, the principle of optimality applies to this problem. For instance, if the best
way of multiplying all the matrices requires us to make the first cut between the i-th
and the (i + 1)-st matrices of the product, then both the subproducts MM 2 ... Mi
and Mi+lMi+2... M. must also be calculated in an optimal way. This suggests

272



Section 8.6 Chained matrix multiplication

that we should consider using dynamic programming. We construct a table mij,
1 < i < j s n, where mij gives the optimal solution-that is, the required number
of scalar multiplications-for the part MiMi+l ... My of the required product. The
solution to the original problem is thus given by ml,

Suppose the dimensions of the matrices are given by a vector d[0.. n] such
that the matrix Ms, 1 s i • n, is of dimension di-I x di. We build the table mij
diagonal by diagonal: diagonal s contains the elements mij such that j - i = s. The
diagonal s = 0 therefore contains the elements mij, 1 • i • n, corresponding to the
"products" Mi. Here there is no multiplication to be done, so mij = 0 for every i.
The diagonal s = 1 contains the elements mj,,+1 corresponding to products of the
form MiMi+±. Here we have no choice but to compute the product directly, which
we can do using di ldidi+1 scalar multiplications, as we saw at the beginning
of the section. Finally when s > 1 the diagonal s contains the elements mi,is
corresponding to products of the form MjM+l ... . Now we have a choice: we
can make the first cut in the product after any of the matrices Mi, M+1 , ... , M+s-l.
If we make the cut after Mk, i • k < i + s, we need mik scalar multiplications to
calculate the left-hand term, mk+li+s to calculate the right-hand term, and then
di ldkdi+s to multiply the two resulting matrices to obtain the final result. To find
the optimum, we choose the cut that minimizes the required number of scalar
multiplications.

Summing up, we fill the table mij using the following rules for
s = 0,1..., n - 1.

s =0: mU =0 i Z1,2.n
s = 1: mii+1 = di-ldidi+l i 1,2,...,n- 1

1 < s < n: mii+ = min (mik + mk+li+s + di1-dkdi+s)
isk<i+s

i = 1,2,...,n- s

It is only for clarity that the second case need be written out explicitly, as it falls
under the general case with s = 1.

To apply this to the example, we want to calculate the product ABCD of
four matrices, where A is 13 x 5, B is 5 x 89, C is 89 x 3, and D is 3 x 34. The
vector d is therefore (13,5,89,3,34). For s = 1, we find m 1 2 = 5785, m23 - 1335
and m34 = 9078. Next, for s = 2 we obtain

m13 =min(ml+M23 +13x5x3,m12+m33+13x89x3)

= min(1530,9256)= 1530

m24 =min(m2 2 +m 3 4 +5x89x34,m23+m44+5x3x34)

= min(24208,1845)= 1845.

Finally for s = 3

m 1 4 =min(m1l +m 2 4 +13x5x34, {k = 11
m 12 + m3 4 +13x89x34, {k=2}

m 1 3 +m44+13x3x34) {k= 31
= min(4055,54201,2856)= 2856.

The complete array m is shown in Figure 8.6.

273



Dynamic Programming Chapter 8

j=1 2 3 4

i= I 0 5785 1530 2856

5- 3

2 0 \ 1335\ 1845\
22

3 0 \ 907P\ s 2

4 0

Figure 8.6. An example of the chained matrix multiplication algorithm

Once again, we usually want to know not just the number of scalar multiplications
necessary to compute the product M, but also how to perform this computation
efficiently. As in Section 8.5, we do this by adding a second array to keep track of the
choices we have made. Let this new array be bestk. Now when we compute mij,
we save in bestk [i, j] the value of k that corresponds to the minimum term among
those compared. When the algorithm stops, bestk [1, n] tells us where to make the
first cut in the product. Proceeding recursively on both the terms thus produced,
we can reconstruct the optimal way of parenthesizing M. Problems 8.21 and 8.22
invite you to fill in the details.

For s > 0 there are n - s elements to be computed in the diagonal s; for each
of these we must choose between s possibilities given by the different values of k.
The execution time of the algorithm is therefore in the exact order of

n1 n 11 nil
Z (n - s)s = n E s S - E 2

Si1 S1 Si

= n2(n - 1)/2 - n(n - 1)(2n - 1)/6

= (n 3 n)/6,

where we used Propositions 1.7.14 and 1.7.15 to evaluate the sums. The execution
time of the algorithm is thus in 0 (n 3 ), better algorithms exist.

8.7 Approaches using recursion
Although dynamic programming algorithms, such as the one just given for cal-
culating m, are efficient, there is something unsatisfactory about the bottom-up
approach. A top-down method, whether it be divide-and- conquer, stepwise re-
finement, or recursion, seems more natural, especially to one who has been taught
always to develop programs in this way. A better reason is that the bottom-up
approach leads us to compute values that might be completely irrelevant. It is
tempting, therefore, to see whether we can achieve the same efficiency in a top-
down version of the algorithm.

We illustrate this with the matrix multiplication problem described in the pre-
vious section. One simple line of attack is to replace the table m by a function fn,
which is calculated as required. In other words, we would like to find a function

274



Section 8.7 Approaches using recursion

fn such thatfm(i, j)= mij for 1 < i < j < n, but that can be calculated recursively,
unlike the table m, which we calculated bottom-up.

Writing such a function is sirrple: all we have to do is to program the rules for
calculating m.

functionfm(i, j)
if i = j then {only one matrix is involved}

return 0
M - 0c

fork- itoj -Ido
m - min(m,ftn(i, k)+±fn(k + 1,j)+d[i - l]d[k]d[j])

return m

Here the global array d[O. . n] gives the dimensions of the matrices involved, ex-
actly as before. For all the relevant values of k the intervals [i. . k] and [k + 1. . j]
concerned in the recursive calls involve less matrices than [ i. .j]. However each
recursive call still involves at least one matrix (provided of course i < j on the orig-
inal call). Eventually therefore the recursion will stop. To find how many scalar
multiplications are needed to calculate M = M1M2. . .Mn, we simply callfln(l, n).

To analyse this algorithm, let T(s) be the time required to execute a call of
fin (i, i + s), where s is the number of matrix multiplications involved in the corre-
sponding product. This is the same s used previously to number the diagonals of
the table m. Clearly T(O)= c for some constant c. When s > 0, we have to choose
the smallest among s terms, each of the form

fin(i, k)+fmn(k + 1, i + s)+d[i - 1]d[k]d[i + s], i < k < i + s.

Let b be a constant such that we can execute two scalar multiplications, six scalar
additions, a comparison with the previous value of the minimum, and any nec-
essary housekeeping in a time b. Now the time required to evaluate one of these
terms is T(k - i)+T(i + s - k - 1)+b. The total time T(s) required to evaluate
fln(i, i + s) is therefore

i+s-1

T(s)= E (T(k - i)+T(i + s -k -1)+b).
k=i

Writing m = k - i, this becomes

s-l

T(s) = A (T(m)+T(s -1- m)+b)
m=0

s- l
= sb + 2 E T(m).

m=O

Since this implies that T(s)> 2T(s -1), we see immediately that T(s)Ž 2sT(O), so
the algorithm certainly takes a time in Q(2n) to find the best way to multiply n
matrices. It therefore cannot be competitive with the algorithm using dynamic
programming, which takes a time in 0 (n3).

275



Dynamic Programming Chapter 8

The algorithm can be speeded up if we are clever enough to avoid recursive
calls when d[i - I]d[k]d[i + s] is already greater than the previous value of the
minimum. The improvement will depend on the instance, but is most unlikely
to make an algorithm that takes exponential time competitive with one that only
takes polynomial time.

To find an upper bound on the time taken by the recursive algorithm, we use
constructive induction. Looking at the form of the recursion for T, and remember-
ing that T(s)> 2sT(0), it seems possible that T might be bounded by a power of
some constant larger than 2: so let us try proving T(s) < a3s, for some appropriate
constant a. Take this as the induction hypothesis, and assume it is true for all m < s.
On substituting in the recurrence we obtain

sI

T(s) < sd + 2 E a3m

m O

sd+a3S -a,

where we used Proposition 1.7.10 to compute the sum. Unfortunately, this does not
allow us to conclude that T (s) < a3s. However, if we adopt the tactic recommended
in Section 1.6.4 and strengthen the induction hypothesis, things work better. As the
strengthened induction hypothesis, suppose T(m) < a3m - b for m < s, where b
is a new unknown constant. Now when we substitute into the recurrence we obtain

sl1

T(s) < sd + 2 E (a3'- b)
mfI

s(d -2b)+a3s -a.

This is sufficient to ensure that T(s) < a35 - b provided b > d/2 and a > b. To start
the induction, we require that T (0) < a - b, which is satisfied provided a > T (0) + b.
Summing up, we have proved that T(s) < a3m - b for all s provided b > d/2 and
a > T(0)+b. The time taken by the recursive algorithm to find the best way of
computing a product of n matrices is therefore in 0 (3' ).

We conclude that a call on the recursive functionftn(1, n) is faster than naively
trying all possible ways to parenthesize the desired product, which, as we saw, takes
a time in ( (4n / n). However it is slower than the dynamic programming algorithm
described previously. This illustrates a point made earlier in this chapter. To decide
the best way to parenthesize the product ABCDEFG, sayfm recursively solves 12
subinstances, including the overlapping ABCDEF and BCDEFG, both of which
recursively solve BCDEF from scratch. It is this duplication of effort that makesfm
inefficient.

8.8 Memory functions
The algorithm in the previous section is not the first we have seen where a simple
recursive formulation of a solution leads to an inefficient program, as common
subinstances are solved independently more than once. Dynamic programming

276



Section 8.8 Memory functions

allows us to avoid this at the cost of complicating the algorithm. In dynamic
programming, too, we may have to solve some irrelevant subinstances, since it
is only later that we know exactly which subsolutions are needed. A top-down,
recursive algorithm does not have this drawback. Can we perhaps combine the
advantages of both techniques, and retain the simplicity of a recursive formulation
without losing the efficiency offered by dynamic programming?

One easy way of doing this that works in many situations is to use a memory
function. To the recursive program we add a table of the necessary size. Initially,
all the entries in this table hold a special value to show they have not yet been
calculated. Thereafter, whenever we call the function, we first look in the table to
see whether it has already been evaluated with the same set of parameters. If so,
we return the value in the table. If not, we go ahead and calculate the function.
Before returning the calculated value, however, we save it at the appropriate place
in the table. In this way it is never necessary to calculate the function twice for the
same values of its parameters.

For the recursive algorithmfm of Section 8.7, let mtab be a table whose entries
are all initialized to -1 (since the number of scalar multiplications required to
compute a matrix product cannot be negative). The following reformulation of the
functionfm, which uses the table mtab as a global variable, combines the clarity of
a recursive formulation with the efficiency of dynamic programming.

functionfm-mem(i, j)
if i = j then return 0
if mtab[i, j]> 0 then return mtab[i, j]
m o
fork- itoj -Ido

m - min(m,frn-mem(i, k) +fm-mem(k + 1,j)
+d[i - lld[k]d[j])

mtab[i,jP- m
return m

As pointed out in Section 8.7, this function may be speeded up by avoiding the
recursive calls if d[i - 1]d[k]d[j] is already larger than the previous value of m.

We sometimes have to pay a price for using this technique. We saw in Sec-

tion 8.1.1, for instance, that we can calculate a binomial coefficient (k) using a time
in 6 (nk) and space in 06(k). Implemented using a memory function, the calculation
takes the same amount of time but needs space in Q(nk); see Problem 8.26.

If we use a little more space-the space needed is only multiplied by a constant
factor-we can avoid the initialization time needed to set all the entries of the table
to some special value. This can be done using virtual initialization, described in
Section 5.1. This is particularly desirable when only a few values of the function
are to be calculated, but we do not know in advance which ones. For an example,
see Section 9.1.

277



Dynamic Programming Chapter 8

8.9 Problems

Problem 8.1. Prove that the total number of recursive calls made during the com-

putation of C(n, k) using the algorithm of Section 8.1.1 is exactly 2(z) - 2.

Problem 8.2. Calculating the Fibonacci sequence affords another example of the
kind of technique introduced in Section 8.1. Which algorithm in Section 2.7.5 uses
dynamic programming?

Problem 8.3. Prove that the time needed to calculate P (n, n) using the function
P of Section 8.1.2 is in O (41/ n).

Problem 8.4. Using the algorithm series of Section 8.1.2, calculate the probability
that team A will win the series if p = 0.45 and if four victories are needed to win.

Problem 8.5. Repeat the previous problem with p = 0.55. What should be the
relation between the answers to the two problems?

Problem 8.6. As in Problem 8.4, calculate the probability that team A will win
the series if p = 0.45 and if four victories are needed to win. This time, however,
calculate the required probability directly as the probability that team A will win
4 or more out of a series of 7 games. (Playing extra games after team A have won
the series cannot change the result.)

Problem 8.7. Adapt algorithm series of Section 8.1.2 to the case where team A
win any given match with probability p and lose it with probability q, but there
is also a probability r that the match is tied, so it counts as a win for nobody. As-
sume that n victories are still required to win the series. Of course we must have
p+q+r =1.

Problem 8.8. Show that storage space in 0(n) is sufficient to implement the algo-
rithm series of Section 8.1.2.

Problem 8.9. Adapt the algorithm coins of Section 8.2 so it will work correctly
even when the number of coins of a particular denomination is limited.

Problem 8.10. Rework the example illustrated in Figure 8.4, but renumbering
the objects in the opposite order (so w, = 7, v1  28, ... , w5 = 1, v5 = 1). Which
elements of the table should remain unchanged?

Problem 8.11. Write out the algorithm for filling the table V as described in Sec-
tion 8.4.

Problem 8.12. When j < wi in the algorithm for filling the table V described in
Section 8.4, we take V [ i - 1, j - wi ] to be - oo. Can the finished table contain entries
that are -oc? If so, what do they indicate? If not, why not?

Problem 8.13. There may be more than one optimal solution to an instance of the
knapsack problem. Using the table V described in Section 8.4, can you find all
possible optimal solutions to an instance, or only one? If so, how? If not, why not?

278



Section 8.9 Problems

Problem 8.14. An instance of the knapsack problem described in Section 8.4 may
have several different optimal solutions. How would you discover this? Does the
table V allow you to recover more than one solution in this case?

Problem 8.15. In Section 8.4 we assumed that we had available n objects num-
bered 1 to n. Suppose instead that we have n types of object available, with an
adequate supply of each type. Formally, this simply replaces the constraint that
xi must be 0 or 1 by the looser constraint that xi must be a nonnegative integer.
Adapt the dynamic programming algorithm of Section 8.4 so it will handle this
new problem.

Problem 8.16. Adapt your algorithm of Problem 8.15 so it will work even when
the number of objects of a given type is limited.

Problem 8.17. Does Floyd's algorithm (see Section 8.5) work on a graph that has
some edges whose lengths are negative, but that does not include a negative cycle?
Justify your answer.

Problem 8.18. (Warshall's algorithm) As for Floyd's algorithm (see Section 8.5)
we are concerned with finding paths in a graph. In this case, however, the length
of the edges is of no interest; only their existence is important. Let the matrix L be
such that L[i, j] = true if the edge (i, J) exists, and L [i, j] = false otherwise. We want
to find a matrix D such that D [i, j] = true if there exists at least one path from i to j,
and D [i, j] =false otherwise. Adapt Floyd's algorithm for this slightly different
case.
Note: We are looking for the reflexive transitive closure of the graph in question.

Problem 8.19. Find a significantly better algorithm for the preceding problem in
the case when the matrix L is symmetric, that is, when L[i, j]= L[j, i].

Problem 8.20. We (vainly) hope to find a greedy algorithm for the chained matrix
multiplication problem; see Section 8.6. Suppose we are to calculate

M = M1M 2 ... Mn,

where matrix Mi is di-, x di, 1 < i < n. For each of the following suggested tech-
niques, provide a counterexample where the technique does not work.

(a) First multiply the matrices Mi and Mi, 1 whose common dimension di is small-
est, and continue in the same way.

(b) First multiply the matrices Mi and Mi,1 whose common dimension di is largest,
and continue in the same way.

(c) First multiply the matrices Mi and M, 11 that minimize the product di ldidi~1 ,
and continue in the same way.

(d) First multiply the matrices Mi and M,1 that maximize the product di-ldidi+l,
and continue in the same way.

279



Dynamic Programming Chapter 8

Problem 8.21. Write out in detail the algorithm for calculating the values of mij
described in Section 8.6.

Problem 8.22. Adapt your algorithm for the previous problem so that not only
does it calculate mij, but it also says how the matrix product should be calculated
to achieve the optimal value of ml,-

Problem 8.23. What is wrong with the following simple argument? "The algo-
rithm for calculating the values of m given in Section 8.6 has essentially to fill in
the entries in just over half of an n x n table. Its execution time is thus clearly
in 0(n 2 )."

Problem 8.24. Let T(n) be a Catalan number; see Section 8.6. Prove that

T(n)= - h2
n (n -1)

Problem 8.25. Prove that the number of ways to cut an n-sided convex polygon
into n - 2 triangles using diagonal lines that do not cross is T (n - 1), the (n - 1)-st
Catalan number; see Section 8.6. For example, a hexagon can be cut in 14 different
ways, as shown in Figure 8.7.

07
0
0

Figure 8.7. Cutting a hexagon into triangles

Problem 8.26. Show how to calculate (i) a binomial coefficient, and (ii) the function
series(n, p) of Section 8.1.2 using a memory function.

Problem 8.27. Show how to solve (i) the problem of making change, and (ii) the
knapsack problem of Section 8.4 using a memory function.

280

/7\
\-V

/777�\
/,/�77/7 \

\Z::�I



Section 8.9 Problems

Problem 8.28. Consider the alphabet Y. {a, b, ci. The elements of E have the
following multiplication table, where the rows show the left-hand symbol and the
columns show the right-hand symbol.

a b c

a b b a

b c b a
c a c c

Thus ab = b, ba =c, and so on. Note that the multiplication defined by this table
is neither commutative nor associative.
Find an efficient algorithm that examines a string x x=x2* .. xn of characters of
E and decides whether or not it is possible to parenthesize x in such a way that the
value of the resulting expression is a. For instance, if x = bbbba, your algorithm
should return "yes" because (b(bb)) (ba)= a. This expression is not unique. For
example, (b (b (b (ba))))= a as well. In terms of n, the length of the string x, how
much time does your algorithm take?

Problem 8.29. Modify your algorithm from the previous problem so it returns the
number of different ways of parenthesizing x to obtain a.

Problem 8.30. Let u and v be two strings of characters. We want to transform
u into v with the smallest possible number of operations of the following three
types: delete a character, add a character, or change a character. For instance, we
can transform abbac into abcbc in three stages:

abbac - abac (delete b)
- ababc (add b)
- abcbc (change a into c).

Show that this transformation is not optimal.
Write a dynamic programming algorithm that finds the minimum number of op-
erations needed to transform u into v and tells us what these operations are. As a
function of the lengths of u and v, how much time does your algorithm take?

Problem 8.31. You have n objects that you wish to put in order using the relations
"< " and" ". For example, with three objects 13 different orderings are possible.

a =b =c a =b<c a<b =c a<b<c a<c<b
a =c<b b<a=c b<a<c b<c<a b =c<a
c<a =b c<a<b c<b<a

Give a dynamic programming algorithm that can calculate, as a function of n, the
number of different possible orderings. Your algorithm should take a time in 0 (n 2 )

and space in 0(n).

Problem 8.32. There are n trading posts along a river. At any of the posts you can
rent a canoe to be returned at any other post downstream. (It is next to impossible to
paddle against the current.) For each possible departure point i and each possible
arrival point j the cost of a rental from i to j is known. However, it can happen

281



Dynamic Programming Chapter 8

that the cost of renting from i to j is higher than the total cost of a series of shorter
rentals. In this case you can return the first canoe at some post k between i and j
and continue your journey in a second canoe. There is no extra charge for changing
canoes in this way.
Give an efficient algorithm to determine the minimum cost of a trip by canoe from
each possible departure point i to each possible arrival point j. In terms of n, how
much time is needed by your algorithm?

Problem 8.33. When we discussed binary search trees in Section 5.5, we men-
tioned that it is a good idea to keep them balanced. This is true provided all the
nodes are equally likely to be accessed. If some nodes are more often accessed
than others, however, an unbalanced tree may give better average performance.
For example, the tree shown in Figure 8.8 is better than the one in Figure 5.9 if we
are interested in minimizing the average number of comparisons with the tree and
if the nodes are accessed with the following probabilities.

Node 6 12 18 20 27 34 35
Probability 0.2 0.25 0.05 0.1 0.05 0.3 0.05

More generally, suppose we have an ordered set cl < C2 < < C, of n distinct
keys. The probability that a request refers to key ci is pi, 1 < i < n. Suppose for
simplicity that every request refers to a key in the search tree, so Y,' Pi = 1. Recall
that the depth of the root of a tree is 0, the depth of its children is 1, and so on.
If key ci is held in a node at depth di, then di + 1 comparisons are necessary to
find it. For a given tree the average number of comparisons needed is thus

n

C EP(di + 1).
iil

For example, the average number of comparisons needed with the tree in Figure 8.8
is

0.3 + (0.25 + 0.05)x2 + (0.2 + 0.1)x3 + (0.05 + 0.05)x4 = 2.2.

(a) Compute the average number of comparisons needed with the tree in Figure 5.9
and verify that the tree in Figure 8.8 is better.

(b) The tree in Figure 8.8 was obtained from the given probabilities using a simple
algorithm. Can you guess what this is?

(c) Find yet another search tree for the same set of keys that is even more efficient
on the average than Figure 8.8. What conclusion about algorithm design does
this reinforce ?

Problem 8.34. Continuing Problem 8.33, design a dynamic programming algo-
rithm to find an optimal binary search tree for a set of keys with given probabilities
of access. How much time does your algorithm take as a function of the number
of keys? Apply your algorithm to the instance given in Problem 8.33.
Hint: In any search tree where the nodes holding keys ci, ci+1 .. , c1 form a subtree,
let Cij be the minimum average number of accesses made to these nodes. In partic-
ular, Cln is the average number of accesses caused by a query to an optimal binary

282



References and further reading

Figure 8.8. Another search tree

search tree and Cii = pi for each i, i • i • n. Invoke the principle of optimality to
argue that

j

Cij = min (Ci,k-I + Ck+I,j)+ pk
i5k!sj k=i

when i < j. Give a dynamic programming algorithm to compute Ci, for all
o < i < j < n, and an algorithm to find the optimal binary search tree from the Ci1 's.

Problem 8.35. Solve Problem 8.34 again. This time your algorithm to compute an
optimal binary search tree for a set of n keys must run in a time in 0(n 2

).

Hint: First prove that ri~j- < rij • ri+,, for every 1 < i < j < n, where rij is the
root of an optimal search subtree containing ci, ci+i, . . .c, c for 1 < i < j < n (ties
are broken arbitrarily) and ri,-1 = i, 1 < i < n.

Problem 8.36. As a function of n, how many binary search trees are there for n
distinct keys?

Problem 8.37. Recall that Ackermann's function A(m, n), defined in Problem 5.38,
grows extremely rapidly. Give a dynamic programming algorithm to calculate it.
Your algorithm must consist simply of two nested loops and recursion is not al-
lowed. Moreover, you are restricted to using a space in 0 (mn) to calculate A (m, n).
However you may suppose that a word of storage can hold an arbitrarily large
integer.
Hint: Use two arrays value[O. . m] and index[O. . m] and make sure that
value[i]= A(i, index[i]) at the end of each trip round the inner loop.

8.10 References and further reading
Several books cover dynamic programming. We mention only Bellman (1957),
Bellman and Dreyfus (1962), Nemhauser (1966) and Lauriere (1979).

The algorithm in Section 8.2 for making change is discussed in Wright (1975)
and Chang and Korsh (1976). For more examples of solving knapsack problems
using dynamic programming, see Hu (1981).

Section 8.1 0 283



Dynamic Programming Chapter 8

The algorithm in Section 8.5 for calculating all shortest paths is due to
Floyd (1962). A theoretically more efficient algorithm is known: Fredman (1976)

shows how to solve the problem in a time in 0 (n3 log log n/log n ). The solution
to Problem 8.18 is supplied by the algorithm in Warshall (1962). Both Floyd's and
Warshall's algorithms are essentially the same as the earlier one in Kleene (1956)
to determine the regular expression corresponding to a given finite automaton;
see Hopcroft and Ullman (1979). All these algorithms with the exception of Fred-
man's are unified in Tarjan (1981).

The algorithm in Section 8.6 for chained matrix multiplication is described in
Godbole (1973); a more efficient algorithm, able to solve the problem in a time
in 0(nlogn), can be found in Hu and Shing (1982, 1984). Catalan numbers are
discussed in many places, including Sloane (1973) and Purdom and Brown (1985).
Memory functions are introduced in Michie (1968); for further details see
Marsh (1970).

Problem 8.25 is discussed in Sloane (1973). A solution to Problem 8.30 is given
in Wagner and Fischer (1974). Problem 8.31 suggested itself to the authors while
grading an exam including a question resembling Problem 3.21: we were curious
to know what proportion of all the possible answers was represented by the 69
different answers suggested by the students!

Problem 8.34 on the construction of optimal binary search trees comes from
Gilbert and Moore (1959), where it is extended to the possibility that the requested
key may not be in the tree. The improvement considered in Problem 8.35 comes
from Knuth (1971, 1973) but a simpler and more general solution is given by
Yao (1980), who also gives a sufficient condition for certain dynamic program-
ming algorithms that run in cubic time to be transformable automatically into
quadratic-time algorithms. The optimal search tree for the 31 most common words
in English is compared in Knuth (1973) with the tree obtained using the obvious
greedy algorithm suggested in Problem 8.33(b).

Important dynamic programming algorithms we have not mentioned include
the one in Kasimi (1965) and Younger (1967) that takes cubic time to carry out the
systematic analysis of any context-free language (see Hopcroft and Ullman 1979)
and the one in Held and Karp (1962) that solves the travelling salesperson problem
(see Sections 12.5.2 and 13.1.2) in a time in O(n2 29), much better than the time in
W(n!) required by the naive algorithm.

284



Chapter 9

Exploring graphs

A great many problems can be formulated in terms of graphs. We have seen, for
instance, the shortest route problem and the problem of the minimum spanning
tree. To solve such problems, we often need to look at all the nodes, or all the edges,
of a graph. Sometimes the structure of the problem is such that we need only visit
some of the nodes, or some of the edges. Up to now the algorithms we have seen
have implicitly imposed an order on these visits: it was a case of visiting the nearest
node, or the shortest edge, and so on. In this chapter we introduce some general
techniques that can be used when no particular order of visits is required.

9.1 Graphs and games: An introduction
Consider the following game. It is one of the many variants of Nim, also known as
the Marienbad game. Initially there is a heap of matches on the table between two
players. The first player may remove as many matches as he likes, except that he
must take at least one and he must leave at least one. There must therefore be at
least two matches in the initial heap. Thereafter, each player in turn must remove
at least one match and at most twice the number of matches his opponent just took.
The player who removes the last match wins. There are no draws.

Suppose that at some stage in this game you find yourself in front of a pile of
five matches. Your opponent has just picked up two matches, and now it is your
turn to play. You may take one, two, three or four matches: however you may not
take all five, since the rules forbid taking more than twice what your opponent just
took. What should you do?

Most people playing this kind of game begin to run through the possibilities
in their heads: "If I take four matches, that leaves just one for my opponent, which
he can take and win; if I take three, that leaves two for my opponent, and again he

285



Exploring graphs Chapter 9

can take them and win; if I take two, the same thing happens; but if I take just one,
then he will have four matches in front of him of which he can only take one or two.
In this case he doesn't win at once, so it is certainly my best move." By looking just
one move ahead in this simple situation the player can determine what to do next.
In a more complicated example, he may have several possible moves. To choose
the best it may be necessary to consider not just the situation after his own move,
but to look further ahead to see how his opponent can counter each possible move.
And then he might have to think about his own move after each possible counter,
and so on.

To formalize this process of looking ahead, we represent the game by a directed
graph. Each node in the graph corresponds to a position in the game, and each
edge corresponds to a move from one position to another. (In some contexts, for
example in the reports of chess games, a move consists of an action by one player
together with the reply from his opponent. In such contexts the term half-move is
used to denote the action by just one player. In this book we stick to the simpler
terminology and call each player's action a move.) A position in the game is not
specified merely by the number of matches that remain on the table. It is also
necessary to know the upper limit on the number of matches that may be taken on
the next move. However it is not necessary to know whose turn it is to play, since
the rules are the same for both players (unlike games such as 'fox and geese', where
the players have different aims and forces). The nodes of the graph corresponding
to this game are therefore pairs (i, j). In general, (i, j), 1 < j s i, indicates that i
matches remain on the table, and that any number of them between 1 and j may
be taken on the next move. The edges leaving this position, that is, the moves
that can be made, go to the j nodes (i - k,min(2k, i - k)), 1 • k < j. The node
corresponding to the initial position in a game with n matches is (n, n - 1), n > 2.
The position (0, 0) loses the game: if a player is in this position when it is his turn
to move, his opponent has just taken the last match and won.

Figure 9.1 shows part of the graph corresponding to this game. In fact, it is the
part of the graph needed by the player in the example above who faces a heap of
five matches of which he may take four: this is the position (5,4). No positions of
the form (i, 0) appear except for the losing position (0, 0). Such positions cannot
be reached in the course of a game, so they are of no interest. Similarly nodes
(i, j) with j odd and j < i - 1 cannot be reached from any initial position, so they
too are omitted. As we explain in a moment, the square nodes represent losing
positions and the round nodes are winning positions. The heavy edges correspond
to winning moves: in a winning position, choose one of the heavy edges to win.
There are no heavy edges leaving a losing position, corresponding to the fact that
such positions offer no winning move. We observe that the player who must move
first in a game with two, three or five matches has no winning strategy, whereas he
does have such a strategy in the game with four matches.

To decide which are the winning positions and which the losing positions, we
start at the losing position (0,0 ) and work back. This node has no successor, and
a player who finds himself in this position loses the game. In any of the nodes
(1,1), (2,2) or (3,3), a player can make a move that puts his opponent in the
losing position. These three nodes are therefore winning nodes. From (2,1) the

286



Section 9.1 Graphs and games: An introduction

Figure 9.1. Part of a game graph

only possible move is to (1,1). In position (2,1) a player is therefore bound to put
his opponent in a winning position, so (2, 1) itself is a losing position. A similar
argument applies to the losing position (3,2). Two moves are possible, but they
both leave the opponent in a winning position, so (3, 2) itself is a losing position.
From either (4,2) or (4,3) there is a move available that puts the opponent in
a losing position, namely (3,2); hence both these nodes are winning positions.
Finally the four possible moves from (5,4) all leave the opponent in a winning
position, so (5,4) is a losing position.

On a larger graph this process of labelling winning and losing positions can
be continued backwards as required. The rules we have been applying can be
summed up as follows: a position is a winning position if at least one of its suc-
cessors is a losing position, for then the player can move to put his opponent in
a losing position; a position is a losing position if all its successors are winning
positions, for then the player cannot avoid leaving his opponent in a winning posi-
tion. The following algorithm therefore determines whether a position is winning
or losing.

function recwin(i, j)
{Returns true if and only if node (i, j) is winning;

we assume 0 < j < i}
for k - 1 to j do

if not recwin(i - k,min(2k, i - k))
then return true

returnfalse

287



Exploring graphs Chapter 9

This algorithm suffers from the same defect as algorithm Fibrec in Section 2.7.5: it
calculates the same value over and over. For instance, recwin(5,4) returns false,
having called successively recwin(4, 2), recwin(3, 3), recwin(2, 2) and recwin(1, 1),
but recwin(3, 3) too calls recwin(2, 2) and recwin(1, 1).

There are two obvious approaches to removing this inefficiency. The first,
using dynamic programming, requires us to create a Boolean array G such that
G [ i, j ] = true if and only if (i, j) is a winning position. As usual with dynamic pro-
gramming, we proceed in a bottom-up fashion, calculating G [r, s] for 1 < s < r < i,
as well as the values of G [ i, s] for 1 • s <j, before calculating G [i, j].

procedure dynwin(n)
{For each 1 < j < i < n, sets G[ii, j] to true

if and only if position (ij) is winning}
G [0, 0]-false
for i - 1 to n do

for j - 1 to i do
k- I
while k < j and G[i - k,min(2k,i - k)] do

k- k+1
G[i,j]- not G[i - k,min(2k, i - k)]

In this context dynamic programming leads us to calculate wastefully some entries
of the array G that are never needed. For instance, we know (15,14) is a winning
position as soon as we discover that its second successor (13,4) is a losing position.
It is no longer of interest to know whether the next successor (12, 6) is a winning or a
losing position. In fact, only 28 nodes are really useful when we calculate G[ 15, 14],
although the dynamic programming algorithm determines 121 of them. About half
this work can be avoided if we do not calculate G [ i, j] when j is odd and j < i - 1,
since these nodes are never of interest, but there is no "bottom-up" reason for not
calculating G[12, 6]. As usual, things get worse as the instance gets bigger: to solve
the game with 248 matches it is sufficient to explore 1000 nodes, yet dynwin looks
at more than 30 times this number.

The recursive algorithm given previously is inefficient because it recalculates
the same value several times. Because of its top-down nature, however, it never
calculates an unnecessary value. A solution that combines the advantages of both
algorithms consists of using a memory function; see Section 8.8. This involves
remembering which nodes have already been visited during the recursive compu-
tation using a global Boolean array known [O.. n, O.. n], where n is an upper bound
on the number of matches to be used. The necessary initializations are as follows.

G[0,Ob-false; known[0, 0 true
for i - 1 to n do

for j - 1 to i do
known[i, j] - false

288



Section 9.1 Graphs and games: An introduction

Thereafter, to discover whether (i, j) is a winning or a losing position, call the
following function.

function nim(i, j)
{For each 1 < j < i < n, returns true

if and only if position (i, j) is winning}
if known [ i, j ] then return G [ i, j ]
known[i, j] i- true
for k - 1 to j do

if not nim(i - k, min(2k, i - k)) then
G[i,j]- true
return true

G[i, j] -false
return false

At first sight there is no particular reason to favour this approach over dynamic
programming, because in any case we have to take the time to initialize the whole
array known[ 0. . n, . . n]. However, virtual initialization (described in Section 5.1)
allows us to avoid this, and to obtain a worthwhile gain in efficiency.

The game we have considered up to now is so simple that it can be solved
without using the associated graph; see Problem 9.5. However the same principles
apply to many other games of strategy. As before, a node of a directed graph
corresponds to a particular position in the game, and an edge corresponds to a
legal move between two positions. The graph is infinite if there is no a priori limit
on the number of positions possible in the game. For simplicity, we shall suppose
that the game is played by two players who move in turn, that the rules are the
same for both players (we say the game is symmetric), and that chance plays no
part in the outcome (the game is deterministic). The ideas we present can easily
be adapted to more general contexts. We further suppose that no instance of the
game can last forever and that no position in the game offers an infinite number
of legal moves to the player whose turn it is. In particular, some positions in the
game, called the terminal positions, offer no legal moves, and hence some nodes in
the graph have no successors.

To determine a winning strategy in a game of this kind, we attach to each node
of the graph a label chosen from the set win, lose and draw. The label refers to the
situation of a player about to move in the corresponding position, assuming neither
player will make an error. The labels are assigned systematically as follows. (In the
simple example given earlier, no draws were possible, so the label draw was never
used, and the rules stated there are incomplete.)

1. Label the terminal positions. The labels assigned depend on the game in ques-
tion. For most games, if you find yourself in a terminal position, then there is
no legal move you can make, and you have lost. However this is not always
the case. If you cannot move because of a stalemate in chess, for example, the
game is a draw. Also many games of the Nim family come in pairs, one where

289



Exploring graphs Chapter 9

the player who takes the last match wins, and one (called the misere version of
the game) where the player who takes the last match loses.

2. A nonterminal position is a winning position if at least one of its successors is
a losing position, for the player whose turn it is can leave his opponent in this
losing position.

3. A nonterminal position is a losing position if all its successors are winning
positions, for the player whose turn it is cannot avoid leaving his opponent in
one of these winning positions.

4. Any other nonterminal position leads to a draw. In this case the successors
must include at least one draw, possibly with some winning positions as well.
The player whose turn it is can avoid leaving his opponent in a winning posi-
tion, but cannot force him into a losing position.

Once these labels are assigned, a winning strategy can be read off from the graph.
In principle, this technique applies even to a game as complex as chess. At first

sight, the graph associated with chess appears to contain cycles, since if two posi-
tions u and v of the pieces differ only by the legal move of a rook, say, the king
not being in check, then we can move equally well from u to v and from v to u.
However this problem disappears on closer examination. In the variant of Nim
used as an example above, a position is defined not just by the number of matches
on the table, but also by an invisible item of information giving the number of
matches that can be picked up on the next move. Similarly, a position in chess is
not defined simply by the position of the pieces. We also need to know whose turn
it is to move, which rooks and kings have moved since the beginning of the game
(to know if it is legal to castle), and whether some pawn has just moved two squares
forward (to know if a capture en passant is possible). There are also rules explicitly
designed to prevent a game dragging on forever. For example, a game is declared
to be a draw after a certain number of moves in which no irreversible action (the
movement of a pawn, or a capture) has taken place. Thanks to these and similar
rules, there are no cycles in the graph corresponding to chess. However, they force
us to include such items as the number of moves since the last irreversible action
in the information defining a position.

Adapting the general rules given above, we can label each node as being a win-
ning position for White, a winning position for Black, or a draw. Once constructed,
this graph allows us in principle to play a perfect game of chess, that is, to win
whenever it is possible, and to lose only when it is inevitable. Unfortunately-
or perhaps fortunately for the game of chess-the graph contains so many nodes
that it is out of the question to explore it completely, even with the fastest existing
computers. The best we can do is to explore the graph near the current position, to
see how the situation might develop, just like the novice who reasons, "If I do this,
he will reply like that, and then I can do this", and so on. Even this technique is
not without its subtleties, however. Should we look at all the possibilities offered
by the current position, and then, for each of these, all the possibilities of reply?

290



Section 9.2 Traversing trees

Or should we rather pick a promising line of attack and follow it up for several
moves to see where it leads? Different search strategies may lead to quite different
results, as we describe shortly.

If we cannot hope to explore the whole graph for the game of chess, then we
cannot hope to construct it and store it either. The best we can expect is to construct
parts of the graph as we go along, saving them if they are interesting and throwing
them away otherwise. Thus throughout this chapter we use the word "graph" in
two different ways.

On the one hand, a graph may be a data structure in the storage of a computer.
In this case, the nodes are represented by a certain number of bytes, and the edges
are represented by pointers. The operations to be carried out are quite concrete:
to "mark a node" means to change a bit in storage, to "find a neighbouring node"
means to follow a pointer, and so on.

At other times, the graph exists only implicitly, as when we explore the abstract
graph corresponding to the game of chess. This graph never really exists in the
storage of the machine. Most of the time, all we have is a representation of the
current position (that is, of the node we are in the process of visiting, for, as we
saw, nodes correspond to positions of the pieces plus some extra information), and
possibly representations of a small number of other positions. Of course we also
know the rules of the game in question. In this case to "mark a node" means to take
any appropriate measures that enable us to recognize a position we have already
seen, or to avoid arriving at the same position twice. To "find a neighbouring
node" means to change the current position by making a single legal move, for if
it is possible to get from one position to another by making a single move, then an
edge exists in the implicit graph between the two corresponding nodes.

Exactly similar considerations apply when we explore any large graph, as we
shall see particularly in Section 9.6. However, whether the graph is a data structure
or merely an abstraction that we can never manipulate as a whole, the techniques
used to traverse it are essentially the same. In this chapter we therefore do not
distinguish the two cases.

9.2 Traversing trees

We shall not spend long on detailed descriptions of how to explore a tree. We simply
remind the reader that in the case of binary trees three techniques are often used.
If at each node of the tree we visit first the node itself, then all the nodes in the
left subtree, and finally all the nodes in the right subtree, we are traversing the
tree in preorder; if we visit first the left subtree, then the node itself, and finally
the right subtree, we are traversing the tree in inorder; and if we visit first the left
subtree, then the right subtree, and lastly the node itself, we are traversing the tree
in postorder. Preorder and postorder generalize in an obvious way to nonbinary
trees.

These three techniques explore the tree from left to right. Three corresponding
techniques explore the tree from right to left. Implementation of any of these
techniques using recursion is straightforward.

291



Exploring graphs Chapter 9

Lemma 9.2.1 For each of the six techniques mentioned, the time T(n) needed to
explore a binary tree containing n nodes is in 0((n).

Proof Suppose that visiting a node takes a time in 0(1), that is, the time required is
bounded above by some constant c. Without loss of generality we may suppose
that c > T(O). Suppose further that we are to explore a tree containing n nodes,
n > 0; one of these nodes is the root, so if g of them lie in the left subtree, then there
are n - 9 1 in the right subtree. Then

T(n)< max (T(g)+T(n -g 1)+c), n > O.
Og 1n-I

This is true whatever the order in which the left and right subtrees and the root are
explored. We prove by constructive induction that T (n) < an + b, where a and b
are appropriate constants, as yet unknown. If we choose b > c the hypothesis is
true for n = 0, because c > T(0). For the induction step, let n > 0, and suppose
the hypothesis is true for all m, 0 < m < n -1. Then

T(n) < max (T(g)+T(n -g -1)+c)
Oegen 1

< max (ag+b+a(n-g-l)+b+c)
O<g<n 1

< an + 3b - a.

Hence provided we choose a > 2b we have T(n) < an + b, so the hypothesis is
also true for m = n. This proves that T(n) < an + b for every n > 0, and therefore
T(n) is in 0(n).

On the other hand it is clear that T(n) is in £2(n) since each of the n nodes is
visited. Therefore T (n) is in (n). O

9.2.1 Preconditioning

If we have to solve several similar instances of the same problem, it may be worth-
while to invest some time in calculating auxiliary results that can thereafter be used
to speed up the solution of each instance. This is preconditioning. Informally, let
a be the time it takes to solve a typical instance when no auxiliary information
is available, let b be the time it takes to solve a typical instance when auxiliary
information is available, and let p be the time needed to calculate this extra infor-
mation. To solve n typical instances takes time na without preconditioning and
time p + nb if preconditioning is used. Provided b < a, it is advantageous to use
preconditioning when n > p /(a - b).

From this point of view, the dynamic programming algorithm for making
change given in Section 8.2 may be seen as an example of preconditioning. Once the
necessary values C,j have been calculated, we can make change quickly whenever
this is required.

Even when there are few instances to be solved, precomputation of auxiliary
information may be useful. Suppose we occasionally have to solve one instance

292



Section 9.2 Traversing trees

from some large set of possible instances. When a solution is needed it must be
provided very rapidly, for example to ensure sufficiently fast response for a real-
time application. In this case it may well be impractical to calculate ahead of time
and to store the solutions to all the relevant instances. On the other hand, it may
be possible to calculate and store sufficient auxiliary information to speed up the
solution of whatever instance comes along. Such an application of preconditioning
may be of practical importance even if only one crucial instance is solved in the
whole lifetime of the system: this may be just the instance that enables us, for
example, to stop a runaway reactor.

As a second example of this technique we use the problem of determining
ancestry in a rooted tree. Let T be a rooted tree, not necessarily binary. We say
that a node v of T is an ancestor of node w if v lies on the path from w to the root
of T. In particular, every node is its own ancestor, and the root is an ancestor of
every node. (Those with a taste for recursive definitions may prefer the following:
every node is its own ancestor, and, recursively, it is an ancestor of all the nodes of
which its children are ancestors.) The problem is thus, given a pair of nodes (v, w)
from T, to determine whether or not v is an ancestor of w. If T contains nl nodes,
any direct solution of this instance takes a time in Q (n) in the worst case. However
it is possible to precondition T in a time in 63(n) so we can subsequently solve any
particular instance of the ancestry problem in constant time.

We illustrate this using the tree in Figure 9.2. It contains 13 nodes. To precon-
dition the tree, we traverse it first in preorder and then in postorder, numbering the
nodes sequentially as we visit them. For a node v, let prenum[v] be the number
assigned to v when we traverse the tree in preorder, and let postnum[v] be the
number assigned during the traversal in postorder. In Figure 9.2 these numbers
appear to the left and the right of the node, respectively.

3

10

Figure 9.2. A rooted tree with preorder and postorder numberings

Let v and w be two nodes in the tree. In preorder we first number a node and then
number its subtrees from left to right. Thus

prenum[v] < prenum[w] a> v is an ancestor of w or
v is to the left of w in the tree.

293



Exploring graphs Chapter 9

In postorder we first number the subtrees of a node from left to right, and then we
number the node itself. Thus

postnum[v]> postnum[w] A> v is an ancestor of w or
v is to the right of w in the tree.

It follows that

prenum[v] < prenum[w] and postnum[v] > postnum[w]
# v is an ancestor of w.

Once the values of prenum and postnum have been calculated in a time in E)(n), the
required condition can be checked in a time in 0 (1).

9.3 Depth-first search: Undirected graphs
Let G = (N A) be an undirected graph all of whose nodes we wish to visit. Suppose
it is somehow possible to mark a node to show it has already been visited.

To carry out a depth-first traversal of the graph, choose any node v E N as the
starting point. Mark this node to show it has been visited. Next, if there is a node
adjacent to v that has not yet been visited, choose this node as a new starting point
and call the depth-first search procedure recursively. On return from the recursive
call, if there is another node adjacent to v that has not been visited, choose this
node as the next starting point, call the procedure recursively once again, and
so on. When all the nodes adjacent to v are marked, the search starting at v is
finished. If there remain any nodes of G that have not been visited, choose any one
of them as a new starting point, and call the procedure yet again. Continue thus
until all the nodes of G are marked. Here is the recursive algorithm.

procedure dfsearch(G)
for each v E N do mark[v] not-visited
for each v E N do

if mark[v]# visitedthen dfs(v)

procedure dfs(v)
{Node v has not previously been visited}
mark[v] - visited
for each node w adjacent to v do

if mark[w]# visitedthen dfs(w)

The algorithm is called depth-first search because it initiates as many recursive
calls as possible before it ever returns from a call. The recursion stops only when
exploration of the graph is blocked and can go no further. At this point the recursion
"unwinds" so alternative possibilities at higher levels can be explored. If the graph
corresponds to a game, this may be thought of intuitively as a search that explores
the result of one particular strategy as many moves ahead as possible before looking
around to see what alternative tactics might be available.

Consider for example the graph in Figure 9.3. If we suppose that the neighbours
of a given node are examined in numerical order, and that node 1 is the first starting
point, depth-first search of the graph progresses as follows:

294



Section 9.3 Depth-first search: Undirected graphs

1. dfs (1) initial call
2. dfs(2) recursive call
3. dfs(3) recursive call
4. dfs(6) recursive call
5. dfs(5) recursive call; progress is blocked
6. dfs (4) a neighbour of node 1 has not been visited
7. dfs(7) recursive call
8. dfs(8) recursive call; progress is blocked
9. there are no more nodes to visit

How much time is needed to explore a graph with n nodes and a edges? Since
each node is visited exactly once, there are n calls of the procedure dfs. When
we visit a node, we look at the mark on each of its neighbouring nodes. If the
graph is represented so as to make the lists of adjacent nodes directly accessible
(type lisgraph of Section 5.4), this work is proportional to a in total. The algorithm
therefore takes a time in 0((n) for the procedure calls and a time in 0 (a) to inspect
the marks. The execution time is thus in E) (max(a, n)).

Figure 9.3. An undirected graph

Depth-first traversal of a connected graph associates a spanning tree to the graph.
Call this tree T. The edges of T correspond to the edges used to traverse the graph;
they are directed from the first node visited to the second. Edges not used in the
traversal of the graph have no corresponding edge in T. The initial starting point
of the exploration becomes the root of the tree. For example, the edges used in the
depth-first search of the graph in Figure 9.3 described above are {1, 21, {2, 31, {3, 61,
{6,51, {1,4}, {4, 7} and {7,8}. The corresponding directed edges, (1, 2), (2,3), and
so on, form a spanning tree for this graph. The root of the tree is node 1. The tree
is illustrated in Figure 9.4. The broken lines in this figure correspond to edges of
G not used in the depth-first search. It is easy to show that an edge of G with no
corresponding edge in T necessarily joins some node v to one of its ancestors in T;
see Problem 9.17.

If the graph being explored is not connected, a depth-first search associates
to it not merely a single tree, but rather a forest of trees, one for each connected
component of the graph. A depth-first search also provides a way to number the

295



Exploring graphs Chapter 9

6

6

6

Figure 9.4. A depth-first search tree; prenum on the left, highest on the right

nodes of the graph being visited. The first node visited-the root of the tree-
is numbered 1, the second is numbered 2, and so on. In other words, the nodes of
the associated tree are numbered in preorder. To implement this, add the following
two statements at the beginning of the procedure dfs:

pnum - pnum + 1
prenum[v] - pnum

where pnum is a global variable initialized to zero. For example, the depth-first
search of the graph in Figure 9.3 described above numbers the nodes of the graph
as follows.

node 1 2 3 4 5 6 7 8
prenum 1 2 3 6 5 4 7 8

These are the numbers to the left of each node in Figure 9.4. Of course the tree
and the numbering generated by a depth-first search in a graph are not unique,
but depend on the chosen starting point and on the order in which neighbours are
visited.

9.3.1 Articulation points

A node v of a connected graph is an articulation point if the subgraph obtained by
deleting v and all the edges incident on v is no longer connected. For example,
node 1 is an articulation point of the graph in Figure 9.3; if we delete it, there
remain two connected components {2, 3,5, 61 and {4, 7, 81. A graph G is biconnected
(or unarticulated) if it is connected and has no articulation points. It is bicoherent
(or isthmus-free, or 2-edge-connected) if each articulation point is joined by at least two

296

1;11
II/I

II �

I/

1"

II



Section 9.3 Depth-first search: Undirected graphs

edges to each component of the remaining subgraph. These ideas are important
in practice. If the graph G represents, say, a telecommunications network, then
the fact that it is biconnected assures us that the rest of the network can continue
to function even if the equipment in one of the nodes fails. If G is bicoherent, we
can be sure the nodes will be able to communicate with one another even if one
transmission line stops working.

To see how to find the articulation points of a connected graph C, look again
at Figure 9.4. Remember that this figure shows all the edges of the graph G of
Figure 9.3: those shown as solid lines form a spanning tree T, while the others are
shown as broken lines. As we saw, these other edges only go from some node v to
its ancestor in the tree, not from one branch to another. To the left of each node v
is prenumr[v], the number assigned by a preorder traversal of T.

To the right of each node v is a new number that we shall call highest[v].
Let w be the highest node in the tree that can be reached from v by following
down zero or more solid lines, and then going up at most one broken line. Then
define highest[v] to be prenumr[w]. For instance, from node 7 we can go down one
solid line to node 8, then up one broken line to node 4, and this is the highest node
we can reach. Since prenum[4]= 6, we also have highest[7] = 6.

Because the broken lines do not cross from one branch to another, the highest
node w reachable in this way must be an ancestor of v. (It cannot lie below v in
the tree, because we can always get to v itself by not following any lines at all.)
Among the ancestors of v, the highest up the tree is the one with the lowest value
of prenum. If we have these values, it is therefore not necessary to know the exact
level of each node: among the nodes we can reach, we simply choose the one that
minimizes prenum.

Now consider any node v in T except the root. If v has no children, it cannot
be an articulation point of G, for if we delete it the remaining nodes are still con-
nected by the edges left in T. Otherwise, let x be a child of v. Suppose first that
highest[x] < prenumr[v]. This means that from x there is a chain of edges of G, not
including the edge {v, x} (for we were not allowed to go up a solid line), that leads
to some node higher up the tree than v. If we delete v, therefore, the nodes in the
subtree rooted at x will not be disconnected from the rest of the tree. This is the
case with node 3 in the figure, for example. Here prenum[3] = 3, and the only child
of node 3, namely node 6, has highest[61= 2 < prenum[3]. Therefore if we delete
node 3, node 6 and its descendants will still be attached to one of the ancestors of
node 3.

If on the other hand highest[x]Ž prenum[v], then no chain of edges from x
(again excluding the edge {v, x }) rejoins the tree higher than v. In this case, should
v be deleted, the nodes in the subtree rooted at x will be disconnected from the
rest of the tree. Node 4 in the figure illustrates this case. Here prenumr[41= 6, and
the only child of node 4, namely node 7, has highest[7] = 6 = prenumr[4]. Therefore
if we delete node 4, no path from node 7 or from one of its descendants leads back
above the deleted node, so the subtree rooted at node 7 will be detached from the
rest of T.

Thus a node v that is not the root of T is an articulation point of G if and only if
it has at least one child x with highest[x]> prenum[v] . As for the root, it is evident

297



Exploring graphs Chapter 9

that it is an articulation point of G if and only if it has more than one child; for in this
case, since no edges cross from one branch to another, deleting the root disconnects
the remaining subtrees of T.

It remains to be seen how to calculate the values of highest. Clearly this must
be done from the leaves upwards. For example, from node 5 we can stay where
we are, or go up to node 2; these are the only possibilities. From node 6 we can
stay where we are, go up to node 2, or else go first down to node 5 and then to
wherever is reachable from there; and so on. The values of highest are therefore
calculated in postorder. At a general node v, highest[v] is the minimum (corre-
sponding to the highest node) of three kinds of values: prenum[v] (we stay where
we are), prenum [w] for each node w such that there is an edge {v, w} in G with no
corresponding edge in T (we go up a broken line), and highest[x] for every child
x of v (we go down a solid line and see where we can get from there).

The complete algorithm for finding the articulation points of an undirected
graph G is summarized as follows.

1. Carry out a depth-first search in G, starting from any node. Let T be the tree
generated by this search, and for each node v of G, let prenum [v] be the number
assigned by the search.

2. Traverse T in postorder. For each node v visited, calculate highest[v] as the
minimum of
(a) prenum [v ];
(b) prenum [w ] for each node w such that there is an edge { v, w } in G with no

corresponding edge in T; and
(c) highest[x] for every child x of v.

3. Determine the articulation points of G as follows.
(a) The root of T is an articulation point if and only if it has more than one

child.
(b) Any other node v is an articulation point if and only if it has a child x such

that highest[x]> prenum[v].

It is not difficult to combine steps 1 and 2 of the above algorithm, calculating the
values of both prenuin and highest during the depth-first search of G.

9.4 Depth-first search: Directed graphs
The algorithm is essentially the same as for undirected graphs, the difference re-
siding in the interpretation of the word "adjacent". In a directed graph, node w
is adjacent to node v if the directed edge (v, w) exists. If (v, w) exists but (w, v)
does not, then w is adjacent to v but v is not adjacent to w. With this change of
interpretation the procedures dfs and search from Section 9.3 apply equally well in
the case of a directed graph.

The algorithm behaves quite differently, however. Consider a depth-first search
of the directed graph in Figure 9.5. If the neighbours of a given node are examined
in numerical order, the algorithm progresses as follows:

298



Section 9.4 Depth-first search: Directed graphs

1. dfs (1) initial call
2. dfs(2) recursive call
3. dfs(3) recursive call; progress is blocked
4. dfs (4) a neighbour of node 1 has not been visited
5. dfs(8) recursive call
6. dfs (7) recursive call; progress is blocked
7. dfs (5) new starting point
8. dfs (6) recursive call; progress is blocked
9. there are no more nodes to visit

Figure 9.5. A directed graph

An argument identical with the one in Section 9.3 shows that the time taken by this
algorithm is also in O)(max(a, n)). In this case, however, the edges used to visit all
the nodes of a directed graph G = (N, A) may form a forest of several trees even if
G is connected. This happens in our example: the edges used, namely (1,2), (2,3),
(1,4), (4,8), (8,7) and (5,6), form the forest shown by the solid lines in Figure 9.6.

Figure 9.6. A depth-first search forest

299

I
I

I

--------



Exploring graphs Chapter 9

Let F be the set of edges in the forest, so that A \F is the set of edges of G that have
no corresponding edge in the forest. In the case of an undirected graph, we saw
that the edges of the graph with no corresponding edge in the forest necessarily
join some node to one of its ancestors. In the case of a directed graph, however,
three kinds of edge can appear in A\F. These are shown by the broken lines in
Figure 9.6.

1. Those like (3, 1) or (7,4) lead from a node to one of its ancestors.

2. Those like (1, 8) lead from a node to one of its descendants.

3. Those like (5,2) or (6,3) join one node to another that is neither its ancestor
nor its descendant. Edges of this type are necessarily directed from right to
left.

9.4.1 Acyclic graphs: Topological sorting

Directed acyclic graphs can be used to represent a number of interesting relations.
This class includes trees, but is less general than the class of all directed graphs.
For example, a directed acyclic graph can be used to represent the structure of an
arithmetic expression involving repeated subexpressions: thus Figure 9.7 repre-
sents the structure of the expression

(a + b)(c + d)+(a + b)(c - d).

Figure 9.7. A directed acyclic graph

These graphs also offer a natural representation for partial orderings, such as the
relation of set-inclusion. Figure 9.8 illustrates part of another partial ordering de-
fined on the positive integers: here there is an edge from node i to node j if and
only if i is a proper divisor of j.

300



Section 9.4 Depth-first search: Directed graphs

Figure 9.8. Another directed acyclic graph

Finally, directed acyclic graphs are often used to specify how a complex project
develops over time. The nodes represent different stages of the project, from the
initial state to final completion, and the edges correspond to activities that must be
completed to pass from one stage to another. Figure 9.9 gives an example of this
type of diagram.

Figure 9.9. Yet another directed acyclic graph

Depth-first search can be used to detect whether a given directed graph is acyclic;
see Problem 9.26. It can also be used to determine a topological ordering of the nodes
of a directed acyclic graph. In this kind of ordering the nodes of the graph are listed
in such a way that if there exists an edge (i, j), then node i precedes node j in the
list. For example, for the graph of Figure 9.8, the natural order 1, 2,3,4,6,8,12,24 is
adequate; but the order 1, 3, 2, 6, 4, 12, 8, 24 is also acceptable, as are several others.
On the other hand, the order 1,3,6,2,4,12,8,24 will not do, because the graph
includes an edge (2,6), and so 2 must precede 6 in the list.

Adapting the procedure dfs to make it into a topological sort is simple. Add
an extra line

write v

at the end of the procedure dfs, run the procedure on the graph concerned, and
then reverse the order of the resulting list of nodes.

To see this, consider what happens when we arrive at node v of a directed
acyclic graph G using the modified procedure. Some nodes that must follow v in

301



Exploring graphs Chapter 9

topological order may already have been visited while following a different path.
In this case they are already on the list, as they should be since we reverse the list
when the search is finished. Any node that must precede v in topological order
either lies along the path we are currently exploring, in which case it is marked as
visited but is not yet on the list, or else it has not yet been visited. In either case it
will be added to the list after node v (again, correctly, for the list is to be reversed).
Now the depth-first search explores the unvisited nodes that can be reached from
v by following edges of G. In the topological ordering, these must come after v.
Since we intend to reverse the list when the search is finished, adding them to the
list during the exploration starting at v, and adding v only when this exploration
is finished, gives us exactly what we want.

9.5 Breadth-first search

When a depth-first search arrives at some node v, it next tries to visit some neigh-
bour of v, then a neighbour of this neighbour, and so on. When a breadth-first
search arrives at some node v, on the other hand, it first visits all the neighbours
of v. Only when this has been done does it look at nodes further away. Unlike
depth-first search, breadth-first search is not naturally recursive. To underline the
similarities and the differences between the two methods, we begin by giving a
nonrecursive formulation of the depth-first search algorithm. Let stack be a data
type allowing two operations, push and pop. The type is intended to represent a
list of elements to be handled in the order "last come, first served" (often referred
to as LIFO, standing for "last in, first out"). The function top denotes the element at
the top of the stack. Here is the modified depth-first search algorithm.

procedure dfs2(v)
P - empty-stack
mark[v] - visited
push v onto P
while P is not empty do

while there exists a node w adjacent to top(P)
such that mark[whl visited
do mark[ w]- visited

push w onto P {w is the new top(P)}
pop P

Modifying the algorithm has not changed its behaviour. All we have done is to
make explicit the stacking and unstacking of nodes that in the previous version
was handled behind the scenes by the stack mechanism implicit in any recursive
language.

For the breadth-first search algorithm, by contrast, we need a type queue that
allows two operations enqueue and dequeue. This type represents a list of ele-
ments to be handled in the order "first come, first served" (or FIFO, for "first in, first
out"). The functionfirst denotes the element at the front of the queue. Here now
is the breadth-first search algorithm.

302



Section 9.5 Breadth-first search

procedure bfs(v)
Q - empty-queue
mark[v] - visited
enqueue v into Q
while Q is not empty do

u -first(Q)
dequeue u from Q
for each node w adjacent to u do

if mark[w]# visited then mark[w]- visited
enqueue w into Q

In both cases we need a main program to start the search.

procedure search (G)
for each v E N do mark[v] - not-visited
for each v E N do

if mark[v]b visited then {dfs2 or bfs} (v)

For example, on the graph of Figure 9.3, if the search starts at node 1, and the
neighbours of a node are visited in numerical order, breadth-first search proceeds
as follows.

Node visited Q
1. 1 2,3,4
2. 2 3,4,5,6
3. 3 4,5,6
4. 4 5,6,7,8
5. 5 6,7,8
6. 6 7,8
7. 7 8
8. 8

As for depth-first search, we can associate a tree with a breadth-first search. Fig-
ure 9.10 shows the tree generated by the search above. The edges of the graph with
no corresponding edge in the tree are represented by broken lines; see Problem 9.30.
In general, if the graph G being searched is not connected, the search generates a
forest of trees, one for each connected component of G.

It is easy to show that the time required by a breadth-first search is in the
same order as that required by a depth-first search, namely 0 (max (a, n)). If the
appropriate interpretation of the word "adjacent" is used, the breadth-first search
algorithm-again, exactly like the depth-first search algorithm-can be applied
without modification to either directed or undirected graphs; see Problems 9.31
and 9.32.

Breadth-first search is most often used to carry out a partial exploration of an
infinite (or unmanageably large) graph, or to find the shortest path from one point
to another in a graph. Consider for example the following problem. The value 1 is
given. To construct other values, two operations are available: multiplication by 2
and division by 3. For the second operation, the operand must be greater than 2

303



Exploring graphs Chapter 9

Figure 9.10. A breadth-first search tree

(so we cannot reach 0), and any resulting fraction is dropped. If operations are
executed from left to right, we may for instance obtain the value 10 as

10 =1x2x2x2x2.3x2.

We want to obtain some specified value n. How should we set about it?
The problem can be represented as a search in the infinite directed graph of

Figure 9.11. Here the given value 1 is in the node at top left. Thereafter each node
is linked to the values that can be obtained using the two available operations.
For example, from the value 16, we can obtain the two new values 32 (by multiply-
ing 16 by 2) and 5 (by dividing 16 by 3, dropping the resulting fraction). For clarity,
we have omitted links backwards to values already available, for instance from 8
to 2. These backwards links are nevertheless present in the real graph. The graph
is infinite, for a sequence such as 1,2, .. .,256,512, ... can be continued indefinitely.
It is not a tree, because node 42, for instance, can be reached from both 128 and 21.
When the backwards links are included, it is not even acyclic.

To solve a given instance of the problem, that is, to find how to construct a
particular value n, we search the graph starting at 1 until we find the value we
are looking for. On this infinite graph, however, a depth-first search may not
work. Suppose for example that n = 13. If we explore the neighbours of a node
in the order "first multiplication by 2, then division by 3", a depth-first search
visits successively nodes 1,2,4, . . ., and so on, heading off along the top branch and
(since there is always a new neighbour to look at) never encountering a situation
that forces it to back up to a previous node. In this case the search certainly fails.
If on the other hand we explore the neighbours of a node in the order "first division
by 3, then multiplication by 2", the search first runs down to node 12; from there it
moves successively to nodes 24, 48, 96, 32, and 64, and from 64 it wanders off into
the upper right-hand part of the graph. We may be lucky enough to get back to
node 13 and thus find a solution to our problem, but nothing guarantees this. Even
if we do, the solution found will be more complex than necessary. If you program
this depth-first search on a computer, you will find in fact that you reach the given
value 13 after 74 multiplication and division operations.

A breadth-first search, on the other hand, is sure to find a solution to the instance
if there is one. If we examine neighbours in the order "first multiplication by 2,

304



Section 9.6 Backtracking

Figure 9.11. Multiplication by 2 and division by 3

then division by 3", a breadth-first search starting at 1 visits successively nodes
1,2,...,16,32,5,64,10,128,21,20,3, and so on. Not only are we sure to find the
value we seek if it is in the graph, but also the solution obtained will use the
smallest number of operations possible. In other words, the path found from 1 to
the desired value n will be as short as possible. The same is true if we carry out the
search looking at neighbours in the order "first division by 3, then multiplication
by 2". Using either of these breadth-first searches, it is easy (even by hand) to
discover several ways to produce the value 13 using just 9 operations. For example

13=1x2x2x2x2.3x2x2x2.3.

Of course even a breadth-first search may fail. In our example, it may be that
some values n are not present in the graph at all. (Having no idea whether this is
true or not, we leave the question as an exercise for the reader.) In this case any
search technique is certain to fail for the missing values. If a graph includes one or
more nodes with an infinite number of neighbours, but no paths of infinite length,
depth-first search may succeed where breadth-first search fails. Nevertheless this
situation seems to be less common than its opposite.

9.6 Backtracking
As we saw earlier, various problems can be thought of in terms of abstract graphs.
For example, we saw in Section 9.1 that we can use the nodes of a graph to represent
positions in a game of chess, and edges to represent legal moves. Often the original

305



Exploring graphs Chapter 9

problem translates to searching for a specific node, path or pattern in the associated
graph. If the graph contains a large number of nodes, and particularly if it is infinite,
it may be wasteful or infeasible to build it explicitly in computer storage before
applying one of the search techniques we have encountered so far.

In such a situation we use an implicit graph. This is one for which we have
available a description of its nodes and edges, so relevant parts of the graph can
be built as the search progresses. In this way computing time is saved whenever
the search succeeds before the entire graph has been constructed. The economy
in storage space can also be dramatic, especially when nodes that have already
been searched can be discarded, making room for subsequent nodes to be explored.
If the graph involved is infinite, such a technique offers our only hope of exploring it
at all. This section and the ones that follow detail some standard ways of organizing
searches in an implicit graph.

In its basic form, backtracking resembles a depth-first search in a directed
graph. The graph concerned is usually a tree, or at least it contains no cycles.
Whatever its structure, the graph exists only implicitly. The aim of the search is
to find solutions to some problem. We do this by building partial solutions as the
search proceeds; such partial solutions limit the regions in which a complete solu-
tion may be found. Generally speaking, when the search begins, nothing is known
about the solutions to the problem. Each move along an edge of the implicit graph
corresponds to adding a new element to a partial solution, that is, to narrowing
down the remaining possibilities for a complete solution. The search is successful
if, proceeding in this way, a solution can be completely defined. In this case the
algorithm may either stop (if only one solution to the problem is needed), or con-
tinue looking for alternative solutions (if we want to look at them all). On the other
hand, the search is unsuccessful if at some stage the partial solution constructed so
far cannot be completed. In this case the search backs up, exactly like a depth-first
search, removing as it goes the elements that were added at each stage. When
it gets back to a node with one or more unexplored neighbours, the search for a
solution resumes.

9.6.1 The knapsack problem (3)

For a first example illustrating the general principle, we return to the knapsack
problem described in Section 8.4. Recall that we are given a certain number of
objects and a knapsack. This time, however, instead of supposing that we have
n objects available, we shall suppose that we have n types of object, and that
an adequate number of objects of each type are available. This does not alter
the problem in any important way. For i = 1, 2_ ., n, an object of type i has a
positive weight wi and a positive value vs. The knapsack can carry a weight not
exceeding W. Our aim is to fill the knapsack in a way that maximizes the value
of the included objects, while respecting the capacity constraint. We may take an
object or to leave it behind, but we may not take a fraction of an object.

Suppose for concreteness that we wish to solve an instance of the problem
involving four types of objects, whose weights are respectively 2, 3, 4 and 5 units,
and whose values are 3, 5, 6 and 10. The knapsack can carry a maximum of 8

306



Section 9.6 Backtracking

units of weight. This can be done using backtracking by exploring the implicit tree
shown in Figure 9.12.

Figure 9.12. The implicit tree for a knapsack problem

Here a node such as (2,3;8) corresponds to a partial solution of our problem.
The figures to the left of the semicolon are the weights of the objects we have
decided to include, and the figure to the right is the current value of the load.
Moving down from a node to one of its children corresponds to deciding which
kind of object to put into the knapsack next. Without loss of generality we may
agree to load objects into the knapsack in order of increasing weight. This is not
essential, and indeed any other order-by decreasing weight, for example, or by
value-would work just as well, but it reduces the size of the tree to be searched.
For instance, once we have visited node (2,2,3; 11) there is no point in later visiting
(2,3,2;11).

Initially the partial solution is empty. The backtracking algorithm explores
the tree as in a depth-first search, constructing nodes and partial solutions as it
goes. In the example, the first node visited is (2; 3), the next is (2,2; 6), the third is
(2, 2, 2; 9) and the fourth (2, 2, 2, 2; 12). As each new node is visited, the partial solu-
tion is extended. After visiting these four nodes, the depth-first search is blocked:
node (2, 2,2,2; 12) has no unvisited successors (indeed no successors at all), since
adding more items to this partial solution would violate the capacity constraint.
Since this partial solution may turn out to be the optimal solution to our instance,
we memorize it.

The depth-first search now backs up to look for other solutions. At each step
back up the tree, the corresponding item is removed from the partial solution.
In the example, the search first backs up to (2, 2, 2; 9), which also has no unvisited
successors; one step further up the tree, however, at node (2, 2; 6), two successors

307



Exploring graphs Chapter 9

remain to be visited. After exploring nodes (2,2,3; 11) and (2,2,4; 12), neither of
which improves on the solution previously memorized, the search backs up one
stage further, and so on. Exploring the tree in this way, (2, 3, 3; 13) is found to be a
better solution than the one we have, and later (3,5; 15) is found to be better still.
Since no other improvement is made before the search ends, this is the optimal
solution to the instance.

Programming the algorithm is straightforward, and illustrates the close relation
between recursion and depth-first search. Suppose the values of n and W, and of
the arrays w [1 .. n] and v [1 .. nl] for the instance to be solved are available as global
variables. The ordering of the types of item is unimportant. Define a function
backpack as follows.

function backpack(i, r)
{Calculates the value of the best load that can

be constructed using items of types i to n
and whose total weight does not exceed r }

b -O
{Try each allowed kind of item in turn}
for k i to n do

if w[k]< r then
b - max(b,v[k]+backpack(k,r - w[k]))

return b

Now to find the value of the best load, call backpack(l, W). Here each recursive
call of backpack corresponds to extending the depth-first search one level down the
tree, while the for loop takes care of examining all the possibilities at a given level.
In this version of the program, the composition of the load being examined is given
implicitly by the values of k saved on the recursive stack. It is not hard to adapt
the program so that it gives the composition of the best load explicitly along with
its value; see Problem 9.42.

9.6.2 The eight queens problem
For our second example of backtracking, consider the classic problem of placing
eight queens on a chessboard in such a way that none of them threatens any of
the others. Recall that a queen threatens the squares in the same row, in the same
column, or on the same diagonals.

The most obvious way to solve this problem consists of trying systematically all
the ways of placing eight queens on a chessboard, checking each time to see whether
a solution has been obtained. This approach is of no practical use, even with a com-
puter, since the number of positions we would have to check is (6) = 4 426165 368.
The first improvement we might try consists of never putting more than one queen
on any given row. This reduces the computer representation of the chessboard
to a vector of eight elements, each giving the position of the queen in the corre-
sponding row. For instance, the vector (3,1, 6,2,8, 6,4, 7) represents the position
where the queen on row 1 is in column 3, the queen on row 2 is in column 1, and
so on. This particular position is not a solution to our problem since the queens in

308



Section 9.6 Backtracking

rows 3 and 6 are in the same column, and also two pairs of queens lie on the same
diagonal. Using this representation, we can write an algorithm using eight nested
loops. (For the function solution, see Problem 9.43.)

program queens
for il - 1 to 8 do

for i2 -1 to 8 do

for i8  1 to 8 do
sol [il. i2, . . ., i8]
if solution (sol) then write sol

stop
write "there is no solution"

The number of positions to be considered is reduced to 88 16777216, although
in fact the algorithm finds a solution and stops after considering only 1 299 852
positions.

Representing the chessboard by a vector prevents us ever trying to put two
queens in the same row. Once we have realized this, it is natural to be equally
systematic in our use of the columns. Hence we now represent the board by a
vector of eight different numbers between 1 and 8, that is, by a permutation of the
first eight integers. This yields the following algorithm.

program queens2
sol - initial-permutation
while sol : final-permutation and not solution(sol) do

sol next-permutation
if solution (sol) then write sol

else write "there is no solution"

There are several natural ways to generate systematically all the permutations of
the first n integers. For instance, we can put each value in turn in the leading
position and generate recursively, for each leading value, all the permutations of
the remaining n -1 elements. The following procedure shows how to do this.
Here Till . . n] is a global array initialized to [1,2,...,n], and the initial call of
the procedure is perm (1). This way of generating permutations is itself a kind of
backtracking.

procedure perm(i)
if i = n then use(T) {T is a new permutation}

else for j - i to n do exchange T[i] and T[j]
perm(i + 1)
exchange T[i] and T[j]

This approach reduces the number of possible positions to 8! = 40320. If the pre-
ceding algorithm is used to generate the permutations, only 2830 positions are in
fact considered before the algorithm finds a solution. It is more complicated to gen-
erate permutations rather than all the possible vectors of eight integers between 1

309



Exploring graphs Chapter 9

and 8. On the other hand, it is easier to verify in this case whether a given position
is a solution. Since we already know that two queens can neither be in the same row
nor in the same column, it suffices to verify that they are not on the same diagonal.

Starting from a crude method that put the queens absolutely anywhere on the
board, we progressed first to a method that never puts two queens in the same
row, and then to a still better method that only considers positions where two
queens can neither be in the same row nor in the same column. However, all these
algorithms share an important defect: they never test a position to see if it is a
solution until all the queens have been placed on the board. For instance, even the
best of them makes 720 useless attempts to put the last six queens on the board
when it has started by putting the first two on the main diagonal, where of course
they threaten one another.

Backtracking allows us to do better than this. As a first step, we reformulate
the eight queens problem as a tree searching problem. We say that a vector V [ 1 . . k ]
of integers between 1 and 8 is k-promising, for 0 < k < 8, if none of the k queens
placed in positions (1, V[1]), (2, V[2]),..., (k, V[k]) threatens any of the others.
Mathematically, a vector V is k-promising if, for every pair of integers i and j
between 1 and k with i 7 j, we have V[i]-V[1j] {i - j,0,j - i}. For k < 1, any
vector V is k-promising. Solutions to the eight queens problem correspond to
vectors that are 8-promising.

Let N be the set of k-promising vectors, 0 < k < 8. Let G = (N, A) be the di-
rected graph such that (U, V)e A if and only if there exists an integer k, 0 < k < 8,
such that

• U is k-promising,

• V is (k + 1)-promising, and

• U[i] = V[i] for every i E [1. . k].

This graph is a tree. Its root is the empty vector corresponding to k = 0. Its leaves are
either solutions (k = 8) or they are dead ends (k < 8) such as [1, 4, 2, 5, 8]: in such a
position it is impossible to place a queen in the next row without threatening at least
one of the queens already on the board. The solutions to the eight queens problem
can be obtained by exploring this tree. We do not generate the tree explicitly so
as to explore it thereafter, however. Rather, nodes are generated and abandoned
during the course of the exploration. Depth-first search is the obvious method to
use, particularly if we require only one solution.

This technique has two advantages over the algorithm that systematically tries
each permutation. First, the number of nodes in the tree is less than 8! = 40 320.
Although it is not easy to calculate this number theoretically, using a computer
it is straightforward to count the nodes: there are 2057. In fact, it suffices to ex-
plore 114 nodes to obtain a first solution. Second, to decide whether a vector is
k-promising, knowing that it is an extension of a (k - 1) -promising vector, we only
need check the last queen to be added. This can be speeded up if we associate with
each promising node the set of columns, of positive diagonals (at 45 degrees), and
of negative diagonals (at 135 degrees) controlled by the queens already placed.

310



Section 9.6 Backtracking

In the following procedure soll . .81 is a global array. To print all the solutions
to the eight queens problem, call queens(0, 0, 0, 0).

procedure queens(k, col, diag45, diagl35)
{sol[ . . k] is k-promising,
col {sol[i]I1 < i s k},
diag45 = {sol[i]-i + 11 < i < k}, and
diagI35 = Isol[i]+i -11 s i <! k}}I

if k = 8 then {an 8-promising vector is a solution}
write sol

else {explore (k + 1)-promising extensions of sol}
for j - 1 to 8 do

if j t col and j - k f diag45 and j + k t diag135
then sol[k + 1] - j

{sol[l . . k + 1] is (k + 1)-promising}
queens(k + 1,col u {j},

diag45 u {j - k},diagl35 u j + k})

It is clear that the problem generalizes to an arbitrary number of queens: how can we
place n queens on an n x n "chessboard" in such a way that none of them threatens
any of the others? As we might expect, the advantage to be gained by using
backtracking instead of an exhaustive approach becomes more pronounced as n
increases. For example, for n = 12 there are 479 001 600 possible permutations to
be considered. Using the permutation generator given previously, the first solution
to be found corresponds to the 4 546 044th position examined. On the other hand,
the tree explored by the backtracking algorithm contains only 856 189 nodes, and
a solution is obtained when the 262nd node is visited. The problem can be further
generalized to placing "queens" in three dimensions on an n x n x n board; see
Problem 9.49.

9.6.3 The general template
Backtracking algorithms can be used even when the solutions sought do not nec-
essarily all have the same length. Here is the general scheme.

procedure backtrack (v [1 .. k] )
{v is a k-promising vector}
if v is a solution then write v
{else} for each (k + 1)-promising vector w

such that w[l.. k] v[l.. k]
do backtrack(w lI . . k + 1])

The else should be present if and only if it is impossible to have two different
solutions such that one is a prefix of the other.

Both the knapsack problem and the n queens problem were solved using depth-
first search in the corresponding tree. Some problems that can be formulated in
terms of exploring an implicit graph have the property that they correspond to an
infinite graph. In this case it may be necessary to use breadth-first search to avoid

311



Exploring graphs Chapter 9

the interminable exploration of some fruitless infinite branch. Breadth-first search
is also appropriate if we have to find a solution starting from some initial position
and taking as few steps as possible.

9.7 Branch-and-bound
Like backtracking, branch-and-bound is a technique for exploring an implicit di-
rected graph. Again, this graph is usually acyclic or even a tree. This time, we
are looking for the optimal solution to some problem. At each node we calculate a
bound on the possible value of any solutions that might lie farther on in the graph.
If the bound shows that any such solution must necessarily be worse than the best
solution found so far, then we need not go on exploring this part of the graph.

In the simplest version, calculation of the bounds is combined with a breadth-
first or a depth-first search, and serves only, as we have just explained, to prune
certain branches of a tree or to close paths in a graph. More often, however, the
calculated bound is also used to choose which open path looks the most promising,
so it can be explored first.

In general terms we may say that a depth-first search finishes exploring nodes in
inverse order of their creation, using a stack to hold nodes that have been generated
but not yet explored fully. A breadth-first search finishes exploring nodes in the
order of their creation, using a queue to hold those that have been generated but
not yet explored. Branch-and-bound uses auxiliary computations to decide at each
instant which node should be explored next, and a priority list to hold those nodes
that have been generated but not yet explored. Remember that heaps are often
ideal for holding priority lists; see Section 5.7. We illustrate the technique with two
examples.

9.7.1 The assignment problem
In the assignment problem, n agents are to be assigned n tasks, each agent having
exactly one task to perform. If agent i, 1 < i < n, is assigned task j, 1 < j < n, then
the cost of performing this particular task will be cij. Given the complete matrix
of costs, the problem is to assign agents to tasks so as to minimize the total cost of
executing the n tasks.

For example, suppose three agents a, b and c are to be assigned tasks 1, 2
and 3, and the cost matrix is as follows:

1 2 3

a 4 7 3
b 2 6 1
c 3 9 4

If we allot task 1 to agent a, task 2 to agent b, and task 3 to agent c, then our total
cost will be 4 + 6 + 4 = 14, while if we allot task 3 to agent a, task 2 to agent b,
and task 1 to agent c, the cost is only 3 + 6 + 3 = 12. In this particular example, the
reader may verify that the optimal assignment is a -2, b - 3, and c - 1, whose
costis7+1+3 =11.

The assignment problem has numerous applications. For instance, instead
of talking about agents and tasks, we might formulate the problem in terms of

312



Section 9.7 Branch-and-bound

buildings and sites, where cij is the cost of erecting building i on site j, and we
want to minimize the total cost of the buildings. Other examples are easy to invent.
In general, with n agents and n tasks, there are n! possible assignments to consider,
too many for an exhaustive search even for moderate values of n. We therefore
resort to branch-and-bound.

Suppose we have to solve the instance whose cost matrix is shown in Fig-
ure 9.13. To obtain an upper bound on the answer, note that a -1, b - 2, c - 3,
d -4 is one possible solution whose cost is 11 + 15 + 19 + 28 = 73. The optimal
solution to the problem cannot cost more than this. Another possible solution is
a -4, b - 3, c - 2, d - 1 whose cost is obtained by adding the elements in the
other diagonal of the cost matrix, giving 40 + 13 + 17 + 17 = 87. In this case the
second solution is no improvement over the first. To obtain a lower bound on the
solution, we can argue that whoever executes task 1, the cost will be at least 11;
whoever executes task 2, the cost will be at least 12, and so on. Thus adding the
smallest elements in each column gives us a lower bound on the answer. In the ex-
ample, this is 11 + 12 + 13 + 22 = 58. A second lower bound is obtained by adding
the smallest elements in each row, on the grounds that each agent must do some-
thing. In this case we find 11 + 13 + 11 + 14 = 49, not as useful as the previous
lower bound. Pulling these facts together, we know that the answer to our instance
lies somewhere in [58.. 73].

1 2 3 4

a 11 12 18 40
b 14 15 13 22
c 11 17 19 23
d 17 14 20 28

Figure 9.13. The cost matrix for an assignment problem

To solve the problem by branch-and-bound, we explore a tree whose nodes corre-
spond to partial assignments. At the root of the tree, no assignments have been
made. Subsequently, at each level we fix the assignment of one more agent. At each
node we calculate a bound on the solutions that can be obtained by completing the
corresponding partial assignment, and we use this bound both to close off paths
and to guide the search. Suppose for example that, starting from the root, we de-
cide first to fix the assignment of agent a. Since there are four ways of doing this,
there are four branches from the root. Figure 9.14 illustrates the situation.

Here the figure next to each node is a lower bound on the solutions that can be
obtained by completing the corresponding partial assignment. We have already
seen how the bound of 58 at the root can be obtained. To calculate the bound for
the node a - 1, for example, note first that with this partial assignment task 1 will
cost 11. Task 2 will be executed by b, c or d, so the lowest possible cost is 14.
Similarly tasks 3 and 4 will also be executed by b, c or d, and their lowest possible
costs will be 13 and 22 respectively. Thus a lower bound on any solution obtained
by completing the partial assignment a - 1 is 11 + 14 + 13 + 22 = 60. Similarly for
the node a -2, task 2 will be executed by agent a at a cost of 12, while tasks 1, 3

313



314

Figure 9.14. After assigning agent a

and 4 will be executed by agents b, c and d at a minimum cost of 11, 13 and 22
respectively Thus any solution that includes the assignment a - 2 will cost at least
12 + 11 + 13 + 22 = 58. The other two lower bounds are obtained similarly. Since
we know the optimal solution cannot exceed 73, it is already clear that there is no
point in exploring the node a - 4 any further: any solution obtained by completing
this partial assignment will cost at least 78, so it cannot be optimal. The asterisk
on this node indicates that it is "dead". However the other three nodes are still
alive. Node a - 2 has the smallest lower bound. Arguing that it therefore looks
more promising than the others, this is the one to explore next. We do this by fixing
one more element in the partial assignment, say b. In this way we arrive at the
situation shown in Figure 9.15.

68

59

64

Figure 9.15. After assigning agent b

Again, the figure next to each node gives a lower bound on the cost of solutions that
can be obtained by completing the corresponding partial assignment. For example,
at node a - 2, b - 1, task 1 will cost 14 and task 2 will cost 12. The remaining
tasks 3 and 4 must be executed by c or d. The smallest possible cost for task 3 is
thus 19, while that for task 4 is 23. Hence a lower bound on the possible solutions
is 14 + 12 + 19 + 23 = 68. The other two new bounds are calculated similarly.

The most promising node in the tree is now a - 2, b -3 with a lower bound
of 59. To continue exploring the tree starting at this node, we fix one more element

Exploring graphs Chapter 9

60

58

65

78*



Section 9.7 Branch-and-bound

in the partial assignment, say c. When the assignments of a, b and c are fixed,
however, we no longer have any choice about how we assign d, so the solution is
complete. The right-hand nodes in Figure 9.16, which shows the next stage of our
exploration, therefore correspond to complete solutions.

64

65 *

Figure 9.16. After assigning agent c

The solution a - 2, b - 3, c -1, d - 4, with a cost of 64, is better than either of
the solutions we found at the outset, and provides us with a new upper bound on
the optimum. Thanks to this new upper bound, we can remove nodes a - 3 and
a - 2, b - 1 from further consideration, as indicated by the asterisks. No solu-
tion that completes these partial assignments can be as good as the one we have
just found. If we only want one solution to the instance, we can eliminate node
a - 2, b - 4 as well.

The only node still worth exploring is a - 1. Proceeding as before, after two
steps we obtain the final situation shown in Figure 9.17. The best solution found
is a - 1, b - 3, c - 4, d - 2 with a cost of 61. At the remaining unexplored nodes
the lower bound is greater than 61, so there is no point in exploring them further.
The solution above is therefore the optimal solution to our instance.

The example illustrates that, although at an early stage node a -2 was the
most promising, the optimal solution did not in fact come from there. To obtain
our answer, we constructed just 15 of the 41 nodes (1 root, 4 at depth 1, 12 at depth 2,
and 24 at depth 3) that are present in a complete tree of the type illustrated. Of the
24 possible solutions, only 6 (including the two used to determine the initial upper
bound) were examined.

9.7.2 The knapsack problem (4)

As a second example, consider the knapsack problem; see Sections 8.4 and 9.6.1.
Here we require to maximize Yt I xivi subject to 1iwi < W, where the vi and
wi are all strictly positive, and the xi are nonnegative integers. This problem too
can be solved by branch-and-bound.

Suppose without loss of generality that the variables are numbered so that
vi/wi > v1 +1 /wi+l. Then if the values of x1,.X.,Xk, 0 < k < n, are fixed, with

kl xwi < W, it is easy to see that the value obtainable by adding further items

315



Exploring graphs Chapter 9316

Figure 9.17. The tree completely explored

of types k + 1, . n to the knapsack cannot exceed

k \

XiVi + W XiWi) Vk+1 /Wk+l

Here the first term gives the value of the items already in the knapsack, while the
second is a bound on the value that can be added.

To solve the problem by branch-and-bound, we explore a tree where at the root
none of the values xi is fixed, and then at each successive level the value of one
more variable is determined, in numerical order of the variables. At each node
we explore, we only generate those successors that satisfy the weight constraint,
so each node has a finite number of successors. Whenever a node is generated
we calculate an upper bound on the value of the solution that can be obtained by
completing the partially specified load, and use these upper bounds to cut useless
branches and to guide the exploration of the tree. We leave the details to the reader.

9.7.3 General considerations
The need to keep a list of nodes that have been generated but not yet completely
explored, situated in several levels of the tree and preferably sorted in order of the
corresponding bounds, makes branch-and-bound hard to program. The heap is an
ideal data structure for holding this list. Unlike depth-first search and its related
techniques, no elegant recursive formulation of branch-and-bound is available to
the programmer. Nevertheless the technique is sufficiently powerful that it is often
used in practical applications.

It is next to impossible to give any precise idea of how well the technique will
perform on a given problem using a given bound. There is always a compromise to

69

361

64

65*



Section 9.8 The minimax principle

be made concerning the quality of the bound to be calculated. With a better bound
we look at less nodes, and if we are lucky we may be guided to an optimum solution
more quickly. On the other hand, we most likely spend more time at each node
calculating the corresponding bound. In the worst case it may turn out that even an
excellent bound does not let us cut any branches off the tree, so all the extra work
at each node is wasted. In practice, however, for problems of the size encountered
in applications, it almost always pays to invest the necessary time in calculating
the best possible bound (within reason). For instance, one finds applications such
as integer linear programming handled by branch-and-bound, the bound at each
node being obtained by solving a related problem in linear programming with
continuous variables.

9.8 The minimax principle

Whichever search technique we use, the awkward fact remains that for a game such
as chess a complete search of the associated graph is out of the question. In this
situation we have to be content with a partial search around the current position.
This is the principle underlying an important heuristic called minimal. Although
this heuristic does not allow us to be certain of winning whenever this is possible,
it finds a move that may reasonably be expected to be among the best moves
available, while exploring only part of the graph starting from some given position.
Exploration of the graph is normally stopped before the terminal positions are
reached, using one of several possible criteria, and the positions where exploration
stopped are evaluated heuristically. In a sense, this is merely a systematic version
of the method used by some human players that consists of looking ahead a small
number of moves. Here we only outline the technique.

Suppose then that we want to play a good game of chess. The first step is
to define a static evaluation function eval that attributes a value to each possible
position. Ideally, the value of eval(u) should increase as the position u becomes
more favourable to White. It is customary to give values not too far from zero to
positions where neither side has a marked advantage, and large negative values to
positions that favour Black. This evaluation function must take account of many
factors: the number and the type of pieces remaining on both sides, control of the
centre, freedom of movement, and so on. A compromise must be made between
the accuracy of the function and the time needed to calculate it. When applied to
a terminal position, the evaluation function should return + o if Black has been
mated, - oo if White has been mated, and 0 if the game is a draw. For example,
an evaluation function that takes good account of the static aspects of the position,
but that is too simplistic to be of real use, might be the following: for nonterminal
positions, count I point for each white pawn, 31/4 points for each white bishop or
knight, 5 points for each white rook, and 10 points for each white queen; subtract
a similar number of points for each black piece.

If the static evaluation function were perfect, it would be easy to determine the
best move to make. Suppose it is White's turn to move in position u. The best
move would be to the position v that maximizes eval(v) among all the successors
of u.

317



Exploring graphs Chapter 9

val - -co
for each position w that is a successor of u do

if eval(w)> val then val - eval(w)
V W w

This simplistic approach would not be very successful using the evaluation function
suggested earlier, since it would not hesitate to sacrifice a queen to take a pawn!

If the evaluation function is not perfect, a better strategy for White is to assume
that Black will reply with the move that minimizes the function eval, since the
smaller the value of this function, the better the position is supposed to be for
him. Ideally, Black would like a large negative value. We are now looking one
move ahead. (Remember we agreed to call each action a move, avoiding the term
"half-move".)

val - oo
for each position w that is a successor of u do

if w has no successor
then valw - eval(w)
else valw - min{eval(x) Ix is a successor of w }

if valw > val then val - valw
V - W

There is now no question of giving away a queen to take a pawn: which of course
may be exactly the wrong rule to apply if it prevents White from finding the winning
move. Maybe if he looked further ahead the gambit would turn out to be profitable.
On the other hand, we are sure to avoid moves that would allow Black to mate
immediately (provided we can avoid this).

To add more dynamic aspects to the static evaluation provided by eval, it is
preferable to look several moves ahead. To look n moves ahead from position u,
White should move to the position v given by

val - co
for each position w that is a successor of u do

B - Black (w, n)
if B > val then val - B

V - W

where the functions Black and White are the following.

function Black(w, n)
if n = 0 or w has no successor

then return eval(w)
else return min{White(x, n - 1) Ix is a successor of wI

function White(w, n)
if n = 0 or w has no successor

then return eval(w)
else return max{Black(x, n - 1) Ix is a successor of w}

318



Section 9.9 Problems

We see why the technique is called minimax. Black tries to minimize the advantage
he allows to White, and White, on the other hand, tries to maximize the advantage
he obtains from each move.

More generally, suppose Figure 9.18 shows part of the graph corresponding to
some game. If the values attached to the nodes on the lowest level are obtained by
applying the function eval to the corresponding positions, the values for the other
nodes can be calculated using the minimax rule. In the example we suppose that
player A is trying to maximize the evaluation function and that player B is trying to
minimize it. If A plays to maximize his advantage, he will choose the second of the
three possible moves. This assures him a value of at least 10; but see Problem 9.55.

Player Rule

A -, In)

B min

A max

Ft ev.
-7 5 -3 10 -20 0 -5 10 -15 20 1 6 -8 14 -30 0 -8 -9

Figure 9.18. The minimax principle

The basic minimax technique can be improved in a number of ways. For exam-
ple, it may be worthwhile to explore the most promising moves in greater depth.
Similarly, the exploration of certain branches can be abandoned early if the infor-
mation we have about them is already sufficient to show that they cannot possibly
influence the value of nodes further up the tree. This second type of improvement,
which we shall not describe in this book, is generally known as alpha-beta pruning.

9.9 Problems

Problem 9.1. Add nodes (8,7), (7,6), (6,5) and their descendants to the graph of
Figure 9.1.

Problem 9.2. Can a winning position in the game described in Section 9.1 have
more than one losing position among its successors? In other words, are there
positions in which several different winning moves are available? Can this happen
in the case of a winning initial position (n, n - 1) ?

319



Exploring graphs Chapter 9

Problem 9.3. Suppose we change the rules of the game of Section 9.1 so that the
player who is forced to take the last match loses. This is the misere version of the
game. Suppose also that the first player must take at least one match and that he
must leave at least two. Among the initial positions with three to eight matches,
which are now winning positions for the first player?

Problem 9.4. Modify the algorithm recwin of Section 9.1 so it returns an integer k,
where k = 0 if the position is a losing position, and 1 < k < j if it is a winning move
to take k matches.

Problem 9.5. Prove that in the game described in Section 9.1 the first player has
a winning strategy if and only if the initial number of matches does not appear in
the Fibonacci sequence.

Problem 9.6. Consider a game that cannot continue for an infinite number of
moves, and where no position offers an infinite number of legal moves to the player
whose turn it is. Let G be the directed graph corresponding to this game. Show
that the method described in Section 9.1 allows all the nodes of G to be labelled as
win, lose or draw.

Problem 9.7. Consider the following game. Initially a heap of n matches is placed
on the table between two players. Each player in turn may either (a) split any heap
on the table into two unequal heaps, or (b) remove one or two matches from any
heap on the table. He may not do both. He may only split one heap, and if
he chooses to remove two matches, they must both come from the same heap.
The player who removes the last match wins.
For example, suppose that during play we arrive at the position {5,41; that is, there
are two heaps on the table, one of 5 matches, the other of 4. The player whose turn it
is may move to {4, 3,21 or {4, 11 by splitting the heap of 5, to 15,3, 11 by splitting
the heap of 4 (but not to {5, 2,21, since the new heaps must be unequal), or to {4, 41,
{4, 31, 15,31 or 15,21 by taking one or two matches from either of the heaps.
Sketch the graph of the game for n = 5. If both play correctly, does the first or the
second player win?

Problem 9.8. Repeat the previous problem for the misere version of the game,
where the player who takes the last match loses.

Problem 9.9. Consider a game of the type described in Section 9.1. When we use
a graph of winning and losing positions to describe such a game, we implicitly
assume that both players will move intelligently so as to maximize their chances of
winning. Can a player in a winning position lose if his opponent moves stupidly
and makes an unexpected "error"?

Problem 9.10. For any of the tree traversal techniques mentioned in Section 9.2,
prove that a recursive implementation takes storage space in i(n) in the worst
case.

320



Section 9.9 Problems

Problem 9.11. Show how any of the tree traversal techniques mentioned in Sec-
tion 9.2 can be implemented so as to take only a time in 6((n) and storage space
in E6(1), even when the nodes do not contain a pointer to their parents (in which
case the problem is trivial).

Problem 9.12. Generalize the concepts of preorder and postorder to arbitrary
(nonbinary) trees. Assume the trees are represented as in Figure 5.7. Prove that
both these techniques still run in a time in the order of the number of nodes in the
tree to be traversed.

Problem 9.13. In Section 9.2 we gave one way of preconditioning a tree so as to
be able thereafter to verify rapidly whether one node is an ancestor of another.
There exist several similar ways of arriving at the same result. Show, for example,
that it can be done using a traversal in preorder followed by a traversal in inverted
preorder, which visits first a node and then its subtrees from right to left.
If the trees are represented as in Figure 5.7, is this method more or less efficient
than the one given in Section 9.2, or are they comparable?

Problem 9.14. Show how a depth-first search progresses through the graph of
Figure 9.3 if the starting point is node 6 and the neighbours of a given node are
examined (a) in numerical order, and (b) in decreasing numerical order.
Exhibit the spanning tree and the numbering of the nodes of the graph generated
by each of these searches.

Problem 9.15. Analyse the running time of algorithm dfs if the graph to be ex-
plored is represented by an adjacency matrix (type adjgraph of Section 5.4) rather
than by lists of adjacent nodes.

Problem 9.16. Show how depth-first search can be used to find the connected
components of an undirected graph.

Problem 9.17. Let G be an undirected graph, and let T be the spanning tree gener-
ated by a depth-first search of G. Prove that an edge of G that has no corresponding
edge in T cannot join nodes in different branches of the tree, but must necessarily
join some node v to one of its ancestors in T.

Problem 9.18. Prove or give a counterexample:

(a) if a graph is biconnected, then it is bicoherent;

(b) if a graph is bicoherent, then it is biconnected.

Problem 9.19. Prove that a node v in a connected graph is an articulation point
if and only if there exist two nodes a and b different from v such that every path
joining a and b passes through v.

Problem 9.20. Prove that for every pair of distinct nodes v and w in a biconnected
graph, there exist at least two paths joining v and w that have no nodes in common
except the starting and ending nodes.

321



Exploring graphs Chapter 9

Problem 9.21. In the algorithm for finding the articulation points of an undirected
graph given in Section 9.3.1, show how to calculate the values of both prenum and
highest during the depth-first search of the graph, and implement the corresponding
algorithm.

Problem 9.22. The example in Section 9.3.1 finds the articulation points for the
graph of Figure 9.3 using a depth-first search starting at node 1. Verify that the
same articulation points are found if the search starts at node 6.

Problem 9.23. Illustrate how the algorithm for finding the articulation points of an
undirected graph given in Section 9.3.1 works on the graph of Figure 9.19, starting
the search (a) at node 1, and (b) at node 3.

Figure 9.19. A graph with articulation points

Problem 9.24. A graph is planar if it can be drawn on a sheet of paper so that
none of the edges cross. Use depth-first search to design an algorithm capable of
deciding in linear time if a given graph is planar.

Problem 9.25. Illustrate the progress of the depth-first search algorithm on the
graph of Figure 9.5 if the starting point is node 1 and the neighbours of a given
node are examined in decreasing numerical order.

Problem 9.26. Let F be the forest generated by a depth-first search on a directed
graph G = (N A). Prove that G is acyclic if and only if the set of edges of G with
no corresponding edge in F includes no edge leading from a node to one of its
ancestors in the forest.

Problem 9.27. For the graph of Figure 9.8, what is the topological order obtained
if we use the procedure suggested in Section 9.4.1, starting the depth-first search
at node 1, and visiting the neighbours of a node in numerical order?

Problem 9.28. What is wrong with the following argument? When we visit node
v of a graph G using depth-first search, we immediately explore all the other nodes
that can be reached from v by following edges of G. In the topological ordering,

322



Section 9.9 Problems

these other nodes must come later than v. Thus to obtain a topological ordering
of the nodes, it suffices to add an extra line

write v

at the beginning of procedure dfs.

Problem 9.29. A directed graph is strongly connected if there exist paths from u to
v and from v to u for every pair of nodes u and v. If a directed graph is not strongly
connected, the largest sets of nodes such that the induced subgraphs are strongly
connected are called the strongly connected components of the graph. For example,
the strongly connected components of the graph in Figure 9.5 are {1,2,31, {5,6}
and {4, 7,81. Design an efficient algorithm based on depth-first search to find the
strongly connected components of a graph.

Problem 9.30. After a breadth-first search in an undirected graph G, let F be the
forest of trees that is generated. If {u, vI is an edge of G that has no corresponding
edge in F (such an edge is represented by a broken line in Figure 9.10), show that
the nodes u and v lie in the same tree in F, but neither u nor v is an ancestor of
the other.

Problem 9.31. Show how a breadth-first search progresses through the graph of
Figure 9.5, assuming that the neighbours of a node are visited in numerical order,
and that the necessary starting points are also chosen in numerical order.

Problem 9.32. Sketch the forest generated by the search of Problem 9.31, showing
the remaining edges of the graph as broken lines. How many kinds of "broken"
edges are possible?

Problem 9.33. Justify the claim that a depth-first search of the graph of Figure 9.11,
starting at node 1 and visiting neighbours in the order "first division by 3, then
multiplication by 2", works down to node 12 and then visits successively nodes 24,
48, 96, 32 and 64.

Problem 9.34. List the first 15 nodes visited by a breadth-first search of the graph
of Figure 9.11 starting at node 1 and visiting neighbours in the order "first division
by 3, then multiplication by 2".

Problem 9.35. Section 9.5 gives one way to produce the value 13, starting from 1
and using the operations multiplication by 2 and division by 3. Find another way
to produce the value 13 using the same starting point and the same operations.

Problem 9.36. A node p of a directed graph G = (N A) is called a sink if for every
node v e N, v X p, the edge (v, p) exists, whereas the edge (p, v) does not exist.
Write an algorithm that can detect the presence of a sink in G in a time in 0(n),
where n is the number of nodes in the graph. Your algorithm should accept the
graph represented by its adjacency matrix (type adjgraph of Section 5.4). Notice
that a running time in 0 (n) for this problem is remarkable given that the instance
takes a space in Q(n2 ) merely to write down.

323



Exploring graphs Chapter 9

Problem 9.37. An Euler path in an undirected graph is a path where every edge
appears exactly once. Design an algorithm that determines whether or not a given
graph has an Euler path, and prints the path if so. How much time does your
algorithm take?

Problem 9.38. Repeat Problem 9.37 for a directed graph.

Problem 9.39. In either a directed or an undirected graph, a path is said to be
Hamiltonian if it passes exactly once through each node of the graph, without
coming back to the starting node. In a directed graph, however, the direction of
the edges in the path must be taken into account. Prove that if a directed graph is
complete (that is, if each pair of nodes is joined in at least one direction) then it has
a Hamiltonian path. Give an algorithm for finding such a path in this case.

Problem 9.40. Sketch the search tree explored by a backtracking algorithm solving
the same instance of the knapsack problem as that in Section 9.6.1, but assuming
this time that items are loaded in order of decreasing weight.

Problem 9.41. Solve the same instance of the knapsack problem as that in Section
9.6.1 by dynamic programming. You will need to work Problem 8.15 first.

Problem 9.42. Adapt the function backpack of Section 9.6.1 to give the composition
of the best load as well as its value.

Problem 9.43. Let the vector qI [. .8] represent the positions of eight queens on a
chessboard, with one queen in each row: if q[i]= j, I < i < 8, 1 < j < 8, the queen
in row i is in column j. Write a function solution (q) that returnsfalse if at least one
pair of queens threaten each another, and returns true otherwise.

Problem 9.44. Given that the algorithm queens finds a solution and stops after
trying 1299 852 positions, solve the eight queens problem without using a com-
puter.

Problem 9.45. Suppose the procedure use(T) called from the procedure perrn(i)
of Section 9.6 consists simply of printing the array T on a new line. Show the result
of calling perm(1) when n = 4.

Problem 9.46. Suppose the procedure use(T) called from the procedure perm(i)
of Section 9.6 takes constant time. How much time is needed, as a function of n,
to execute the call perm(l)?
Rework the problem assuming now that use(T) takes a time in (9(n).

Problem 9.47. For which values of n does the n queens problem have no solu-
tions? Prove your answer.

Problem 9.48. How many solutions are there to the eight queens problem? How
many distinct solutions are there if we do not distinguish solutions that can be
transformed into one another by rotations and reflections?

324



Section 9.9 Problems

Problem 9.49. Investigate the problem of placing k "queens" on an n x n x n
three-dimensional board. Assume that a "queen" in three dimensions threatens
positions in the same rows, columns or diagonals as herself in the obvious way.
Clearly k cannot exceed n2 . Not counting the trivial case n = 1, what is the smallest
value of n for which a solution with n2 "queens" is possible?

Problem 9.50. A Boolean array M[1. . n, 1. . n] represents a square maze. In gen-
eral, starting from a given point, you may move to adjacent points in the same row
or the same column. If M [ i, j] is true, you may pass through point (i, j); if M [ i, j]
isfalse, you may not pass through point (i, j). Figure 9.20 gives an example.
Give a backtracking algorithm that finds a path, if one exists, from (1, 1) to (n, n).
Without being completely formal-for instance, you may use statements such as
"for each point v that is a neighbour of x do . . ."-your algorithm must be clear
and precise.

D true

H false

Figure 9.20. A maze

Problem 9.51. The backtracking method suggested in Problem 9.50 illustrates the
principle, but is very inefficient in practice. Find a much better way of solving the
same problem.

Problem 9.52. In Section 9.7 we calculated lower bounds for the nodes in the
search tree by assuming that each unassigned task would be executed by the unas-
signed agent who could do it at least cost. This is like crossing out the rows and
columns of the cost matrix corresponding to agents and tasks already assigned,
and then adding the minimum elements from each remaining column. An alter-
native method of calculating bounds is to assume that each unassigned agent will
perform the task he can do at least cost. This is like crossing out the rows and
columns of the cost matrix corresponding to agents and tasks already assigned,
and then adding the minimum elements from each remaining row. Show how
a branch-and-bound algorithm for the instance in Section 9.7 proceeds using this
second method of calculating lower bounds.

I
f X
IX

t

I
t

I

325



Exploring graphs Chapter 9

Problem 9.53. Use branch-and-bound to solve the assignment problems with the
following cost matrices:

1 2 3 4

a 94 1 54 68
(a) b 74 10 88 82

c 62 88 8 76
d II 74 81 21

1 2 3 4 5

a 11 17 8 16 20
(b) b 9 7 12 6 15

c 13 16 15 12 16
d 21 24 17 28 26
e 14 10 12 11 15

Problem 9.54. Four types of object are available, whose weights are respectively
7, 4, 3 and 2 units, and whose values are 9, 5, 3 and 1. We can carry a maximum
of 10 units of weight. Objects may not be broken into smaller pieces. Determine
the most valuable load that can be carried, using (a) dynamic programming, and
(b) branch-and-bound. For part (a), you will need to work Problem 8.15 first.

Problem 9.55. Looking at the tree of Figure 9.18, we said that the player about to
move in this position is assured a value of at least 10. Is this strictly true?

Problem 9.56. Let u correspond to the initial position of the pieces in the game of
chess. What can you say about White(u, 12345), besides the fact that it would take
far too long to calculate in practice, even with a special-purpose computer? Justify
your answer.

Problem 9.57. Three-dimensional tictactoe is played on a 4 x 4 x 4 "board". As in
ordinary tictactoe, players X and 0 mark squares alternately. The winner is the first
to align four of his own marks in any direction, parallel to one side of the board
or along a diagonal. There are 76 ways of winning. Devise an evaluation function
for positions in this game, and use it to write a program to play the game against
a human opponent.

9.10 References and further reading

There exist a number of books concerning graph algorithms or combinatorial prob-
lems that are often posed in terms of graphs. We mention in chronological order
Christofides (1975), Lawler (1976), Reingold, Nievergelt and Deo (1977), Gondran
and Minoux (1979), Even (1980), Papadimitriou and Steiglitz (1982), Tarjan (1983)
and Melhorn (1984b). The mathematical notion of a graph is treated at length in
Berge (1958, 1970).

326



Section 9.10 References and further reading

Berlekamp, Conway and Guy (1982) give more versions of the game of Nim
than most people will care to read. The game in Problem 9.7 is a variant of Grundy's
game, also discussed by Berlekamp, Conway and Guy (1982). The book by Nils-
son (1971) is a goldmine of ideas concerning graphs and games, the minimax
technique, and alpha-beta pruning. Some algorithms for playing chess appear
in Good (1968). A lively account of the first time a computer program beat the
world backgammon champion is given in Deyong (1977). For a more technical
description of this feat, consult Berliner (1980). In 1994, Garri Kasparov, the world
chess champion, was beaten by a Pentium microcomputer. At the time of writing,
humans are still unbeaten at the game of go.

A solution to Problem 9.11 is given in Robson (1973). To learn more about
preconditioning, read Brassard and Bratley (1988). Many algorithms based on
depth-first search can be found in Tarjan (1972), Hopcroft and Tarjan (1973) and
Aho, Hopcroft and Ullman (1974, 1983). Problem 9.24 is solved in Hopcroft and
Tarjan (1974). See also Rosenthal and Goldner (1977) for an efficient algorithm that,
given an undirected graph that is connected but not biconnected, finds a smallest
set of edges that can be added to make the graph biconnected.

The problem involving multiplying by 3 and dividing by 2 is reminiscent of
Collatz's problem: see Problem E16 in Guy (1981). Backtracking is described in
Golomb and Baumert (1965) and techniques for analysing its efficiency are given
in Knuth (1975). The eight queens problem was invented by Bezzel in 1848; see the
account of Ball (1967). Irving (1984) gives a particularly efficient backtracking
algorithm to find all the solutions for the n queens problem. The problem can
be solved in linear time with a divide-and-conquer algorithm due to Abramson
and Yung (1989) provided we are happy with a single solution. We shall come
back to this problem in Chapter 10. The three-dimensional n2 queens problem
mentioned in Problem 9.49 was posed by McCarty (1978) and solved by Allison,
Yee and McGaughey (1989): there are no solutions for n < 11 but 264 solutions
exist for n = 11.

Branch-and-bound is explained in Lawler and Wood (1966). The assignment
problem is well known in operations research: see Hillier and Lieberman (1967).
For an example of solving the knapsack problem by backtracking, see Hu (1981).
Branch-and-bound is used to solve the travelling salesperson problem in Bellmore
and Nemhauser (1968).

327



Chapter 10

Probabilistic Algorithms

10.1 Introduction
Imagine you are the heroine of a fairy tale. A treasure is hidden at a place described
by a map that you cannot quite decipher. You have managed to reduce the search
to two possible hiding-places, which are, however, a considerable distance apart.
If you were at one or the other of these two places, you would immediately know
whether it was the right one. It takes five days to get to either of the possible hiding-
places, or to travel from one of them to the other. The problem is complicated by
the fact that a dragon visits the treasure every night and carries part of it away to
an inaccessible den in the mountains. You estimate it will take four more days'
computation to solve the mystery of the map and thus to know with certainty
where the treasure is hidden, but if you set out on a journey you will no longer
have access to your computer. An elf offers to show you how to decipher the map
if you pay him the equivalent of the treasure that the dragon can carry away in
three nights. Should you accept the elf's offer?

Obviously it is preferable to give three nights' worth of treasure to the elf
rather than allow the dragon four extra nights of plunder. If you are willing to take
a calculated risk, however, you can do better. Suppose that x is the value of the
treasure remaining today, and that y is the value of the treasure carried off every
night by the dragon. Suppose further that x > 9y. Remembering it will take you
five days to reach the hiding-place, you can expect to come home with x - 9y if
you wait four days to finish deciphering the map. If you accept the elf's offer, you
can set out immediately and bring back x - 5y, of which 3y will go to pay the elf;
you will thus have x - 8y left. A better strategy is to toss a coin to decide which
possible hiding-place to visit first, journeying on to the other if you find you have
decided wrong. This gives you one chance out of two of coming home with x - 5y,
and one chance out of two of coming home with x -10y. Your expected profit is
therefore x - 7.5x.

328



Section 10.2 Probabilistic does not imply uncertain

This fable can be translated into the context of algorithmics as follows: when an
algorithm is confronted by a choice, it is sometimes preferable to choose a course of
action at random, rather than to spend time working out which alternative is best.
Such a situation arises when the time required to determine the optimal choice is
prohibitive, compared to the time saved on the average by making this optimal
choice.

The main characteristic of probabilistic algorithms is that the same algorithm
may behave differently when it is applied twice to the same instance. Its execution
time, and even the result obtained, may vary considerably from one use to the
next. This can be exploited in a variety of ways. For example, a deterministic algo-
rithm is never allowed to go astray (infinite loop, division by zero, etc.) because if
it does so on a given instance, we can never solve this instance with that algorithm.
By contrast, such behaviour is acceptable for a probabilistic algorithm provided it
occurs with reasonably small probability on any given instance: if the algorithm
gets stuck, simply restart it on the same instance for a fresh chance of success.
Another bonus of this approach is that if there is more than one correct answer,
several different ones may be obtained by running the probabilistic algorithm more
than once; a deterministic algorithm always comes up with the same answer, al-
though of course it can be programmed to seek several.

Another consequence of the fact that probabilistic algorithms may behave dif-
ferently when run twice on the same input is that we shall sometimes allow them
to yield erroneous results. Provided this happens with reasonably small proba-
bility on any given instance, it suffices to invoke the algorithm several times on
the desired instance to build arbitrarily high confidence that the correct answer is
obtained. By contrast, a deterministic algorithm that gives wrong answers on some
inputs is worthless for most applications because it will always err on those inputs.

The analysis of probabilistic algorithms is often complex, requiring an acquain-
tance with results in probability and statistics beyond those introduced in Sec-
tion 1.7.4. For this reason, a number of results are cited without proof in this chapter.

10.2 Probabilistic does not imply uncertain

Many probabilistic algorithms give probabilistic answers, that is answers that are
not necessarily exact. There are critical applications for which such uncertain an-
swers cannot be tolerated. Nevertheless, the error probability can often be brought
down below that of a hardware error during the significantly longer time needed
to compute the answer deterministically. Thus, paradoxically, it may happen that
the uncertain answer given by a probabilistic algorithm is not only obtained faster
but is actually more to be trusted than the "guaranteed" answer obtained by a
deterministic algorithm! Moreover, there are problems for which no algorithm is
known, be it deterministic or probabilistic, that can give the answer with certainty
within a reasonable amount of time (even ignoring possible hardware errors), yet
probabilistic algorithms can solve the problem quickly if an arbitrarily small error
probability is tolerated. This is the case, for example, if you want to determine
whether a 1000-digit number is prime or composite.

329



Probabilistic Algorithms

Two categories of probabilistic algorithms do not guarantee correctness of the
result. Numerical algorithms yield a confidence interval of the form "With proba-
bility 90%, the correct answer is 59 plus or minus 3". The more time you allow
such numerical algorithms, the more precise the interval is. Opinion polls pro-
vide a familiar example of this type of answer. Furthermore, they illustrate that
a probabilistic algorithm can be much more efficient, albeit less precise, than the
corresponding deterministic algorithm-a general election. Numerical algorithms
are useful if you are satisfied with an approximation to the correct answer. By con-
trast, so-called Monte Carlo algorithms give the exact answer with high probability,
although sometimes they provide a wrong answer. In general, you cannot tell if
the answer provided by a Monte Carlo algorithm is correct, but you can reduce the
error probability arbitrarily by allowing the algorithm more time. (For historical
reasons, some authors use the term "Monte Carlo" for any probabilistic algorithm,
and in particular for those we call "numerical".)

Not all probabilistic algorithms give probabilistic answers, however. Often,
probabilistic choices are used only to guide the algorithm more quickly towards
the desired solution, in which case the answer obtained is always correct. Fur-
thermore, it may happen that any purported solution can be verified efficiently for
correctness. If it is found to be wrong, the probabilistic algorithm should admit
that it failed rather than respond incorrectly. Probabilistic algorithms that never
give an incorrect answer are called Las Vegas. Once again, the possibility that the
algorithm might admit failure is not dramatic: simply keep trying the algorithm
on the desired input until it is successful.

Somewhat facetiously, we illustrate the difference between the various types
of probabilistic algorithm by how they would answer the question: "When did
Christopher Columbus discover America?" Called 5 times, a numerical proba-
bilistic algorithm might answer

Between 1490 and 1500
Between 1485 and 1495
Between 1491 and 1501
Between 1480 and 1490
Between 1489 and 1499.

If we give the algorithm more time, we may reduce the probability of a false bracket
(apparently 20% on our sample since the fourth answer was incorrect) or decrease
the span of each bracket (11 years in our example), or both. When asked the same
question, a Monte Carlo algorithm called 10 times might answer

1492, 1492, 1492, 1491, 1492, 1492, 357 B.c., 1492, 1492, 1492.

Again we have a 20% error rate on this sample, which could be made smaller by
allowing the algorithm more time. Note that wrong answers are sometimes close
to the correct answer, sometimes completely wrong. Finally, a Las Vegas algorithm
called 10 times might answer

1492, 1492, Sorry!, 1492, 1492, 1492, 1492, 1492, Sorry!, 1492.

The algorithm never yields an incorrect answer, but it fails to provide an answer
once in a while.

Chapter 10330



Section 10.4 Pseudorandom generation

10.3 Expected versus average time
We make an important distinction between the words "average" and "expected".
The average time of a deterministic algorithm was discussed in Section 2.4. It refers
to the average time taken by the algorithm when each possible instance of a given
size is considered equally likely. As we saw, average-case analysis can be mislead-
ing if in fact some instances are more likely than others. By contrast, the expected
time of a probabilistic algorithm is defined on each individual instance: it refers to
the mean time that it would take to solve the same instance over and over again.
This is a robust notion that does not depend on the probability distribution on the
instances to be solved because the probabilities involved are under direct control
of the algorithm.

It is meaningful to talk about the average expected time and the worst-case
expected time of a probabilistic algorithm. The latter, for example, refers to the
expected time taken by the worst possible instance of a given size, not the time
incurred if the worst possible probabilistic choices are unfortunately taken. Las
Vegas algorithms can be more efficient than deterministic ones, but only with re-
spect to expected time: it is always possible that misfortune will force a Las Vegas
algorithm to take a long route to the solution. Nevertheless, the expected be-
haviour of Las Vegas algorithms can be much better than that of deterministic
algorithms.

For example, we saw in Section 7.5 an algorithm that can find the median of an
array in linear time in the worst case. In Section 10.7.2, we shall study a Las Vegas
algorithm for the median whose worst-case expected time is also linear in the size
of the instance. Its expected performance is considerably better than that of the
algorithm from Section 7.5 on each and every instance. The only price to pay when
using this Las Vegas algorithm is the unlikely possibility that it may occasionally
take excessive time, independently of the instance at hand, due to nothing but bad
luck.

A similar approach can be used to turn quicksort into an algorithm that sorts
n elements in worst-case expected time in 0 (n log n), whereas the algorithm we
saw in Section 7.4.2 requires a time in Q(n2 ) when the n elements are already
sorted. Likewise, universal hashing provides access to a symbol table in constant
expected time in the worst case, whereas classic hash coding is disastrous in the
worst case; see Section 10.7.3. The main advantage of randomizing a determin-
istic algorithm that offers good average behaviour despite a bad worst case is to
make it less vulnerable to an unexpected probability distribution of the instances
that some application might give it to solve; see the end of Section 2.4 and Sec-
tion 10.7.

10.4 Pseudorandom generation
Throughout this chapter, we suppose we have available a random number gener-
ator that can be called at unit cost. Let a and b be real numbers such that a < b.
A call on uniform (a, b) returns a real number x chosen randomly in the interval
a • x < b. The distribution of x is uniform on the interval, and successive calls
on the generator yield independent values of x. To generate random integers, we
extend the notation to uniform(i. .j), where i and j are integers, i <5 j, and the call

331



Probabilistic Algorithms

returns an integer k chosen randomly, uniformly and independently in the inter-
val i < k < j. A useful special case is the function coinflip, which returns heads or
tails, each with probability 50%. Note that uniform (a, b), uniform (i .. j) and coinflip
are easy to obtain even if only uniform (0, 1) is directly available.

function uniform(a, b)
return a + (b - a) x uniform (0, 1)

function uniform(i . j)
return [uniform (i, j + 1)]

function coinflip
if uniform(0. .1)= 0 then return heads

else return tails

Truly random generators are not usually available in practice. Moreover, it is not
realistic to expect uniform(0, 1) to take an arbitrary real value between 0 and 1.
Most of the time pseudorandom generators are used instead: these are deterministic
procedures able to generate long sequences of values that appear to have the prop-
erties of a random sequence. To start a sequence, we supply an initial value called
a seed. The same seed always gives rise to the same sequence. To obtain different
sequences, we may choose, for example, a seed that depends on the date or time.
Most programming languages include such a generator, although some implemen-
tations should be used with caution. Using a good pseudorandom generator, the
theoretical results obtained in this chapter concerning the efficiency and reliability
of various probabilistic algorithms can generally be expected to hold. However,
the impractical hypothesis that a genuinely random generator is available is crucial
when we carry out the analysis.

The theory of pseudorandom generators is beyond the scope of this book, but
the general principle is simple. Most generators are based on a pair of functions
f : X - X and g : X - Y, where X is a sufficiently large set and Y is the domain of
pseudorandom values to be generated. We require both X and Y to be finite, which
means that we can only hope to approximate the effect of uniform(0, 1) by using a
suitably large Y. On the other hand, Y = {0,1} is adequate for many applications:
it corresponds to tossing a fair coin. To generate our pseudorandom sequence, let
s e X be a seed. This seed defines a sequence

IXO = s
IXi f(xi -)foralli>0.

Finally, the pseudorandom sequence yO, Y1, Y2 ... is defined by Y = g (xi) for
all i > 0. This sequence is necessarily periodic, with a period that cannot exceed
the number of elements in X. Nevertheless, if X is sufficiently large and if f and g
(and sometimes s) are chosen adequately, the period can be made very long, and
the sequence may be for most practical purposes indistinguishable from a truly
random sequence of elements of Y.

332 Chapter 10



Section 10.5 Numerical probabilistic algorithms

We give one simple example to illustrate this principle. Let p and q be two
distinct large prime numbers, both congruent to 3 modulo 4, and let n be their prod-
uct. Assume p and q are large enough that it is infeasible to factorize n. (At the
time of writing, 100 digits each is considered sufficient; see Section 10.7.4.) Let X
be the set of integers from 0 to n -1 and let Y = {0, 1}. Define f (x)= x2 mod n
and g(x)= x mod 2. Provided the seed is chosen uniformly at random among the
elements of X that are relatively prime to n, it has been demonstrated that it is
almost always infeasible to distinguish the sequence thus generated from a truly
random binary sequence. For most practical algorithmic purposes, faster but less
secure pseudorandom generators may be preferable. For instance, linear congru-
ential pseudorandom generators of the form f (x) = ax + b mod n for appropriate
values of a, b and n are widely used.

10.5 Numerical probabilistic algorithms

Randomness was first used in algorithmics for the approximate solution of nu-
merical problems. It was already in use in the secret world of atomic research
during World War II, when this technique was given the code word "Monte Carlo"
(a term still used by some authors to denote numerical probabilistic algorithms,
but which we use with a different meaning in this book). A familiar example of
a numerical probabilistic algorithm is simulation. This technique can be used, for
example, to estimate the mean length of a queue in a system so complex that it is
infeasible to get closed-form solutions or even numerical answers by deterministic
methods. For certain real-life problems, computation of an exact solution is not
possible even in principle, perhaps because of uncertainties in the experimental
data to be used, or maybe because a digital computer can handle only binary or
decimal values while the answer to be computed is irrational. For other problems,
a precise answer exists but it would take too long to figure it out exactly.

The answer obtained by a numerical probabilistic algorithm is always approx-
imate, but its expected precision improves as the time available to the algorithm
increases. The error is usually inversely proportional to the square root of the
amount of work performed, so that 100 times more work is needed to obtain one
additional digit of precision.

10.5.1 Buffon's needle
In the eighteenth century, Georges Louis Leclerc, comte de Buffon, proved that if
you throw a needle at random (in a random position and at a random angle, with
uniform distribution) on a floor made of planks of constant width, if the needle
is exactly half as long as the planks in the floor are wide and if the width of the
cracks between the planks is zero, the probability that the needle will fall across a
crack is I/Tr. This theorem may serve to predict approximately how many needles
will fall across a crack if you drop n of them: the expectation is n/ Tr. Figure 10.1
illustrates the fall of 22 needles, of which 8 fell across a crack; we would have
expected 7 on the average since rr 22/7. We assume the needles are dropped
randomly and independently of one another: to preclude interference they should
not stack up or even touch. It may be better to throw and pick up the same needle
several times.

333



Probabilistic Algorithms

Figure 10.1. Buffon's needle

There is, however, an algorithmically more refreshing interpretation of Buffon's
theorem. Instead of using it to predict the number of needles that will fall across a
crack (admittedly of limited interest atbest), why not use it "backwards" to estimate
the value of rr? Pretend for the moment that you do not have a good approximation
for rr but that you know Buffon's theorem. Imagine you drop a large number n
of needles on your floor and count the number k of them that fall across a crack.
You may now use n/k as an estimate for rr. (You would be out of luck should
k = 0, but this is overwhelmingly unlikely when n is large.) The more precise you
want your estimate to be, the more needles you need to drop. In principle, you can
get arbitrarily close to the exact value of ir by dropping sufficiently many needles,
or preferably by dropping the same needle a sufficient number of times to avoid
interference. We carry out the precise analysis later in this section. In practice,
this is not a useful "algorithm" because much better approximations of iT can be
obtained more efficiently by deterministic methods. Nevertheless, this approach to
the "experimental determination of rr" was taken up vigorously in the nineteenth
century, making it one of the first probabilistic algorithms ever used.

We have seen that Buffon's theorem can serve to predict the number of needles
that will fall across a crack and to estimate the value of rr. A third possible use
for this theorem is to estimate the width of the planks (in terms of the number of
needle lengths). Remember that both previous applications took for granted that
the needles are precisely half as long as the planks are wide. If this assumption fails,
it is no longer true that n/k becomes arbitrarily close to rr with overwhelming
probability as we drop more and more needles. Let w and A be the width of the
planks and the length of the needles, respectively. Buffon proved a more general
theorem: provided w > A, the probability that a randomly thrown needle will fall
across a crack is p = 2A/w-rr. In particular, p = 1/rr when A = w/2, as we have
supposed so far. Assume now that we know both Tr and the length of the needles
precisely, but we do not have a ruler handy to measure the width of the planks.
First we make sure that the needles are shorter than the planks are wide. In this

334 Chapter 10



Section 10.5 Numerical probabilistic algorithms

(unlikely!) scenario, we can estimate the width of the planks with arbitrary precision
by dropping a sufficiently large number n of needles and counting the number k
that fall across a crack. Our estimate is simply w 2An/kkTr. As always, the more
needles we drop, the more precise our estimate is likely to be.

With high probability, the algorithms to estimate the value of IT and the width
of the planks return a value that converges to the correct answer as the number
of needles dropped grows to infinity (provided the needles are half as long as the
planks are wide in the first case, and both Tr and the length of the needles is known
precisely in the second case). The natural question to ask is: How quickly do these
algorithms converge? Alas, they are painfully slow: you need to drop 100 times
more needles to obtain one more decimal digit in precision.

Convergence analysis for numerical probabilistic algorithms requires more
knowledge of probability and statistics than we normally assume from our read-
ers. Nevertheless, we proceed with a sketch of the basic approach for those who
have the required background. We concentrate on the analysis of the algorithm for
estimating mrr. For technical reasons, we first analyse how good k / n would be as an
estimator for 1 / 7r. Consider an arbitrary small positive E. We associate a random
variable Xi with each needle: Xi = 1 if the i-th needle falls across a crack and Xi = 0
otherwise. By Buffon's theorem, Pr [Xi 1]= 1/ Ir for each i. The expectation and
variance of Xi are E(Xi) 1/ITr and Var(Xi)= (1- ), respectively. Now, let X
denote the random variable corresponding to our estimate of 1 /I t after dropping
n needles: X = YI' Xi/n. For any integer k between 0 and n

Pr[X = k/n] (k)(-) (1 -

For instance, when n = 22, Pr[X = 7 18% and Pr[ 6 < X • 2-2] is just
slightly above 50%. This random variable has expectation E(X)= 1/rr and vari-
ance Var (X) = (1 ) In. By the Central Limit Theorem, the distribution of X is
almost normal provided n is sufficiently large; see Section 1.7.4. Tables for the
normal distribution tell us that

Pr X - E(X) I < 1.645 ]Var ()-90%.

Using our values for E(X) and Var(X), we infer that Pr[ X - E ]> 90% when

E > 1.645 A (1 o- ) /n, and thus when n > 0.588/r 2 . Therefore, it suffices to drop
at least 0.588/E2 needles to obtain an absolute error in our estimate of 1/Tr that
does not exceed - nine times out of ten. This dependence on 1 /E2 explains why
one additional digit of precision-which means that E must be 10 times smaller-
requires 100 times more needles. If we are not happy with a confidence interval
that is reliable only nine times out of ten, another entry in the normal distribution
table can be used. For example, the fact that

Pr[ IX - E(X) I < 2.576 Var(X) 99%

335



tells us that Pr[ X - < E] > 99% provided E > 2.5761 $(I- 7 ) /n, which is sat-
isfied when n > 1.440/E2

. Thus a tenfold reduction in the probability of error is
inexpensive compared to a one-figure increase in precision. In general, after we
have decided how many needles to drop, there is a tradeoff between the number
of digits that we output and the probability that those digits are correct.

Of course, we are interested in finding a confidence interval for our estimate
of ir, not of 1/rr. A straightforward calculation shows that if IX - I < E then

FITr- - <1 < * E Moreover 9.8E < E < 10E when E < 0.00415, which means in-
tuitively that the same number of needles will provide one less decimal place con-
cerning ir than 1 / t, although the relative error is essentially the same because ir

is about 10 times bigger than 1/ rr. Putting all this together, assuming we want an
absolute error in our estimate for ir that does not exceed E < 0.0415 at least 99%
of the time, it is sufficient to drop 144/E

2 needles. Slightly fewer needles suffice
in the limit of small E. This is nearly one and a half million needles even if we are
satisfied that our estimate be within 0.01 of the exact value of it ninety-nine times
out of one hundred! Did we ever claim this scheme was practical?

To summarize, the user of the algorithm should supply two parameters: the de-
sired reliability p and precision E. From those parameters, with the help of a table
of the normal distribution, the algorithm determines the number n of needles that
need to be thrown so the resulting estimate will be between it - a and ir + E with
probability at least p. For instance, the algorithm would choose n to be about one
and a half million if the user supplied p = 99% and E = 0.01. Finally, the algorithm
drops n needles on the floor, counts the number k of them that fall across a crack,
and announces: "The value of ir is probably between E - and n + a". This an-
swer will be correct a proportion p of the time if the experiment is repeated several
times with the same values of p and a.

There remains one subtlety if you want to implement a similar algorithm to
estimate a value that you really do not know already: we needed the value of ir

for our convergence analysis! How can we determine the required number n of
needles as a function of p and E alone? One solution is to be overly conservative in
our estimate of the variance of the random variables involved. The variance of Xi is
p (1 - p) when Xi = 1 with probability p and Xi = 0 otherwise, which is at most 1/4

(the worst case is when p = 1/2). If we determine n as if the variance of Xi were 1/4,

we will throw more needles than strictly necessary but the desired precision will
be obtained with a reliability better than required. The algorithm can then estimate
the actual reliability obtained using a table of Student's t distribution. The details
can be found in any standard text on statistics. An alternative solution is to use a
small sample of arbitrary size to get a first estimate of the required value, use this to
make a better estimate of the sample size needed, take another sample, and so on.
Again, the details are in any standard text.

10.5.2 Numerical integration

This brings us to the best-known numerical probabilistic algorithms: Monte Carlo
integration, whose name is unfortunate since it is not an example of a Monte
Carlo algorithm according to the terminology adopted in this book. Recall that

Chapter 1 0336 Probabilistic Algorithms



Section 10.5 Numerical probabilistic algorithms

if f: R - RO is a continuous function and if a < b, then the area of the surface
bounded by the curve y f (x), the x-axis and the vertical lines x = a and x = b is

b
I = ff(x) dx.

Now consider a rectangle of width b - a and height I/ (b - a) placed as in Fig-
ure 10.2. The area of this rectangle is also I. Since the rectangle and the surface
below the curve have the same area and the same width, they must have the same
average height. We conclude that the average height of the curve between a and
b is I/ (b - a). If we take a point below the x-axis to have negative height, this
interpretation holds more generally for arbitrary continuous functions f: [R - R.

I

b-a

. _ f

a b

Figure 10.2. Numerical integration

After reading the previous section, a probabilistic algorithm to estimate the integral
should immediately spring to mind: estimate the average height of the curve by
random sampling and multiply the result by b - a.

function MCint(f , n, a, b)
sum - 0
for i 1 to n do

x - uniform(a, b)
sum - sum + f (x)

return (b - a)x(sum/n)

An analysis similar to that for Buffon's needle shows that the variance of the esti-
mate calculated by this algorithm is inversely proportional to the number of sample
points, and the distribution of the estimate is approximately normal when n is large.
Therefore, the expected error in the estimate is again inversely proportional to v/n,
so that 100 times more work is needed to obtain one additional digit of precision.

Algorithm MCint is hardly more practical than Buffon's method for estimat-
ing Tr; see Problem 10.3. A better estimate of the integral can generally be obtained
by deterministic methods. Perhaps the simplest is similar in spirit to MCint except
that it estimates the average height by deterministic sampling at regular intervals.

337

-

----------
d



Probabilistic Algorithms

function DETint(f , n, a, b)
sum - 0
delta - (b - a)/n
x - a + delta/2
for i - 1 to n do

sum - sum + f (x)
x - x + delta

return sum x delta

In general, this deterministic algorithm needs many less iterations than Monte
Carlo integration to obtain a comparable degree of precision. This is typical of
most of the functions we may wish to integrate. However, to every deterministic
integration algorithm, even the most sophisticated, there correspond continuous
functions that can be constructed expressly to fool the algorithm. Consider for
example the function f(x)= sin2

((100!)Trx). Any call on DETint(f,n,0,1) with
1 < n < 100 returns the value zero, even though the true value of this integral is 1/2.

No function can play this kind of trick on the Monte Carlo integration algorithm,
although there is an extremely small probability that the algorithm might make a
similar error even when f is a thoroughly ordinary function.

A better reason to use Monte Carlo integration in practice arises when we have
to evaluate a multiple integral. If a deterministic integration algorithm using some
systematic method to sample the function is generalized to several dimensions,
the number of sample points needed to achieve a given precision grows exponen-
tially with the dimension of the integral to be evaluated. If 100 points are needed
to evaluate a simple integral, then it will probably be necessary to use all 10000
points of a 100 x 100 grid to achieve the same precision when a double integral is
evaluated; one million points will be needed for a triple integral, and so on. With
Monte Carlo integration, on the other hand, the dimension of the integral generally
has little effect on the precision obtained, although the amount of work for each
iteration is likely to increase slightly with the dimension. In practice, Monte Carlo
integration is used to evaluate integrals of dimension four or higher because no
other simple technique can compete. Nevertheless, there are better algorithms that
are more complicated. For instance, the precision of the answer can be improved
using hybrid techniques that are partly systematic and partly probabilistic. If the
dimension is fixed, it may be preferable to choose points systematically so that they
are well-spaced yet reasonable in number, a technique known as quasi Monte Carlo
integration.

10.5.3 Probabilistic counting
How far can you count on an n-bit register? Using ordinary binary notation, you
can count from 0 to 2n - 1. Is it possible to go farther? Clearly the register can
assume no more than 2' distinct values since that is the number of distinct ways to
set n binary values. However, we might be able to go beyond 2n if we are willing
to skip intermediate values. For instance, we could count twice as far if we counted
only even values. More precisely, let c denote our n-bit register. Sometimes we
also use c to denote the integer represented in binary by the register. We wish to

338 Chapter 10



Section 10.5 Numerical probabilistic algorithms

implement two procedures init(c) and tick(c), and one function count(c) such that
a call on count(c) returns the number of calls to tick(c) since the last call on init(c).
In other words, init resets the counter to zero, tick adds 1 to it, and count asks for
its current value. The algorithms should be able to maintain an arbitrarily large
number of counters cl, c2, ... , and side-effects are not allowed: no information
can be passed between calls, except through the register transmitted as an explicit
parameter.

We suggested above that we could skip some values to count farther. However,
this is nonsense if we insist on a deterministic counting strategy. Because side-
effects are not allowed, there is no way tick can add 1 to the counter every other
call: the behaviour of tick(c) must be determined completely from the current
value of c. If there exists a value of c such that tick(c) leaves c unchanged, the
counter will stick at that point until init(c) is called. (This is reasonable when the
counter has reached its upper limit.) Since c can assume only 2n different values,
the counter is forced to reassume a previously held value after at most 2n calls
on tick(c). Therefore, deterministically counting more than 2" events in an n-bit
register is impossible.

Provided we relax the requirement that count should return the exact number of
ticks since the last init, there is an obvious probabilistic strategy to count twice as far.
The register is an ordinary binary counter, initialized to zero by a call on init. Each
time tick is called, flip a fair coin. If it comes up heads, add 1 to the register. If it
comes up tails, however, do nothing. When count is called, return twice the value
stored in the register. Following a call on init, it is easy to prove that the expected
value returned by count after t calls to tick is precisely t, even when t is odd.
The variance can be shown to be reasonably small, so the estimate returned by
count is fairly accurate most of the time; see Problem 10.5.

We do not expect you to be impressed by the previous paragraph. Counting
twice as far simply means up to 21' - 2, which could have been achieved deter-
ministically if a single additional bit had been available in the register. We now
show that probabilistic counting strategies can count exponentially farther: from 0
to 22n-1 - 1. Thus, 8 bits are sufficient to count more than 5 x 1076 events! The idea
is to keep in the register an estimate of the logarithm of the actual number of ticks.
More precisely, count(c) returns 2C - 1. We subtract 1 so that a count of 0 can be
represented; moreover count(O)= 0 as it should since init(c) sets c to 0. It remains
to see how to implement tick.

Assume that 2C -1 is a good estimate of the number of ticks since the last ini-
tialization. After an additional tick, a good estimate of the total number of ticks
would be 2c, but this is not of a form that can be represented with our strategy.
To circumvent this, we add 1 to c with some probability p to be determined and we
leave it unchanged otherwise. Thus, our estimate of the number of ticks becomes
2c+1 - 1 with probability p, whereas it remains 2c 1 with complementary prob-
ability 1 - p. The expected value returned by count(c) after this tick is therefore

(2c`1 - 1) p + (2' - 1) (1 - p)= 2c + 2Cp - 1

339



Probabilistic Algorithms

and we see that it suffices to set p =2 c to obtain 2', the desired expected value
for count(c). (This reasoning is not rigorous; work Problem 10.6 for a proof that
the expected value returned by count is correct.) To summarize, we obtain the
following algorithms.

procedure init(c)
c -0

procedure tick(c)
for i -1 to c do

if coinflip = heads then return
c - c+1
{The probability of overflow is too small to be worth checking}

function count(c)
return 2C - 1

There is an additional advantage in keeping the logarithm of the actual count
in c. We saw in the previous sections that numeric probabilistic algorithms keep
the absolute error under control. When implementing a counter whose range is as
large as 5 x 1076, we are more likely to wish to keep the relative error under control.
Fortunately a small absolute error in the logarithm of the number of ticks translates
into a small relative error in the actual count. In particular, count is guaranteed to
give the exact answer when the number of ticks since initialization is 0 or 1. It can
be proved by mathematical induction that the variance of count after m ticks is
m (m - 1) / 2. This is not so good, as it means that the standard deviation is roughly
70% of the actual number of counts: this process will distinguish a million from a
billion, but not reliably one million from two millions.

Although there are applications for which such lack of precision is acceptable,
no real application can possibly wish to count as many as 5 x 1076 events. For-
tunately, the variance of the estimated count can be improved at the cost of not
counting quite as far. For this, it suffices to keep track in the register of the loga-
rithm in a basis smaller than 2. For example, we could use

count(c)= [(1 + E)'-1]/E (10.1)

for small E. The division by E is to keep the desirable property that count always
gives the exact answer after 0 or 1 ticks. Using E = 1/30, this allows counting up to
more than 125 000 events in an 8-bit register with less than 24% relative error 95%
of the time. Of course, the probability that tick will increase c when called should
no longer be 2 c: it must be set appropriately; see Problem 10.8.

For an entirely different type of probabilistic counting, which saves time rather
than storage, be sure to work Problem 10.12. Under some conditions, this algorithm
can count approximately the number of elements in a set in a time that is in the
order of the square root of that number.

340 Chapter 10



Section 10.6 Monte Carlo algorithms

10.6 Monte Carlo algorithms
There exist problems for which no efficient algorithm is known, whether it be
deterministic or probabilistic, that is able to obtain a correct solution every time.
A Monte Carlo algorithm occasionally makes a mistake, but it finds a correct solution
with high probability whatever the instance considered. This is a stronger claim
than saying that it works correctly on a majority of instances, only failing now and
again in some special cases: there must be no instance on which the probability of
error is high. However, no warning is usually given when the algorithm makes a
mistake.

Let p be a real number such that 0 < p < 1. We say that a Monte Carlo algorithm
is p -correct if it returns a correct answer with probability at least p, whatever the
instance considered. In some cases we shall allow p to depend on the instance
size but never on the instance itself. The most interesting feature of Monte Carlo
algorithms is that it is often possible to reduce the error probability arbitrarily at
the cost of a slight increase in computing time. We call this amplifying the stochastic
advantage. We shall study this general phenomenon in Section 10.6.4, but first
we consider two examples. The first is of limited practical interest, but it has the
advantage of simplicity. We use it to introduce the key notions. The second, on the
other hand, is of unquestionable practical importance.

10.6.1 Verifying matrix multiplication
Consider three n x n matrices A, B and C. You suspect that C = AB. How can
you verify whether or not this is so? The obvious approach is to multiply A and
B, and to compare the result with C. Using a straightforward matrix multiplica-
tion algorithm, this takes a time in 0(n3 ). Strassen's algorithm is faster, and even
faster matrix multiplication algorithms exist for very large n, but the asymptotically
fastest algorithm currently known still requires a time in Qi(n2

.
37); see Section 7.6.

Can we do better if we are willing to tolerate a small probability of error? Surpris-
ingly, the answer is that for any fixed E > 0, a time in 0 (n2 ) is sufficient to solve this
problem with error probability at most E. The constant hidden in the 0 notation,
however, depends on E.

Assume for the sake of argument that C X AB. Let D = AB - C. By assumption,
D is not identically zero. Let i be an integer such that the i-th row of D contains at
least one nonzero element. Consider any subset S -{1, 2,...,n}. Let s (D) denote
the vector of length n obtained by adding pointwise the rows of D indexed by the
elements of S; an empty sum is equal to 0. For instance, I1,3,44 (D) is obtained by
adding the first, third and fourth rows of D. Let S' be the same subset as S, except
that i c S' if and only if i C S. Since the i-th row of D is not identically 0, Is(D)

and IS' (D) cannot be simultaneously 0. Assume now that S is chosen randomly:
for each j between 1 and n, decide by the flip of a fair coin whether or not to include
j in S. Because i e S is as likely as i 0 S, the probability that Is(D) 7 0 is at least
one-half.

On the other hand, Es(D) is always 0 if C = AB since in this case D = 0. This
suggests testing whether or not C = AB by computing Es (D) for a randomly chosen
subset S and comparing the result with 0. But how can this be done efficiently
without first computing D (and hence AB)?

341



Probabilistic Algorithms

The solution is to consider Is (D) as a matrix multiplication of its own. Let X
be a binary vector of length n such that X= 1 if j E S and Xj = 0 otherwise. It is
straightforward to verify that Is (D)= XD, provided we think of X as a 1 x n ma-
trix. Thus, our test corresponds to checking whether or not X(AB - C) is 0, or
equivalently whether or not NAB = XC, for a randomly chosen binary vector X.
It appears at first that computing XAB should be even more time consuming than
computing AB, but this is not the case. Remember from Section 8.6 that the time
needed to compute a chained matrix multiplication depends crucially on the order
in which the matrices are multiplied. In this case, it only takes a time in x)(n2) to
compute XAB as (NA)B because this is the time needed to multiply the 1 x n matrix
X with the n x n matrix A, and because the result, XA, is again a 1 x n matrix that
we can multiply with B in a time in 0 (n 2 ). This suggests the following algorithm.

function Freivalds(A, B, C, n)
for j- 1 to n do Xj - uniform(O.. 1)
if (YA)B = XC then return true

else return false

From the discussion above, we know that this algorithm returns a correct an-
swer with probability at least one-half on every instance: it is therefore I/2-correct

by definition. It is not p-correct for any p smaller than 1/2, however, because
its error probability is exactly 1/2 when C differs from AB in precisely one row:
an incorrect answer is returned if and only if Xi = 0 where it is row i that differs
between C and AB. Is this really interesting? Surely an error probability of 50%
is intolerable in practice? Worse, an easier "algorithm" to achieve this error rate
would be to flip a single fair coin and return true orfalse depending on the outcome
without even looking at the three matrices in question! The key observation is that
whenever Freivalds (A, B, C, n) returns false, you can be sure this answer is correct:
the existence of a vector X such that XAB differs from XC allows you to conclude
with certainty that AB 4= C. It is only when the algorithm returns true that you are
not sure whether to believe it.

Consider for example the following 3 x 3 matrices.

1 2 3 3 1 4 11 29 37
A= 4 5 6 B=1 5 9 C= 29 65 91

7 8 9 2 6 5 47 99 45

A call on Freivalds (A, B, C, 3) could choose X = (1, 1,0), in which case XA is obtained
by adding the first and second rows of A, thus XA = (5,7,9). Continuing, we
calculate (NA)B = (40,94,128). This is compared to XC = (40,94,128), which is
obtained by adding the first and second rows of C. With this choice of X, Freivalds
returns true since XAB = XC. Another call on Freivalds might choose X = (0,1,1)
instead. This time, the calculations are

NA= (11,13,15), (XA)B= (76,166,236), XC= (76,164,136),

and Freivalds returns false. We are luckier: the fact that XAB #6 XC is conclusive
proof that AB + C.

Chapter 1 0342



Section 10.6 Monte Carlo algorithms

This suggests running Freivalds (A, B, C, n) several times on the same instance,
using independent flips of the coin each time. Getting the answer false just once
allows you to conclude that AB f C, regardless of how many times you get the
answer true. Consider now the following algorithm, in which k is a new parameter.

function RepeatFreivalds(A, B, C, n, k)
for i - 1 to k do

if Freivalds(A, B, C, n) =false then returnfalse
return true

We are interested in the error probability of this new algorithm. Consider two cases.
If in fact C = AB, each call on Freivalds necessarily returns true since there is no risk
of randomly choosing an X such that XAB 76 XC, and thus RepeatFreivalds returns
true after going k times round the loop. In this case, the error probability is zero.
On the other hand, if in fact C X AB, the probability for each call on Freivalds that
it will (incorrectly) return true is at most 1/2. These probabilities multiply because
the coin flips are independent from one call to the next. Therefore, the probability
that k successive calls each return the wrong answer is at most 2-k. But this is the
only way for RepeatFreivalds to return an erroneous answer. We conclude that our
new algorithm is (1 - 2 k).-correct. When k = 10, this is better than 99.9%-correct.
Repeating 20 times brings the error probability below one in a million. Such a spec-
tacularly rapid decrease in error probability is typical for Monte Carlo algorithms
that solve decision problems-that is, problems for which the answer is either true
orfalse-provided one of the answers, if obtained, is guaranteed to be correct.

Alternatively, Monte Carlo algorithms can be given an explicit upper bound
on the tolerable error probability.

function Freivaldsepsilon(A, B, C, n, E)
k - I[lg / 1
return RepeatFreivalds(A, B, C, n, k)

An advantage of this version of the algorithm is that we can analyse its running
time as a function simultaneously of the instance size and the error probability.
In this case, the algorithm clearly takes a time in 0 (n2 log IE/ ).

The algorithms in this section are of limited practical interest because it takes
3n 2 scalar multiplications to compute XAB and XC, compared to n3 to compute
AB by the direct method. If we insist on an error probability no larger than one
in a million, and if in fact C = AB, the 20 required runs of Freivalds perform 60n2

scalar multiplications, which does not improve on n 3 unless n is larger than 60.
Nevertheless, this approach is potentially useful if very large matrix products have
to be verified.

10.6.2 Primality testing

Perhaps the most famous Monte Carlo algorithm decides whether a given odd
integer is prime or composite. No known algorithm can solve this problem with
certainty in a reasonable time when the number to be tested has more than a few

343



Probabilistic Algorithms

hundred decimal digits. Testing the primality of large numbers is more than a
mathematical recreation: we saw in Section 7.8 that it is crucial for modern cryp-
tology.

The story of probabilistic primality testing has its roots with Pierre de Fermat,
the father of modern number theory. He stated the following theorem, sometimes
known as Fermat's little theorem, in 1640.

For example, let n = 7 and a 5. We have

a,-= 56 = 15625 = 2232 x 7±+ 1

and thus an 1 mod n = 1 as it should. Now consider the contrapositive of Fermat's
little theorem: if n and a are integers such that 1 < a < n - 1 and if a' - mod n / 1
then n is not prime. An anecdotal example is provided by Fermat himself. In his
quest for a formula that would yield only prime numbers, he formulated the hy-
pothesis that F= 22" + 1 is prime for all n. Observe that Fo = 3, F1 = 5, F2 = 17,
F3 = 257 and F4  65537 are all prime numbers. Unfortunately, F5 = 4294967297
was a number too large for Fermat to attempt proving its primality. Nearly a
century had to pass before Euler factorized F5 = 641 x 6700417, disproving Fer-
mat's conjecture. Ironically, Fermat could have used his own theorem to reach
the same conclusion. It would have been well within his reach to invent an effi-
cient modular exponentiation algorithm similar to expomod and use it to compute

3Fs 1 mod F5 = 3029026160 + 1; see Section 7.8. Although tedious, this calculation
involves nothing more than 32 successive modular squarings since F5  1 = 232.

From the contrapositive to his own theorem, Fermat would have known that F5 is
not prime.

This suggests the following probabilistic algorithm for primality testing. We
assume n > 2.

function Fermat(n)
a - uniform(l .. n - 1)
if expomod(a, n - 1, n)= 1 then return true

else returnfalse

From the above discussion, we know that n is composite whenever a call on
Fermat(n) returnsfalse because the existence of an a between 1 and n - 1 such that
an 1 mod n / 1 is sufficient to show this by Fermat's little theorem. It is remarkable

Theorem 10.6.1 (Fermat) Let n be prime. Then

aw 1 mod n = I

for any integer a such that 1 < a < n - 1.

Chapter 1 0344



Section 10.6 Monte Carlo algorithms

that whenever this algorithm tells you n is composite, it provides no clue concern-
ing its divisors. To the best of our current algorithmic knowledge, factorization is
much harder than primality testing. Recall that the presumed difference in diffi-
culty between these problems is crucial to the RSA cryptographic system described
in Section 7.8: the easiness of primality testing is necessary for its implementation
whereas the hardness of factorization is prerequisite to its safety.

What can we say, however, if Fermat(n) returns true? To conclude that n
is prime, we would need the converse rather than the contrapositive to Fermat's
theorem. This would say that an-I mod n is never equal to 1 when n is composite
and 1 < a < n -1. Unfortunately, this is not the case since ln-1 mod n = 1 for all
n > 2. Moreover, (n -l)l 1 mod n = I for all odd n > 3 because (n -1)2 mod n = 1.
The smallest nontrivial counterexample to the converse is that 414 mod 15 = 1
despite the fact that 15 is composite. An integer a such that 2 < a • n - 2 and
an-1 mod n =1 is called afalse witness of primality for n if in fact n is composite.
Provided we modify Fermat's test to choose a randomly between 2 and n - 2, it can
only fail on composite numbers when a false witness is chosen.

The good news is that false witnesses are rather few. Although only 5 among
the 332 odd composite numbers smaller than 1000 boast no false witnesses, more
than half of them have only two false witnesses and less than 16% of them have
more than 15. Moreover, there are only 4490 false witnesses for all these composite
numbers taken together. Compare this to 172 878, the total number of candidate
witnesses that exist for the same set of numbers. The average error probability of
Fermat's test on odd composite numbers smaller than 1000 is less than 3 .3 %. It is
even smaller if we consider larger numbers.

The bad news is that there are composite numbers that admit a significant pro-
portion of false witnesses. The worst case among composites smaller than 1000 is
561, which admits 318 false witnesses: this is more than half the potential witnesses.
A more convincing case is made with a 15-digit number: Fermat(651693055693681)
returns true with probability greater than 99.9965% despite the fact that this num-
ber is composite! More generally, for any 6 > 0 there are infinitely many composite
numbers for which Fermat's test discovers compositeness with probability smaller
than 6. In other words, Fermat's test is not p-correct for any fixed p > 0. Conse-
quently, the error probability cannot be brought down below an arbitrarily small E
by repeating Fermat's test some fixed number of times according to the technique
we saw in the previous section.

Fortunately, a slight modification in Fermat's test solves this difficulty Let n
be an odd integer greater than 4, and let s and t be integers such that n - 1 = 2s t,
where t is odd. Note that s > 0 since n - 1 is even. Let B(n) be the set of integers
defined as follows: a E B(n) if and only if 2 < a < n - 2 and

• atmodn =1,or

c there exists an integer i, 0 < i < s, such that a2 it mod n = n - 1.

This may seem complicated, but it is easy to implement efficiently. Provided n is
odd and 2 s a < n - 2, a call on Btest(a, n) returns true if and only if a E B(n).

345



Probabilistic Algorithms

function Btest(a, n)
s -0; t-n -1
repeat

s -s + 1; t - t . 2
until t mod 2 = 1
x - expomod(a, t, n)
if x = 1 or x = n - 1 then return true
fori-1 tos-1 do

x - x2 mod n
if x = n - 1 then return true

returnfalse

For example, let us see if 158 belongs to B(289). We set s 5 and t = 9 because
n -1 = 288 = 25 x 9. Then we compute

x = at mod n = 1589 mod 289 131.

The test is not finished since 131 is neither 1 nor n - 1 288. Next, we successively
square x (modulo n) up to 4 times (s - 1 = 4) to see if we obtain 288.

a2 t mod n = 1312 mod 289 = 110

a22t mod n = 1102 mod 289 = 251

a•2t mod n = 2512 mod 289 = 288

At this point we stop because we have found that a2t mod n = n - 1 for i = 3 < s,
and we conclude that 158 E B(289).

An extension of Fermat's theorem shows that a e B(n) for all 2 < a < n - 2
when n is prime. On the other hand, we say that n is a strong pseudoprime to
the base a and that a is a strong false witness of primality for n whenever n > 4
is an odd composite number and a E B(n). For instance, we just saw that 158
is a strong false witness of primality for 289 since 289 = 172 is composite. This
yields a better test than Fermat's because strong false witnesses are automatically
false witnesses with respect to Fermat's test, but not conversely. In fact, strong
false witnesses are much rarer than Fermat false witnesses. For instance, 4 is a false
witness of primality for 15, but it is not a strong false witness because 47 mod 15 = 4.
We also saw that 561 admits 318 false witnesses, but only 8 of these are strong
false witnesses. Considering all odd composites smaller than 1000, the average
probability of randomly selecting a strong false witness is less than 1%; more than
72% of these composites do not admit even one strong false witness. The superiority
of the strong test is best illustrated by the fact that every odd composite integer
between 5 and 1013 fails to be a strong pseudoprime to at least one of the bases 2, 3,
5,7 or 61. In other words, five calls on Btest are sufficient to decide deterministically
on the primality of any integer up to 1013. Most importantly, unlike Fermat's test,
there is a guarantee that the proportion of strong false witnesses is small for every
odd composite. More precisely, we have the following theorem.

Chapter 1 0346



Section 10.6 Monte Carlo algorithms

Consequently, Btest(a, n) always returns true when n is a prime larger than 4 and
2 < a < n - 2, whereas it returns false with probability better than 3/4 when n is a
composite odd integer larger than 4 and a is chosen randomly between 2 and n - 2.
In other words, the following Monte Carlo algorithm is 3 /4 -correct for primality
testing; it is known as the Miller-Rabin test.

function MillRab(n)
{This algorithm should only be called if n > 4 is odd}
a - uniform(2.. n - 2)
return Btest(a, n)

Because the answerfalse is guaranteed to be correct, the technique we saw in the
previous section applies to reduce the error probability very rapidly.

function RepeatMillRab(n, k)
{This algorithm should only be called if n > 4 is odd}
for i. 1 to k do

if MillRab(n) =false then return false
return true

This algorithm always returns the correct answer when n > 4 is prime. When
n > 4 is an odd composite, each call on MillRab has probability at most 1/4 of
hitting a strong false witness and erroneously returning true. Since the only way
for RepeatMillRab to return true in this case is to randomly hit k strong false wit-
nesses in a row, this happens with probability at most 4 k. For instance, it suffices
to take k = 10 to reduce the error probability below one in a million. In conclu-
sion, RepeatMillRab(-, k) is a (1- 4-k)-correct Monte Carlo algorithm for primality
testing.

How much time does it take to decide on the primality of n with an error
probability bounded by E? We must repeat the Miller-Rabin test k times where
4-k < E, which is the same as 2 2k> 1I . This is achieved with k = F Ig 1/]. Each
call on MillRab involves one modular exponentiation, with t as exponent, and
s -1 modular squarings. We know from Section 7.8 that the exponentiation re-
quires a number of modular multiplications and squarings in 0 (log t). Counting
squarings as multiplications, and since lg n > lg (n - 1) lg 25 t = s + lg t, the time
required by a call on MillRab is dominated by a number of modular multiplications
in 0 (log n). If these are performed according to the classic algorithm, each of them
takes a time in 0 (log2 n) because we reduce modulo n after each multiplication.

Theorem 10.6.2 Consider an arbitrary odd n > 4.

o If n is prime, then B(n) {a I 2 s a < n - 21.

o If n is composite, then IB(n)I < (n- 9)/4.

347



Probabilistic Algorithms

Putting it all together, the total time to decide the primality of n with error probabil-
ity bounded by E is thus in 0 (log3 n ig 1 /1). This is entirely reasonable in practice
for thousand-digit numbers and error probability less than 10-1°0.

10.6.3 Can a number be probably prime?

Assume you run the Miller-Rabin test 10 times on some odd number n, and you
obtain the answer "true" each time. What can you conclude? We saw that if
n were composite, this could occur with probability at most 4 10 =2 20, which
is less than one in a million. It may be tempting to conclude that "n is prime,
except with probability 2 20 of error". However, such a statement is nonsense:
any given integer larger than 1 is either prime or composite! The best we can
say is: "I believe n to be prime; otherwise I have observed a phenomenon whose
probability of occurrence was less than one in a million". Moreover, even this toned
down statement must be taken with a grain of salt if the witnesses for the test were
obtained by a pseudorandom generator rather than being truly random: perhaps n
is composite and we failed to find a witness not because we were unlucky but rather
because the pseudorandom generator was defective; see Section 10.4. Nevertheless,
such failure is unlikely if a good generator is used and we shall not worry further
about this possibility.

Since it is impossible to ever be sure that a given number is prime with this
Monte Carlo algorithm-only composite numbers can be certified-and since it
is the primes that are relevant for cryptographic purposes, you may wonder if it
is worth risking a "false prime" to save computing time. If your life depended
on the primality of a given number, would you not spend the time necessary to
certify its primality with the best available deterministic method? Say you have
the choice between running RepeatMillRab(n, 150) or a more sophisticated method
that takes significantly more time but guarantees a correct answer. Which approach
would be least likely to lead you into error? As discussed in Section 10.2, the
sophisticated method is more likely to be wrong, despite its claims, because the
probability of an undetected hardware error during its longer computing time is
likely to be higher than 4 150 - 10-1°° Moreover, you can be more confident that
your implementation of the Miller-Rabin test is error-free than you can about the
more complicated algorithm. Thus we reach the paradoxical conclusion that a
probable prime, whatever meaning you give to this phrase, may be more reliable
than a number whose primality was "proved" deterministically! Note however
that there are probabilistic methods that can produce certified random primes in
less time than it takes to find probabilistic primes with repeated use of the Miller-
Rabin test. Because these methods are guaranteed to return a prime, they belong
to the class of Las Vegas algorithms.

The importance of interpreting the outcome of a Monte Carlo algorithm cor-
rectly is best illustrated if you wish to generate an -e-digit number that is probably
prime, perhaps for cryptographic purposes. The obvious algorithm is to keep
choosing random e?-digit odd integers until one is found that passes a sufficient
number of rounds of the Miller-Rabin test. More precisely, consider the following
algorithm, which should only be used with e > 1.

348 Chapter 1 0



Section 10.6 Monte Carlo algorithms

function random prime(t, k)
repeat

{Choose odd n randomly between 10'-1 and 10f -1}
n - 1I + 2 x uniform(10-1 /2 .. l10/ 2 -1)

until RepeatMillRab(n, k)
return n

What can we say about the outcome of this algorithm? We already know that we
cannot claim that the number obtained is prime with probability at least 1 - 4-k.

Nevertheless, it does make sense to investigate the average number of "false primes"
(a euphemism for "composite") produced if we run the algorithm m times. It is
tempting to conclude from the discussion above that the answer is "at most 4-k m
because our error probability on each of the m numbers produced is at most 4-k ke

For example, if we call randomprime(1000, 5) one million times, we would expect
less than 1000 composites among the million 1000-digit numbers thus produced
(because 4 5106 977). It would suffice to call randomprime(1000, 10) instead to
bring this expected number below 1 at the cost of less than doubling the running
time. This conclusion is correct, but only because the expected error probability of
the Miller-Rabin test on a randomly selected odd composite is much less than 1/4

However, the simple reasoning is wrong!
The problem is that a large random odd number is much more likely to be com-

posite than prime. Therefore, a call on random prime is likely to use RepeatMillRab to
test many composite numbers before a prime number is tested, if indeed this ever
happens. The probability of error inherent in each call of RepeatMiliRab on com-
posite numbers will accumulate. Even if each call is likely to find that its number
is composite, the probability that one of the calls will err-causing randomprime to
return this composite by mistake-is not negligible if many composites are tested
before a prime is hit by chance. For the sake of argument, consider what would hap-
pen if the error probability of the Miller-Rabin test were exactly 1/4 on every odd
composite and if we called randomprime(1000, 5). Each time round the repeat loop,
one of three things happens.

• If the randomly chosen number n is prime, RepeatMiliRab (n, 5) is sure to return
true, ending the loop; randomprime correctly returns a prime number in this
case.

• If the randomly chosen number n is composite, there is a probability ex-
actly 4-5 = 1/1024 that RepeatMillRab(n,5) will return true, ending the loop;
randomprime erroneously returns a composite number in this case.

• Otherwise, the algorithm goes back round the loop with the random choice of
another 1000-digit odd number.

The probability that a random 1000-digit odd number is prime is roughly one in a
thousand; see Problem 10.19. Hence the first two cases above are nearly equiprob-
able while the third case is overwhelmingly the most probable. As a result, the
loop in randomprime is just as likely to end for either of the possible reasons, so it

349



Probabilistic Algorithms

returns composite numbers approximately as often as it does primes! (Once again,
the performance of randomprime will be much better in reality because in fact the
error probability of MillRab is substantially smaller than 1/4 on most composite
numbers.)

10.6.4 Amplification of stochastic advantage

Both Monte Carlo algorithms studied so far have a useful property: one of the
possible answers is always correct when obtained. One guarantees that a given
number is composite, the other that a given matrix product is incorrect. We say
such algorithms are biased. Thanks to this property, it is easy to reduce the error
probability arbitrarily by repeating the algorithm a suitable number of times. The
occurrence of even a single "guaranteed" answer is enough to produce certainty; a
large number of identical probabilistic answers, on the other hand, increases con-
fidence that the correct answer has been obtained. This is known as amplification
of the stochastic advantage.

Assume we have an unbiased Monte Carlo algorithm whose error probability is
nonzero regardless of the instance to be solved and of the answer returned. Is it still
possible to decrease the error probability arbitrarily by repeating the algorithm?
The answer is that it depends on the original error probability. For simplicity, let
us concentrate on algorithms that solve decision problems; but see Problem 10.22.
Consider a Monte Carlo algorithm about which all you know is that it is p-correct.
The first obvious remark is that amplification of the stochastic advantage is im-
possible in general unless p > 1/2 because there is always the worthless '/2-correct
"algorithm"

function stupid(x)
if coinflip = heads then return true

else returnfalse

whose stochastic "advantage" cannot be amplified. Provided p > 1/2, define the
advantage of a p-correct Monte Carlo algorithm to be p- 1/2. Any Monte Carlo algo-
rithm whose advantage is positive can be turned into one whose error probability
is as small as we wish. We begin with an example.

Let MC be a 3/4 -correct unbiased Monte Carlo algorithm to solve some decision
problem. Consider the following algorithm, which calls MC (x) three times and
returns the most frequent answer.

function MC3(x)
t -MC(x); u -MC(x); v -MC(x)
if t= uort =vthenreturnt

else return u

What is the error probability of MC3? Let R and W denote the right and wrong
answers, respectively. We know that t, u and v each have probability at least 3/4 to
be R, independently of one another. Assume for simplicity that this probability is

350 Chapter 10



Section 10.6 Monte Carlo algorithms

exactly 3/4 since algorithm MC3 would clearly be even better if the error probability
of MC were smaller than 1/4. There are eight possible outcomes for the three calls
on MC, whose probabilities are summarized in the following table.

t u v prob MC3
R R R 27/64 R
R R W 9/64 R
R W R 9/64 R
R W W 3/64 W
W R R 9/64 R
W R W 3/64 W
W W R 3/64 W
W W W 1/64 W

Adding the probabilities associated with rows 1, 2, 3 and 5, we conclude that MC3
is correct with probability 27/32, which is better than 84%.

More generally, let MC be a Monte Carlo algorithm to solve some decision
problem whose advantage is £ > 0. Consider the following algorithm, which calls
MC k times and returns the most frequent answer.

function RepeatMC(x, k)
T,F - 0
for i - 1 to k do

if MC(x) then T - T + 1
else F F + 1

if T > F then return true else returnfalse

What is the error probability of RepeatMC? To find out, we associate a random vari-
able Xi with each call to MC: Xi = 1 if the correct answer is obtained and Xi = 0
otherwise. By assumption, Pr[X1 = 1]> 2+ - for each i. Assume for simplicity
that this probability is exactly I + £ since otherwise RepeatMC would be even bet-
ter. Assume also that k is odd to avoid the risk of a tie (T = F) in the majority
vote; see Problem 10.23. The expectation and variance of Xi are E(Xi)= 2 + £ and
Var(Xi) (2 + £) (2 - E)= I - £2 , respectively. Now, let X = y~ kI Xi be the random
variable that corresponds to the number of correct answers in k trials. For any
integer i between 0 and k

Pr[A ]()( +E 2E (10.2)

and X has expectation E(X) (2 + E) k and variance Var(X) (4 E2 ) k. We are
interested in Pr[X < k/2], which is the error probability of RepeatMC.

Given specific values for E and k, we can calculate this probability with the dy-
namic programming algorithm given in Section 8.1.2 for the World Series, or com-
pute it as yk=2 Pr [X = i] using Equation 10.2. Better still, we can use the formula in

351



Probabilistic Algorithms

Problem 10.25. However, it is more convenient to use the Central Limit Theorem,
which says that the distribution of X is almost normal when k is large; in practice,
k = 30 is large enough. Assume for instance that you want an error probability
smaller than 5%. Tables for the normal distribution tell us that

Pr! X < E(X) -1.645 ]Var(X) I5%.

To obtain Pr[X < k/2] < 5% it suffices that

k/2 < E(X)-1.64545VarX.

Using our values for E(X) and Var(X), this condition translates to

k > 2.706 (4E2- 1) . (10.3)

For instance, if E = 5%, Equation 10.3 tells us that it "suffices" to run a 55%-correct
unbiased Monte Carlo algorithm 269 times and take the most frequent answer
to obtain a 95%-correct algorithm. (Equation 10.3 gives k > 267.894 but we took
k = 269 rather than 268 because we wanted k to be odd; see Problem 10.23.) In other
words, this repetition translates a 5% advantage into a 5% error probability. An ex-
act calculation shows that the resulting error probability is just above 4.99%, il-
lustrating the precision of the normal approximation for such large values of k.
This demonstrates the handicap of unbiased Monte Carlo algorithms: running a
55%-correct biased algorithm just 4 times reduces the error probability to about 4.1 %
since 0.454 0.041.

Equation 10.3 shows that the number of repetitions necessary to achieve a
given confidence level (95% in this case) depends strongly on the advantage £ of
the original algorithm. An advantage 10 times smaller would necessitate about 100
times more repetitions for the same reliability. On the other hand, it is not much
more expensive to obtain considerably more confidence in the final answer. For
instance, had we wanted an error probability 10 times smaller, we would have used

Pr[ X < E(X) -2.576\Var(X) ] 2%

to conclude that it is sufficient to repeat a (2+ ) -correct unbiased Monte Carlo
algorithm 6.636 (4F2 1) times to make it 99.5%-correct. This is not even two and
a half times more expensive than achieving 95%-correctness. A combinatorial ar-
gument shows that to bring the error probability below 6 for an unbiased Monte
Carlo algorithm whose advantage is E, the number of repetitions necessary is pro-
portional to 1/a2 , as we saw, but also to log 1/,. See Problems 10.24 and 10.25 for
details.

352 Chapter 1 0



Section 10.7 Las Vegas algorithms

10.7 Las Vegas algorithms

Las Vegas algorithms make probabilistic choices to help guide them more quickly
to a correct solution. Unlike Monte Carlo algorithms, they never return a wrong
answer. There are two main categories of Las Vegas algorithms. They may use
randomness to guide their search in such a way that a correct solution is guaranteed
even if unfortunate choices are made: it will only take longer if this happens.
Alternatively, they may allow themselves to take wrong turns that bring them to a
dead end, rendering it impossible to find a solution in this run of the algorithm.

Las Vegas algorithms of the first kind are often used when a known determinis-
tic algorithm to solve the problem of interest runs much faster on the average than
in the worst case. Quicksort from Section 7,4.2 provides the most famous example;
see Section 10.7.2. Incorporating an element of randomness allows a Las Vegas
algorithm to reduce, and sometimes even to eliminate, this difference between
good and bad instances. It is not a case of preventing the occasional occurrence of
the algorithm's worst-case behaviour, but rather of breaking the link between the
occurrence of such behaviour and the particular instance to be solved.

Recall from Section 2.4 that analysing the average efficiency of an algorithm
may sometimes give misleading results. The reason is that any analysis of the av-
erage case must be based on a hypothesis about the probability distribution of the
instances to be handled. A hypothesis that is correct for a given application of the
algorithm may prove disastrously wrong for a different application. Suppose, for
example, that quicksort is used as a subalgorithm inside a more complex algorithm.
We saw in Section 7.4.2 that it takes an average time in O (n log n) to sort n items
provided the instances to be sorted are chosen randomly. This analysis no longer
bears any relation to reality if in fact we give the algorithm only instances that are
already almost sorted. In general, such deterministic algorithms are vulnerable to
an unexpected probability distribution of the instances that some particular appli-
cation might give them to solve: even if the catastrophic worst-case instances are
few in number, they could be the most relevant for that application, causing a spec-
tacular degradation in performance. Las Vegas algorithms free us from worrying
about such situations by evening out the time required on different instances of a
given size.

The performance of these Las Vegas algorithms is not better than that of the
corresponding deterministic algorithm when we consider the average over all in-
stances of a given size. With high probability, instances that took a long time
deterministically are now solved much faster, but instances on which the deter-
ministic algorithm was particularly good are slowed down to average by the Las
Vegas algorithm. Thus, these Las Vegas algorithms "steal" time from the "rich"
instances-those that were solved quickly by the deterministic algorithm-to give
it to the "poor" instances. We call this the Robin Hood effect, and illustrate it in
Sections 10.7.2 and 10.7.3. This is interesting when we consider deterministic al-
gorithms that are not significantly faster than average in the best case, so nothing
much is lost by slowing them down to average, but that suffer from a few painfully
bad cases.

353



Probabilistic Algorithms

The other category of Las Vegas algorithms now and again make choices that
bring them to a dead end. We ask that these algorithms be capable of recognizing
this predicament, in which case they simply admit failure. Such behaviour would
be intolerable from a deterministic algorithm as it would mean that it is unable to
solve the instance considered. However, the probabilistic nature of Las Vegas algo-
rithms makes this admission of failure acceptable provided it does not occur with
overwhelming probability: simply rerun the same algorithm on the same instance
for a fresh chance of success when failure occurs. There are practical problems for
which willingness to risk failure allows an efficient Las Vegas algorithm when no
deterministic algorithms are known to be efficient; see Section 10.7.4. Although no
guaranteed upper bound can be set on the time it will take to obtain an answer if
the algorithm is restarted whenever it fails, this time may be reasonable with high
probability. These algorithms should not be confused with those, such as the sim-
plex algorithm for linear programming, that are extremely efficient for the great
majority of instances to be handled, but catastrophic for a few instances: a Las
Vegas algorithm should have good expected performance whatever the instance
to be solved.

When a Las Vegas algorithm is allowed to fail, it is more convenient to represent
it in the form of a procedure rather than a function. This allows for a return
parameter success, set to true if a solution is obtained and false otherwise. The
typical call to solve instance x is LV(x, y, success), where the return parameter y
receives the solution whenever success is set to true. For convenience, we write

return success true

as a shortcut for

success - true
return

and similarly with return success - false.
Let p(x) be the probability of success of the algorithm each time it is asked to

solve instance x. For an algorithm to deserve the name "Las Vegas", we require that
p (x) > 0 for every instance x. This ensures that a solution will be found eventually
if we keep repeating the algorithm. It is even better if there exists a constant 6 > 0
such that p (x)> 6 for every instance x since otherwise the expected number of
repetitions before success could grow arbitrarily with the instance size.

Consider the following algorithm.

function RepeatLV(x)
repeat

LV(x, y, success)
until success
return y

Since each call on LV(x) has probability p(x) of being successful, the expected
number of trips round the loop is 1 / p(x). A more interesting parameter is the
expected time t(x) before RepeatLV(x) is successful. One may think at first that
this is simply 1 / p (x) multiplied by the expected time taken by each call on LV (x).

354 Chapter 10



Section 10.7 Las Vegas algorithms

However, a correct analysis must consider separately the expected time taken by
LV(x) in case of success and in case of failure. Let these expected times be denoted
by s(x) and f(x), respectively. Neglecting the time taken by the control of the
repeat loop, t(x) is given by a case analysis.

• With probability p (x), the first call on LV (x) succeeds after expected time s (x).

• With probability 1 - p (x), the first call on LV (x) fails after expected time f (x).
After this we are back to the starting point, still an expected time t(x) away
from success. The total expected time in this case is thus f (x) + t (x).

Therefore, t (x) is given by a simple recurrence

t(x)= p(x)s(x)+-(I p(x))(f(x)+t(x)),

which is easily solved to yield

t(x)= s(x)+1  (() f(x). (10.4)
p (X)

Some Las Vegas algorithms allow fine-tuning of various parameters. Turning a
knob here, for instance, will decrease both the expected time in case of either success
or failure (which is good) and the probability of success (which is bad). When this
happens, Equation 10.4 is the key to optimizing the overall performance of the
algorithm. We illustrate this in Section 10.7.1 with a return to the eight queens
problem. Section 10.7.4 gives a more sophisticated and useful example of a Las
Vegas algorithm that may fail occasionally, but for which there is a better strategy
than to restart the entire computation in case of failure.

10.7.1 The eight queens problem revisited
The eight queens problem provides an instructive example of a Las Vegas algorithm
that benefits from being allowed to fail. Recall that the backtracking technique
used in Section 9.6.2 involves systematically exploring the nodes of the implicit
tree formed by the so-called k-promising vectors. Using this technique, we obtain
the first solution after examining only 114 of the 2057 nodes in the tree. This is
not bad, but the algorithm does not take into account one important fact: there
is nothing systematic about the positions of the queens in most of the solutions.
On the contrary, the queens seem more to have been positioned haphazardly.

This observation suggests a greedy Las Vegas algorithm that places queens
randomly on successive rows, only taking care never to place a new queen in a
position that is threatened by one already placed. Since this is a greedy algorithm,
no attempt is made to relocate previous queens when there is no possibility left
for the next queen: this is a dead end. As a result, the algorithm either ends
successfully if it manages to place all the queens on the board or fails if there is
no square in which the next queen can be added. The greedy approach makes
the algorithm easier than backtracking to understand and to implement by hand-
even though the actual code is longer-but it also entails a possibility of failure.
Does this simplicity come at the expense of efficiency? We shall see that nothing

355



Probabilistic Algorithms

could be farther from the truth. The algorithm uses the same sets col, diag45 and
diagl35 as in Section 9.6.2 to help determine which positions are still available in
the current row.

procedure queensLV (var sol 1 . 8], success)
array ok[l . . 8] {will hold available positions}
col, diag45, diagl35 - 0
for k - 0 to 7 do

{sol[l . k] is k-promising; let's place the (k + 1)-st queen}
nb - 0 {to count the number of possibilities}
for j - 1 to 8 do

if j 0 col and j - k O diag45 and j + k t diag135
then {column j is available for the (k + 1)-st queen}

nb -nb + 1
ok[nbb- j

if nb = 0 then return success -false
j - ok[uniform(l.. nb)]
col - col U {j}
diag45 - diag45 u {j - k}
diagl35 - diagl35 u {j + k-
sol[k + 1]- j
{end of for loop in k}

return success - true

To analyse this algorithm, we need to determine its probability p of success, the
average number s of nodes that it explores in the case of success, and the average
number f of nodes that it explores in the case of failure. Clearly s = 9, counting
the 0-promising empty vector and the 8-promising solution. Using a computer we
can calculate p 0.1293 and f z 6.971. A solution is therefore obtained more than
one time out of eight by proceeding in a completely random fashion! The expected
number of nodes explored if we repeat the algorithm until a success is finally
obtained is given by Equation 10.4: s + 1 P f ; 55.93, less than half the number of

p
nodes explored by systematic backtracking.

We can do better still. The Las Vegas algorithm is too defeatist: as soon as it
detects a failure it starts all over from the beginning. The backtracking algorithm, on
the other hand, makes a systematic search for a solution that we know has nothing
systematic about it. A judicious combination of these two algorithms first places
a number of queens on the board in a random way, and then uses backtracking to
try and add the remaining queens, without, however, reconsidering the positions
of the queens that were placed randomly.

An unfortunate random choice of the positions of the first few queens can make
it impossible to add all the others. This happens, for instance, if the first two queens
are placed in positions 1 and 3, respectively. The more queens we place randomly,
the smaller the average time needed by the subsequent backtracking stage, whether
it fails or succeeds, but the greater the probability of failure. This is the "fine-
tuning knob" mentioned previously. Let stopLV denote the number of queens
we place randomly before moving on to the backtracking phase, 0 < stopLV < 8.

356 Chapter 1 0



Section 10.7 Las Vegas algorithms

The modified algorithm is similar to queensLV, except that we must include the
declaration of an inner procedure backtrack (see below), the loop in k goes from 0
to stopLV - 1, and we replace the last line (return success - true) by

backtrack(stopLV, col, diag45, diagl35, success).

This calls the backtracking phase provided the loop did not terminate prematurely
in failure. The procedure backtrack looks like algorithm queens of Section 9.6.2
except that it has an additional parameter success and that it returns immediately
after either finding the first solution or finding that there are none, whichever is
the case.

To set the fine-tuning knob in its optimal position, we need to determine the
probability p of success, the expected number s of nodes explored in the case of
success and the expected number f of nodes explored in the case of failure for
each possible value for stopLV. Equation 10.4 can then be used to determine the
expected number t of nodes explored if the algorithm is repeated until it eventually
finds a solution. These numbers, obtained by exploring the entire backtracking tree
with the help of a computer, are summarized in Figure 10.3. The case stopLV 0
corresponds to using the deterministic algorithm directly.

stopLV p s f t
0 1.0000 114.00 - 114.00
1 1.0000 39.63 - 39.63
2 0.8750 22.53 39.67 28.20
3 0.4931 13.48 15.10 29.01
4 0.2618 10.31 8.79 35.10
5 0.1624 9.33 7.29 46.92
6 0.1357 9.05 6.98 53.50
7 0.1293 9.00 6.97 55.93
8 0.1293 9.00 6.97 55.93

Figure 10.3. Fine-tuning a Las Vegas algorithm

Although a purely probabilistic approach (stopLV = 8) is better than pure determin-
ism (stopLV = 0), a mixture of both is better still. The most entertaining compromise
when the algorithm is performed by hand is to place the first three queens at ran-
dom (stopLV = 3) and to continue by backtracking: this fails essentially every other
time, but it is very quick whether it succeeds nor not. Try it, it's fun!

The number of nodes explored is a good measure of the amount of work ex-
pounded by the algorithm, but it may not give a complete picture of the situation.
To ease our minds, we implemented algorithm queensLV on a workstation. Pure
backtracking finds the first solution in 0.45 millisecond, whereas an average of
0.14 millisecond is sufficient if the first two queens are placed at random before
backtracking. This is more than three times faster. However, it takes 0.21 millisec-
ond on the average if the first three queens are placed at random, only twice as good
as pure backtracking. If all the queens are placed in a random way, we lose: it takes
on the average almost one millisecond to find a solution, twice the time needed

357



Probabilistic Algorithms

deterministically. This disappointing result is easily explained: the time needed to
generate pseudorandom values cannot be neglected. It turns out that 71% of the
time spent solving the eight queens problem when all the queens are placed ran-
domly is used generating pseudorandom values. Even though our performance
might have been better had we used a faster-albeit less sophisticated-generator,
should we conclude that the benefits of randomness are likely to be offset by the
overhead of pseudorandom generation?

Once again, the eight queens problem generalizes to an arbitrary number n of
queens. The advantage gained by using the probabilistic approach becomes more
convincing as n increases. We tried the algorithm on the 39 queens problem. Pure
deterministic backtracking needs to explore more than 1010 nodes before it finds
the first solution: 11402 835 415 nodes to be exact. By comparison, the Las Vegas
algorithm succeeds with probability roughly 21% if it places the first 29 queens ran-
domly, after exploring only about 100 nodes whether it fails or succeeds. On the
average, less than 500 nodes are explored before success is reached if the algo-
rithm is restarted after each failure. This is more than 20 million times better than
pure backtracking. Furthermore, the improvement persists when time on a real
computer is considered: it takes approximately 41 hours of uninterrupted compu-
tation on our workstation to solve the problem by pure deterministic backtracking,
whereas the Las Vegas algorithm finds one solution every 8.5 milliseconds. If the
pure greedy Las Vegas algorithm is used, the success rate is roughly one in 135 tri-
als, but each attempt is so fast that a solution is found about every 150 milliseconds
on the average, still nearly one million times faster than pure backtracking.

If we want one solution to the n queens problem for a specific value of n, it is
obviously silly to analyse exhaustively all the possibilities to discover the optimal
value of stopLV, and then to apply the Las Vegas algorithm accordingly. Empirical
evidence suggests that the Las Vegas algorithm greatly outperforms pure back-
tracking provided we place almost all-but not quite all-the queens randomly
For example, the expected number of nodes explored is minimized if we place
88 queens at random for the 100 queens problem and 983 for the 1000 queens prob-
lem. Even if we do not use the best possible value for stopLV, we obtain our solution
reasonably quickly if we are not too far off. Moreover, many different solutions
can be obtained easily by calling the algorithm repeatedly.

10.7.2 Probabilistic selection and sorting
We return to the problem of finding the k-th smallest element in an array T of n
elements. We saw in Section 7.5 an algorithm that can solve this problem in a time
in 0(n) in the worst case, independently of the value of k. In particular, choosing
k = [n/21 provides a linear worst-case time algorithm to find the median of an
array.

Recall that this algorithm begins by partitioning the elements of the array on
either side of a pivot, and that then, like binary search, it restricts its attention to
the relevant subarray. The process is repeated until all the elements still under
consideration are equal, perhaps because there is only one left, in which case we
have found the desired value. A fundamental principle of the divide-and-conquer
technique suggests that the nearer the pivot is to the median of the elements, the

358 Chapter 1 0



Section 10.7 Las Vegas algorithms

more efficient the algorithm will be. Despite this, there is no question of choosing
the exact median as the pivot: this would cause an infinite recursion, as finding
the median is a special case of the selection problem under consideration. Thus we
choose a suboptimal pivot known as the pseudomedian. This avoids the infinite
recursion, but choosing the pseudomedian is still relatively costly.

On the other hand, we also saw a simpler approach that uses as pivot the first
element that remains under consideration. This assures us of a linear execution
time on the average, but with the risk that the algorithm will take quadratic time in
the worst case. Despite this prohibitive worst case, the simpler algorithm has the
advantage of a much smaller hidden constant on account of the time saved by not
calculating the pseudomedian. Any simple deterministic strategy for choosing the
pivot is likely to result in quadratic worst-case time for finding the median, and
conversely linear worst-case algorithms seem to require a large hidden constant.
The decision whether it is more important to have efficient execution in the worst
case or on the average must be taken in the light of the particular application.
If we decide to aim for speed on the average thanks to the simpler deterministic
algorithm, we must make sure that the instances to be solved are indeed chosen
randomly according to the uniform distribution. A bad probability distribution of
the instances could spell disaster.

For the execution time to depend only on the number of elements but not on
the actual instance, it suffices to choose the pivot randomly among the elements
still under consideration. The resulting algorithm is very similar to selection from
Section 7.5.

function selectionWLV(Tl.. .n], s)
{Finds the s-th smallest element in T, 1 < s -< n
i- 1; j n
repeat

{Answer lies in T[i.. j]}
p - T[uniform(i..j)]
pivotbis(T[i..j],p,k,l)
if s< k then j - k
else if s > I then i - I

else return p

The analysis requested in Problem 7.18 applies mutatis mutandis to conclude that
the expected time taken by this probabilistic selection algorithm is linear, inde-
pendently of the instance to be solved. Thus its efficiency is not affected by the
peculiarities of the application in which the algorithm is used. It is always possible
that some particular execution of the algorithm will take quadratic time, but the
probability that this will happen becomes increasingly negligible as n gets larger,
and, to repeat, this unlikely occurrence is no longer linked to specific instances.

To sum up, we started with an algorithm that is excellent when we consider
its average execution time on all the instances of some particular size but that
is inefficient on certain specific instances. Using the probabilistic approach, we
transformed this algorithm into a Las Vegas algorithm that is efficient with high
probability, whatever the instance considered. Thus we reap the benefits of both

359



Probabilistic Algorithms

deterministic algorithms seen in Section 7.5: expected linear time on all instances,
with a small hidden constant.

We once asked the students in an algorithmics course to implement the selec-
tion algorithm of their choice. The only algorithms they had seen in class were
those in Section 7.5. Since the students did not know which instances would be
used to test their programs-and suspecting the worst of their professors-none
of them took the risk of using a deterministic algorithm with quadratic worst case.
Three students, however, thought of using the probabilistic approach. This idea
allowed them to beat their colleagues hands down: their programs took an average
of 300 milliseconds to solve the trial instance, whereas the majority of the deter-
ministic algorithms took between 1500 and 2600 milliseconds. Moreover, their
programs were much simpler-and thus less likely to contain subtle errors-than
their colleagues'.

The same approach can be used to turn quicksort into an algorithm that sorts
n elements in worst-case expected time in 0 (n log n), whereas the algorithm we
saw in Section 7.4.2 requires a time in Q(n2 ) when the array to be sorted is already
sorted. The randomized version of quicksort is as follows. To sort the entire array T,
simply call quicksortLV(T[l. .n]).

procedure quicksortLV(T[i. .j1)
{Sorts subarray TEi . . j] into nondecreasing order}
if j - i is sufficiently small then insert(T[i. .j])
else

p - T[uniform(i. .J)]
pivotbis(T[i..j],p,k,1)
quicksortLV(T[i . . k])
quicksortLV(T[l, j])

10.7.3 Universal hashing

Recall from Section 5.6 that associative tables, such as those used to keep track
of identifiers in compilers, are usually implemented using hashing. This gives
expected constant time per access to the table provided the symbols in the table
are random. Unfortunately, this says nothing about the performance of hashing
on nonrandom instances. If hashing is used to implement the symbol table in a
compiler, for example, the assumption that all possible identifiers are equally likely
is unreasonable (thank goodness!). Consequently, such average-case analysis can
be misleading and the probability of bad cases may be significantly higher than
expected.

More importantly, certain programs will inevitably cause more collisions than
expected through no fault of the unlucky programmer. These programs will com-
pile slowly every time they are submitted because the hash function is fixed once
and for all in the compiler. Conventional wisdom has it that things will even out
from a systems perspective: some programs will take more time to compile than
expected, but others will go faster. At the end of the day, compilation will have
been efficient on the average. This viewpoint is inherently unfair. If each program

360 Chapter 1 0



Section 10.7 Las Vegas algorithms

is compiled many times, it is always the same few programs that will require sub-
stantially more time than expected. In a real sense, these programs are paying the
price for all other programs to compile quickly. Las Vegas hashing allows us to
retain the efficiency of hashing on the average, without arbitrarily favouring some
programs at the expense of others. This is the Robin Hood effect at its best: each
program is given its fair share of the benefits to be reaped by hashing. Also, each
program will once in a while pay the price of overall efficiency by taking more time
than expected. Moreover, the good expected performance of Las Vegas hashing can
be proved mathematically without assumptions on the probability distribution of
the access sequences to the table.

The basic idea of Las Vegas hashing is for the compiler to choose the hash
function randomly at the beginning of each compilation and again whenever re-
hashing becomes necessary. This ensures that collision lists remain reasonably
well-balanced with high probability, whatever the set of identifiers in the program
to be compiled. As a result, a program that causes a large number of collisions dur-
ing one compilation will probably be luckier the next time it is compiled. But what
do we mean by "choose the hash function randomly"?

The answer lies in a technique known as universal hashing. Let U be the universe
of potential indexes for the associative table, such as the set of all possible identifiers
if we are implementing a compiler, and let B = {0, 1,2,...,N 1} be the set of
indexes in the hash table. Consider any two distinct x and y in U. Suppose first
that h: U -B is a function chosen randomly among all the functions from U to
B according to the uniform distribution. Then the probability that h(x)= h(y)
is 1/N. This is because h(y) could take any of the N values from B with equal
probability; in particular the value attributed to h(x) would also be chosen for
h(y) with probability 1/N. However, U is usually large and there are far too many
functions from U into B for it to be reasonable to choose one at random according
to the uniform distribution.

Consider now a set H of functions from U to B, and consider again any two
distinct x and y in U. Suppose that h: U - B is a function chosen randomly
from the members of H according to the uniform distribution. We say that H is a
universal class of hash functions if the probability that h(x)= h(y) is at most 1/N.
In other words, we require that the probability of h(x)= h(y) be small no matter
which distinct values of x and y are considered, provided the choice of h is made
independently of those values. We saw that the set of all functions from U to B is
universal, but too large to be useful. Universal classes are interesting because they
can be reasonably small, so that a random function can be chosen in practice from
such a class according to the uniform distribution. Moreover, the functions can be
evaluated efficiently. We give below one explicit example of such a universal class
of hash functions, but first let us see how good they are at solving the compilation
problem.

Let H be a universal class of hash functions from U to B. Let x and y be any
two distinct identifiers. By definition of universality, if h is chosen randomly in H
according to the uniform distribution, the probability of collision between x and
y is at most 1/N. Now consider a program with m distinct identifiers and let x
be any one of those. For each of the m - 1 identifiers other than x, the probability

361



Probabilistic Algorithms

of collision with x is at most 1/N. Therefore, the expected number of identifiers
in collision with x is at most (m -1)/N, which is less than the load factor. Since
this is true for each x and since we keep the load factor below 1 by rehashing
when necessary, each access to the hash table takes constant expected time in the
worst case. Therefore, n requests to the hash table take expected time in 9(n) in
the worst case. Compare this with a time in W(n2 ) required in the worst case for
classic hashing. As usual with Las Vegas algorithms, "the worst case" refers to the
worst possible set of requests to the table, not the worst possible random choices
made by the compiler.

Several efficient universal2 classes of hash functions are known. We
give one example. Assume for simplicity that U = {0, 1,2,...,a - 1} and
B = {0, 1, 2, . . ., N - 1I. (Identifiers must be transformed into integers using any
standard integer representation of character strings, such as ASCII.) Let p be a prime
number at least as large as a. Let i and j be two integers. Define hij: U - B
by

hij(x) ((ix + j) mod p) mod N.

Then, H {hi I 1 < i < p and 0 < j < p} is a universal class of hash functions
from U to B. Randomly choosing a function in H is as simple as choosing two
integers smaller than p. Moreover, the value of hiX (x) can be calculated efficiently,
especially if we choose N to be a power of 2, which simplifies the second modulo
operation.

10.7.4 Factorizing large integers

Let n be an integer greater than 1. The factorization problem consists of finding
the unique decomposition of n into a product of prime factors. The problem of
splitting consists of finding one nontrivial divisor of n, provided n is composite.
Factorizing reduces to splitting and primality testing: to factorize n, we are done
if n is prime; otherwise, find a nontrivial divisor m and recursively factorize m
and n/m.

The naive splitting algorithm is trial division, which finds the smallest prime
divisor of n. It is useless to look for a divisor larger than /n because if m > n/
divides n, then so does n/m, which is smaller than n/H.

function trialdiv(n)
for m - 2 to L+/nI do

if m divides n then return m
{If the loop fails to find a divisor, n is prime
return n {a prime number is its own smallest prime divisor}

This algorithm takes a time in Q ( n/E) in the worst case, which is of no practical use
even on medium-size integers: counting just one nanosecond for each trip round
the loop, it would take thousands of years to split a hard composite number with
forty or so decimal digits, where "hard" means that the number is the product of
two primes of roughly equal size.

362 Chapter 10



Section 10.7 Las Vegas algorithms

The largest hard composite number that has been factorized at the time of
writing spans 129 decimal digits. This factorization was the key to meeting the
RSA cryptographic challenge mentioned in Section 7.10. Recall that it required
eight months of calculation on more than 600 computers throughout the world.
It is estimated that this would have taken 5000 years of uninterrupted calculation
if a single workstation that can run one million instructions per second had been
used. Although this effort is staggering, success would not have been possible
without a sophisticated algorithm. Indeed, when the challenge was issued in 1977,
it was estimated that the fastest computer then available running the best algorithm
known at the time would have completed the calculation after two million times
the age of the Universe! In this section we give but a glimpse of the basic idea
behind the successful algorithm.

Efficient splitting algorithms rest on the following theorem, whose easy proof
is left as an exercise.

Theorem 10.7.1 Let n be a composite integer. Let a and b be distinct inte-
gers between 1 and n - 1 such that a + b 7# n. If a 2 mod n = b2 mod n then
gcd(a + b, n) is a nontrivial divisor of n.

Consider n = 2537 for example. Let a = 2012 and b = 1127. Note that
a 2 = 1595n + 1629 and b2 = 500n + 1629, which shows that both a2 and b2 are
equal to 1629 modulo n. Since a # b and a + b :# n, the theorem says that
gcd(a + b, n)= gcd(3139,2537)= 43 is a nontrivial divisor of n, which indeed it is.
This suggests an approach to splitting n: find two distinct numbers between 1 and
n - 1 that have the same square modulo n but whose sum is not n, and use Euclid's
algorithm to compute the greatest common divisor of their sum with n. This is
fine provided such numbers always exist when n is composite and provided we
can find them efficiently.

The first question is quickly disposed of. Provided n has at least two distinct
prime divisors, a2 mod n admits at least four distinct "square roots" in arithmetic
modulo n for any a relatively prime to n. Continuing our example, 1629 admits
exactly four square roots modulo 2537, namely 525, 1127, 1410 and 2012. These
roots come in pairs: 525 + 2012 = 1127 + 1410 = 2537. Any two of them will do
provided they are not from the same pair.

So how can we find a and b with the desired property? This is where ran-
domness enters the game. Let k be an integer to be specified later. An integer is
k-smooth if all its prime divisors are among the k smallest prime numbers. For in-
stance, 120 = 23 x 3 x 5 is 3-smooth but 35 = 5 x 7 is not. When k is small, k-smooth
integers can be factorized efficiently by trial division. In its first phase, the Las Ve-
gas splitting algorithm chooses an integer x randomly between 1 and n -1, and
computes y = x2 mod n. If y is k-smooth, both x and the factorization of y are
kept in a table. Otherwise, another x is chosen randomly. This process is repeated
until we have found k + 1 different integers for which we know the factorization
of their squares modulo n.

363



Probabilistic Algorithms

Still continuing our example with n = 2537, let us take k = 7. We are thus
concerned only with the primes 2, 3, 5, 7, 11, 13 and 17. A first integer x = 1769 is
chosen randomly. We calculate its square modulo n: x2 = 1233n + 1240 and thus
y = 1240. An attempt to factorize 1240 = 23 x 5 x 31 fails since 31 is not divisi-
ble by any of the admissible primes. A second attempt with x = 2455 is luckier:
its square modulo n is 1650 = 2 x 3 x 52 x 11. Each attempt succeeds with proba-
bility roughly 20% in this small example. Continuing thus until 8 successes have
been recorded, we obtain the following table.

xl = 2455 Yi = 1650 = 2 x 3 x 52 x 11
X2 = 970 y2 = 2210 = 2 x 5 x 13 x 17
X3 = 1105 y3 = 728 = 23 x 7 x 13
X4 = 1458 y4 = 2295 = 33 x 5 x 17
x5 = 216 y5 = 990 = 2x32 x5 x 11
X6 = 80 Y6 = 1326 = 2 x 3 x 13 x 17
X7 = 1844 Y7 = 756 = 22 x 33 x 7
x8 = 433 ys = 2288 = 24 x 11 x 13

This is used to form a (k + 1) x k matrix M over { 0, 1. Each row corresponds to
one success; each column corresponds to one of the admissible primes. The entry
Mij is set to 0 if the j-th prime appears to an even power (including zero) in the
factorization of ys; otherwise Mj = 1. For example M3,1 = 1 because the first prime,
2, occurs to the odd power 3 in y3, and M3,2 = 0 because the second prime, 3, occurs
to the even power 0. Continuing our example, we obtain the following matrix.

1 1 0 0 1 0 0
1 0 1 0 0 1 1
1 0 0 1 0 1 0
0 1 1 0 0 0 1

M= 1 0 1 0 1 0 0
1 1 0 0 0 1 1
0 1 0 1 0 0 0
0 0 0 0 1 1 0

Since this matrix contains more rows than columns, the rows cannot be linearly
independent: there must exist a nonempty set of rows that add up to the all-zero
vector in arithmetic modulo 2. Such a set can be found by Gauss-Jordan elimina-
tion, although more efficient methods are available when k is large, especially for
very sparse matrices such as those obtained by this factorization algorithm when
n is large. In our example, there are seven different solutions, such as rows 1,
2, 4 and 8, or rows 1, 3, 4, 5, 6 and 7. Consider now what happens if the yj's
corresponding to the selected rows are multiplied. Our two examples yield

YIY2Y4Y8 = 26 x 34 x 54 X 112 X 132 x 172, and
YlY3Y4Y5Y6Y7 = 28 x 310 x 54 x 72 x 112 x 132 x 172,

respectively. The exponents in those products are necessarily even by construction.
Thus one square root of these products is obtained by halving each of the powers.

Chapter 1 0364



Section 10.7 Las Vegas algorithms

In arithmetic modulo n, a square root of the same product can also be obtained by
multiplying the corresponding xi's since each yi = xi mod n. In our example the
two approaches to calculating a square root modulo n of y1y2y4Y8 yield

a = 23 x3 2 x5 2 x11x13x17 mod 2537 = 2012
b = 2455 x 970 x 1458 x 433 mod 2537 = 1127.

As we saw earlier, it suffices to calculate the greatest common divisor of a + b
and n to obtain a nontrivial divisor of n. In general, this technique yields two
integers a and b between 1 and n - 1 such that a2 mod n = b2 mod n. There is
no guarantee, however, that a 7 b and a + b 7k n. Indeed, use of Y1Y3Y4Y5Y6Y7
instead of Y1Y2Y4yS results in

a' = 24 x3 5 x5 2 x7x11x13x17 mod 2537 = 1973
b' = 2455 x 1105 x 1458 x 216 x 80 x 1844 mod 2537 = 564,

which is worthless because a' + b' = n. Nevertheless, it can be proved that this
entire process succeeds with probability at least 50% unless gcd(a, n) is a nontriv-
ial divisor of n, which is just as good for splitting purposes; see Problem 10.41.
Contrary to the n queens problem, however, we should not restart from scratch in
case of failure. Why throw out so much good work? Instead, we look for other sets
of rows of M that add up to zero in arithmetic modulo 2. If this still fails, we find
a few more pairs (xi, yi) and try again with the resulting enlarged matrix.

It remains to determine what value of k should be used to optimize the per-
formance of this approach. The larger this parameter, the higher the probability
that x2 mod n will be k-smooth when x is chosen randomly. On the other hand,
the smaller this parameter, the faster we can carry out a test of k-smoothness and
factorize the k-smooth values that are found, and the fewer such values we require.
Finding the optimal compromise calls for deep number theory. Let

L = eVlgn log lognX

let b be an arbitrary positive real number and let t = L1 2b. It can be shown that
if k z Lb, about one x in t is such that x2 mod n is k-smooth. Since each unsuc-
cessful attempt requires k divisions and since it takes k + 1 successes to build the
matrix, this phase requires an expected number of trial divisions approximately
in 0(tk2 )= O(L 2 b+(1/2b)), which is minimized at 0(L2) with b =1/2. Finding a set
of rows that add up to the zero vector takes a time in 0 (k3 ) = 0 (Pb) if Gauss-Jordan
elimination is used (again, it is possible to do better than this), which is negligible
compared to the time needed to build the matrix if b = 1/2. The final calculation of
a greatest common divisor by Euclid's algorithm is completely negligible. Thus, if
we take k L, the algorithm splits n after an expected number of divisions that is
approximately in 0 (L2 ). If n is an average 100 decimal digit number, L2  5 x 1030
whereas vn 7 x 1049, which is more than 1019 times bigger. This illustrates how
much better this algorithm is than trial division. This comparison is not entirely
fair since the hidden constant for trial division is smaller, but even 1030 picoseconds
is about twice the estimated age of the Universe.

Several improvements make the algorithm more practical. If instead of choos-
ing x at random between 1 and n - 1, we choose it so that x2 mod n is more likely

365



Probabilistic Algorithms Chapter 10

to be k-smooth, we reduce the number of trials before the k + 1 required relations
are obtained. Randomness plays a fundamental role in this algorithm because no
deterministic approach for finding so many good x's has been proved efficient.
Nevertheless, there are unproved heuristics that work so well in practice that it
would be silly to use the "pure" algorithm outlined above. The simplest of these
is to choose the x's slightly larger than /n; see Problem 10.42. Another heuristic,
the quadratic sieve, operates in a time in 0(L). The successful factorization of a
hard 129-digit number mentioned at the beginning of this section was performed
with the somewhat more sophisticated "double large prime multiple polynomial
variation of the quadratic sieve". Other interesting factorization techniques are the
elliptic curve method and the number field sieve; they involve rather deep number
theory.

10.8 Problems
Problem 10.1. You have a coin biased so that each toss produces heads with proba-
bility p and tail with complementary probability q = 1 - p. Assume that each toss
of the coin is independent from previous tosses: the probability of getting heads at
any given toss is exactly p, regardless of previous outcomes. Unfortunately you
do not know the value of p. Design a simple process by which you can use this
coin to generate a perfectly unbiased sequence of random bits.

Problem 10.2. In Section 10.5.1, we saw that it "suffices" to drop about one and a
half million needles on the floor to estimate rr within 0.01 ninety-five times out of
one hundred. This was achieved by dropping needles that are half as long as the
planks in the floor are wide. Our estimate of -r was n/k, where n is the number
of needles dropped and k is the number that fall across a crack. Show that we can
improve this "algorithm" by dropping needles twice as long and producing n/2k
as estimate of rr. How many of these needles need we drop to have probability at
least 95% of obtaining the correct value of Tr within 0.01?

Problem 10.3. Yet another probabilistic approach for estimating the value of rr is
to use Monte Carlo integration to estimate the area of a quarter circle of radius 2.
In other words, we can use the relation

Tr = 4 4x 2 dx.

How many random values of x must we use to have probability at least 95% of
obtaining the correct value of Tr within 0.01?

Problem 10.4. Write a computer program to simulate Buffon's experiment to es-
timate the value of -T. The challenge is that you are not allowed to use the value
of Tr in your program. If you do not see why this is a difficulty, try it!

Problem 10.5. Consider the simplest probabilistic counting strategy, in which the
register is incremented with probability 1/2 at each tick, and count returns twice the
value held in the register; see Section 10.5.3. Prove that the expected value returned
by this strategy is exactly the number of ticks. What is the variance of the value
returned? Interpret this variance in terms of a confidence interval.

366



Section 10.8 Problems

Problem 10.6. In this problem, we analyse rigorously the probabilistic counting
algorithm of Section 10.5.3. Prove that the expected value returned by a call on
count after a call on init followed by m calls on tick is m, provided we ignore the
unlikely possibility that the register may overflow. To do this, let pm (i) denote
the probability that the register holds value i after m calls on tick, in which case
countwouldreturn2' -1. Clearly, po(0)= 1, Pm(O)= Oforallm > 0,and pm(i)= 0
for all i > m. The register holds value i after m ticks either if it held value i -1
after m - 1 ticks (with probability Pm 1 (i -1)) and it increased by 1 with the next
tick (with probability 2 -(' -l), or if it held value i already after m -1 ticks (with
probability Pm I(i)) and it kept its value on the next tick (with probability 1 - 2 -.
Therefore

Pm(i)= 2 ( 1) Pm 1(i -1)+(12 i) Pm 1(i)

for all 1 < i < m. The expected value returned by count after m ticks is

m
E(m) =ZE (2' - 1) Pm (i).

i=O

You have to prove by mathematical induction that E(m) m for all m > 0.

Problem 10.7. Continuing Problem 10.6, prove that the variance of the value re-
turned by a call on count after a call on init followed by m calls on tick is m (m - 1) /2.
Interpret this in terms of a confidence interval.

Problem 10.8. Consider the modified probabilistic counting algorithm specified
by Equation 10.1. Determine the probability under which tick(c) should incre-
ment c. Do you get 2-' as you should when E = 1? Rework this problem if the
division by - is removed from Equation 10.1. What would be terribly wrong in this
case?
Note: In practice the 2" relevant probabilities would be precomputed and kept in
an array, which makes the approach interesting only if a large number of registers
is needed or if the context of Problem 10.10 applies.

Problem 10.9. Continuing Problem 10.8, what is the variance of the value returned
by count after m ticks when Equation 10.1 is followed? Give your answer as a
function of m and E. Interpret it in terms of a confidence interval.

Problem 10.10. Smart cards provide an interesting application for the probabilis-
tic counting technique of Section 10.5.3. Write-only memories are technologically
easier to implement than ordinary read-write memories. Write-only bits are initial-
ized to 0 at the factory They can be read at will, and they can be flipped to 1, but
they cannot be reset to 0. Prove that it is impossible to count more than n events
in an n-bit write-only register by any deterministic technique. Show however
that it is possible to count up to 2n - 1 events by probabilistic methods. In other
words, probabilistic counting and a write-only register cover the same ground as
deterministic counting and an ordinary register of the same length.

Problem 10.11. A room contains 25 strangers; would you be willing to bet at even
odds that at least two of them share the same birthday?

367



Probabilistic Algorithms

Problem 10.12. Let X be a finite set whose cardinality n we would like to know.
Unfortunately, n is too large for it to be practical simply to count the elements
one by one. Suppose, on the other hand, that we are able to choose elements
from X randomly according to the uniform distribution with a call on uniform (X).
Consider the following algorithm.

function card(X)
k .- 0
S - 0
a - uniform(X)
repeat

k - k+l
S - S u {a}
a- uniform(X)

until a E S
return k2 /2

Prove that this algorithm returns an unbiased estimate of the number n of elements
in X and that it runs in an expected time in O( /n) if calls on uniform(X) and
operations involving set S can be carried out at unit cost. If you cannot prove this
rigorously (it's hard!), give a convincing argument that it is reasonable to believe
that the number of elements in the set is roughly the square of the number of
independent draws in X before the first repetition occurs. It might help you to
work Problems 5.14 and 10.11 first.

Problem 10.13. The probabilistic counting algorithm in Problem 10.12 is efficient
in terms of time, but it may be impractical in terms of storage because of the need
to keep track of set S. Make the best of pseudorandom generation to modify the
algorithm so that it takes constant storage without increasing its running time by
more than a small constant factor. This is one of the rare instances where using
a truly random generator would be a hindrance rather than a help, although we
pay a price: the correctness of the modified algorithm can no longer be proved
mathematically.

Problem 10.14. Find an efficient Monte Carlo algorithm to decide, given two n x n
matrices A and B, whether or not B is the inverse of A. In terms of n and the
acceptable error probability £, how much time does your algorithm require?

Problem 10.15. Show that strong false witnesses of primality are automatically
false witnesses with respect to Fermat's test; see Section 10.6.2.
Hint: Use the fact that (n -1)2 mod n = 1.

Problem 10.16. Prove Theorem 10.6.2.

Problem 10.17. The algorithm randomprime of Section 10.6.3 generates probable
random primes by repeatedly choosing random odd integers until one is found
that passes enough rounds of the Miller-Rabin test. Explain how the result differs
if instead we choose a random odd starting point and successively increase it by
2 until a number is obtained that passes the same number of rounds of the same
test.

368 Chapter 10



Section 10.8 Problems

Problem 10.18. We saw that 561 is the worst case for Fermat's primality test among
all odd composites smaller than 1000. This is true provided we consider the error
probability of the test. However, there is one odd composite smaller than 1000 that
admits even more false witnesses than 561. Which is it? How many of these false
witnesses are also strong false witnesses?

Problem 10.19. The prime number theorem asserts that the number of prime num-
bers smaller than n is approximately n/log n. (Recall that "log" denotes the natural
logarithm.) This approximation is fairly accurate. For instance, there are 50 847 478
primes smaller than 109 whereas n/logn -~ 48254942 when n = 109. Estimate the
probability that an odd 1000-digit integer chosen randomly according to the uni-
form distribution is prime.
Hint: The number of 1000-digit primes is equal to the number of primes less than
101000 minus the number of primes less than 10999.

Problem 10.20. Consider the following nonterminating program.

program printprimes
print 2,3
n- 5
repeat

if RepeatMillRab(n, [lgnJ) then print n
n- n+2

adnauseam

Clearly, every prime number will eventually be printed by this program. One might
also expect composite numbers to be produced erroneously once in a while. Prove
that this is unlikely to happen. More precisely, prove that the probability is better
than 99% that no composite number larger than 100 will ever be produced, regard-
less of how long the program is allowed to run.
Note: This figure of 99% is very conservative as it would still hold even if MillRab (n)
had a flat 25% chance of failure on each composite integer.

Problem 10.21. In Section 10.6.2 we saw a Monte Carlo algorithm to decide pri-
mality that is always correct when given a prime number and that is correct with
probability at least 3/4 when given a composite number. The running time of the
algorithm on input n is in 0 (log3 n). Find a Monte Carlo algorithm that is always
correct when given a composite number and that is correct with probability at least
1/2 when given a prime number. Your algorithm must run in a time in 0 (logk n)
for some constant k.

Problem 10.22. In Section 10.6.4, we studied amplification of the stochastic ad-
vantage of unbiased Monte Carlo algorithms for decision problems. Here, we
investigate the situation for problems that have more than two potential answers.
For general problems, instances may have more than one correct answer. Think for
example of the eight queens problem or the problem of finding an arbitrary nontriv-
ial divisor of a composite integer. When such problems are solved by probabilistic
algorithms, it may happen that different correct answers are obtained when the

369



Probabilistic Algorithms

same algorithm is run several times on the same input. We saw in Section 10.7 that
this is a virtue for Las Vegas algorithms, but it can be catastrophic when unbiased
Monte Carlo algorithms are concerned.
Recall that a Monte Carlo algorithm is p-correct if it returns a correct answer with
probability at least p, whatever the instance considered. The potential difficulty is
that even though a p-correct algorithm returns a correct answer with high prob-
ability when p is large, it could happen that one systematic wrong answer is re-
turned more often than any given correct answer. In this case, amplification of the
stochastic advantage by majority voting would decrease the probability of being
correct! Show that if algorithm MC is 75%-correct, it may happen that MC3 is
not even 71%-correct, where MC3 returns the most frequent answer of three calls
on MC, as in Section 10.6.4. (Ties are broken arbitrarily.) For what value of k could
RepeatMC(., k) be less than 50%-correct even though MC is 75%-correct?

Problem 10.23. Let MC be a p-correct unbiased Monte Carlo algorithm and con-
sider algorithm RepeatMC(, k) from Section 10.6.4, which runs MC k times and
produces the most frequent answer. A problem occurs if k is even in the case of a tie.
The code for RepeatMC in Section 10.6.4 returnsfalse in this case (since T = F). This
degrades the probability of correctness on instances for which the correct answer
is true. A better solution would be to flip a fair coin in case of a tie to decide which
answer to return. Prove that if RepeatMC is modified along this line, the probability
that RepeatMC(., k) returns the correct answer when k is even is exactly equal to
the probability that RepeatMC(, k -1) returns the correct answer. Conclude that it
is never a good idea to repeat an unbiased Monte Carlo algorithm an even number
of times for the purpose of amplifying the stochastic advantage.

Problem 10.24. Let E and 6 be two positive real numbers such that - + 6 <1/2.
Let MC be a (I + E) -correct unbiased Monte Carlo algorithm for a decision prob-
lem. Using only elementary combinatorial arguments, prove that RepeatMC(., k)
is (1 - 6)-correct provided k > 2 log 1/,. In other words, it suffices to repeat a
Monte Carlo algorithm whose advantage is E this number k of times to obtain a
Monte Carlo algorithm whose error probability is at most 6. (Recall that "log"
denotes the natural logarithm.) This formula is overly conservative. It suggests re-
peating a 55%-correct unbiased Monte Carlo algorithm about 600 times to achieve
95%-correctness whereas we saw in Section 10.6.4 that 269 repetitions are sufficient.
Hint: Use Equation 10.2 and the fact that -2/lg(1 - 4E2 ) < (log 2) /2E2 .

Problem 10.25. Continuing Problem 10.24, prove that if an unbiased Monte Carlo
algorithm whose advantage is E is repeated k = 2m - 1 times and if the most fre-
quent answer is kept, the resulting algorithm is (1 - 6)-correct, where

,= -E E(t)( - E) <1 - 4, (10.5)
I10

The first part of this formula is useful to calculate the exact error probability re-
sulting from amplification of stochastic advantage. A good upper bound on the

Chapter 10370



Section 10.8 Problems

number of repetitions necessary to go from advantage E to error probability 6 can
be obtained quickly from the second part. For instance, it tells us it is sufficient to
repeat a 55%-correct algorithm 303 times to achieve 95%-correctness. This is better
than 600 times as suggested by the formula in Problem 10.24 but not as good as
269, which we obtain with the Central Limit Theorem using tables for the normal
distribution. Nevertheless, this method has the advantage of not requiring avail-
ability of those tables and it holds even for small values of k, when the Central
Limit Theorem is inappropriate.

Problem 10.26. Following Problem 7.36, give a 1 /2-correct biased Monte Carlo
algorithm to decide if an array T contains a majority element. Your algorithm
should run in linear time and the only comparisons allowed between the elements
of T are tests of equality. Note that the only merit of this algorithm is simplicity
since the deterministic algorithm requested in Problem 7.36 solves the problem in
linear time with a very small hidden constant.

Problem 10.27. Show that the problem of primality can be solved by a Las Vegas
algorithm whose expected running time is in 0 (logk n) for some constant k. You
may take for granted the Monte Carlo algorithm required by Problem 10.21.

Problem 10.28. In the spirit of Problem 10.27, let A and B be two biased Monte
Carlo algorithms for solving the same decision problem. Algorithm A is p-correct
but its answer is guaranteed when it is true; algorithm B is q-correct but its answer
is guaranteed when it is false. Show how to combine A and B into a Las Vegas
algorithm LV(x, y, success) to solve the same problem. One call on LV should not
take significantly more time than a call on A followed by a call on B. If your Las
Vegas algorithm succeeds with probability at least r whatever the instance, what
is the best value of r you can obtain?

Problem 10.29. Let X be a finite set whose elements are easy to enumerate and
let Y be a nonempty subset of X of unknown cardinality. Assume you can decide,
given x E X, whether or not x E Y. How would you choose a random element
of Y according to the uniform distribution? The obvious solution is to make a
first pass through X to count the number n of elements in Y, then choose a ran-
dom integer k - uniform(l .. n), and finally locate the k-th element of Y by going
through X again, unless you kept the elements of Y in an array during the first pass
through X. Surprisingly, this problem can be solved with a single pass through X,
without additional storage, and without first counting the elements in Y. Consider
the following algorithm.

function draw(X, Y)
n- 0
for each x E X do

if x E Y then n - n + 1
if uniform(1.. n)= n then z - x

if n > 0 then return z
else return "Error! Y is empty!"

371



Probabilistic Algorithms

Prove by mathematical induction on the number of elements in Y that this algorithm
finds an element of Y randomly according to the uniform distribution. Modify
algorithm queensLV from Section 10.7.1 to incorporate this technique, choosing
randomly according to the uniform distribution among the positions still open for
the next queen even though we do not know a priori how many there are. This
makes the algorithm more elegant but less efficient because it requires more calls
to the pseudorandom generator.

Problem 10.30. Work by hand the Las Vegas algorithm for the eight queens prob-
lem. Place the first 3 queens randomly on the first 3 rows and try to complete the
solution by backtracking. Start over if you fail. As we said, your probability of
success is roughly 50% on each attempt. Solve the problem by hand with pure
backtracking as well. Which method led you to a solution faster?

Problem 10.31. Implement on a computer the Las Vegas algorithm for the n queens
problem that places the first stopLV queens randomly before it tries to complete the
partial solution by backtracking. Experiment with solving the 39 queens problem
with different values of stopLV. Find one solution each for the 100 queens and the
1000 queens problems.

Problem 10.32. Prove that if the symbol table of a compiler is implemented with
universal hashing and if the load factor is kept smaller than 1, the probability that
any identifier is in collision with more than t others is less than 1 / t, for any integer t.
Conclude that the average time needed for a sequence of n accesses to the table is
in 0 (n). Compare this result with that of Problem 5.16.

Problem 10.33. Let U be a set with a elements. How many functions are there from
U into {0, 1, 2,...,N -11? How many bits does it take to write down a description
of one of these functions on the average?

Problem 10.34. Prove that the class of hash functions given at the end of Sec-
tion 10.7.3 is universal.

Problem 10.35. Find applications of universal hashing that have nothing to do
with compilation nor even with the implementation of an associative table.

Problem 10.36. Normally, the elements of a list are scattered all round the store of
your computer. A compact list of length n is implemented by two arrays val[l . . n]
and ptr[l . . n], and one integer head. The first element of the list is in val[head],
the next is in val[ptr[head]], and so on. In general, if val[i] is not the last element
of the list, ptr[i] gives the index in val of the following element. The end of the
list is marked by ptr[i]= 0. Consider now a compact list whose elements are in
nondecreasing order. Let x be an element. The problem is to locate x within the
list. Binary search is not possible because there is no direct means of finding the
middle of a list, be it compact or not.
(a) Prove that any deterministic algorithm for this problem requires a time in ti (n)

in the worst case.

(b) Devise a Las Vegas algorithm capable of solving this problem in expected time
in 0 ( HnE) in the worst case.

372 Chapter 1 0



Section 10.9 References and further reading

Hint: Look at +/E randomly chosen points in the list and start your search at the
largest of those points that is not larger than the target x. What do you do if all
your points are larger than the target?

Problem 10.37. Prove Theorem 10.7.1.

Problem 10.38. Find an x different from those given in Section 10.7.4 such that
1000 < x • 2000 and x2 mod 2537 is 7-smooth.

Problem 10.39. In Section 10.7.4 we saw two solutions to the problem of finding
a nonempty set of rows of matrix M that add up to the zero vector in arithmetic
modulo 2. Find the other five solutions. For each one, determine if it leads to a
nontrivial divisor of n = 2537.

Problem 10.40. Let n be a composite number that has at least two distinct prime
divisors and let a be relatively prime to n. Prove that a2 mod n admits at least
four distinct square roots in arithmetic modulo n.

Problem 10.41. Let n be a composite number that has at least two distinct prime
divisors and let (a, b) be the first pair obtained by the Las Vegas splitting algorithm
of Section 10.7.4. Prove that either gcd(a, n) or gcd(a + b, n) is a nontrivial divisor
of n with probability at least 50%.
Hint: If gcd(a, n)= 1 then gcd(xi, n)= 1 for each xi that entered into building b.
Take one arbitrary such xi. We know from Problem 10.40 that yi = xi mod n has
at least four distinct square roots module n, including xi. Show that if any root
other than xi and n - xi had been randomly chosen instead of xi, the splitting
would have been successful. Conclude as required.

Problem 10.42. At the end of Section 10.7.4, we claimed that we expect the prob-
ability that x

2 mod n be k-smooth to improve if x is chosen slightly larger than
/n, rather than being chosen randomly between 1 and n -1. Give a convincing

intuitive reason to support this assertion.

Hint: Show that the binary length of [, Ai 12 mod n is at most about half that of a
random square modulo n. What about the length of ([ In] I + i)

2 mod n for small i?

10.9 References and further reading

Early historic examples of probabilistic algorithms are traced back to "primitive"
cultures by Shallit (1992). The term "Monte Carlo", introduced into the literature
by Metropolis and Ulam (1949), was already in use in the secret world of atomic
research during World War II, in particular in Los Alamos, New Mexico. Recall
that "Monte Carlo" is often used to describe any probabilistic algorithm, contrary
to the usage in this book. The term "Las Vegas" was introduced by Babai (1979)
to distinguish probabilistic algorithms that reply correctly when they reply at all
from those that occasionally make a mistake.

Two encyclopaedic sources of techniques for generating pseudorandom num-
bers are Knuth (1969) and Devroye (1986). The former includes tests for trying to
distinguish a pseudorandom sequence from one that is truly random. The solution

373



Probabilistic Algorithms

to Problem 10.1 is from von Neumann (1951). We used the highly recommended
pseudorandom generator given by L'Ucuyer (1988, 1990) in our experiments with
the n queens problem. A more interesting generator from a cryptographic point of
view is given by Blum and Micali (1984); this article and the one by Yao (1982) intro-
duce the notion of an unpredictable generator, which can pass any statistical test that
can be carried out in polynomial time. The generator described at the end of Sec-
tion 10.4 is from Blum, Blum and Shub (1986). More references on this subject can
be found in Brassard (1988). General techniques are given in Vazirani (1986, 1987)
to cope with generators that are partly under the control of an adversary.

The experiment devised by Georges Louis Leclerc (1777), comte de Buffon, was
carried out several times in the nineteenth century; see for instance Hall (1873).
The process by which it can be used to estimate mT is analysed in detail in Solomon
(1978). A standard text on mathematical statistics and data analysis is Rice (1988).
For an early text on numeric probabilistic algorithms, consult Sobol' (1974). The
point is made in Fox (1986) that pure Monte Carlo methods are not specially good
for numerical integration with a fixed dimension: it is preferable to choose your
points systematically so they are well spaced, a technique known as quasi Monte
Carlo. Probabilistic counting is from Morris (1978); see Flajolet (1985) for a detailed
analysis. A solution to Problem 10.12 is given in Brassard and Bratley (1988) but be-
ware that it is incorrect in the first two printings: the correct analysis was provided
to the authors by Philippe Flajolet. For a cryptographic application, see Kaliski,
Rivest and Sherman (1988). Yet a different flavour of probabilistic counting is dis-
cussed in Flajolet and Martin (1985). Numeric probabilistic algorithms designed to
solve problems from linear algebra are discussed in Curtiss (1956), Vickery (1956),
Hammersley and Handscomb (1965) and Carasso (1971). A guide to simulation is
provided by Bratley, Fox and Schrage (1983).

The Monte Carlo algorithm to verify matrix multiplication is from Freivalds
(1979); see also Freivalds (1977). The Monte Carlo primality test presented here is
equivalent to the one in Rabin (1976, 1980b); it draws on previous work of Miller
(1976). Another Monte Carlo test for primality was discovered independently by
Solovay and Strassen (1977). The expected number of false witnesses of primality
for a random composite integer is investigated in Erd6s and Pomerance (1986);
see also Monier (1980). The fact that it suffices to test strong pseudoprimality to
bases 2, 3, 5, 7 and 61 to decide deterministically if an integer up to 1013 is prime
was discovered by Claude Goutier. The proof that Fermat's test can be arbitrarily
bad follows from Alford, Granville and Pomerance (1994). The discussion on the
generation of random primes is from Beauchemin, Brassard, Crepeau, Goutier and
Pomerance (1988); see also Kim and Pomerance (1989) and Damgard, Landrock
and Pomerance (1993). Efficient methods to generate certified random primes are
given by Couvreur and Quisquater (1982) and Maurer (1995). A theoretical solu-
tion to Problem 10.21 is given in Goldwasser and Kilian (1986) and Adleman and
Huang (1992). For more information on tests of primality and their implementa-
tion, consult Williams (1978), Lenstra (1982), Adleman, Pomerance and Rumely
(1983), Kranakis (1986), Cohen and Lenstra (1987), Koblitz (1987) and Bressoud
(1989). More information on general number theory can be found in the classic
Hardy and Wright (1938).

374 Chapter 10



Section 10.9 References and further reading

The Las Vegas approach to the eight queens problem was suggested to the au-
thors by Manuel Blum. Further investigations were carried out by Pageau (1993).
For more background on the problem, consult the references given in Section 9.10.
The term "Robin Hood" appeared in Celis, Larson and Munro (1985) in a deter-
ministic context. An early (1970) linear expected time probabilistic median finding
algorithm is attributed to Floyd: see Exercise 5.3.3.13 in Knuth (1973). It predates
the classic worst-case linear time deterministic algorithm described in Section 7.5.
A probabilistic algorithm capable of finding the i-th smallest among n elements
in an expected number of comparisons in n + i + 0 (,n) is given in Rivest and
Floyd (1973). Universal hashing was invented by Carter and Wegman (1979); see
also Wegman and Carter (1981). An early integer factorization algorithm of Pollard
(1975) has a probabilistic flavour. The probabilistic integer factorization algorithm
discussed here is from Dixon (1981), but it is based on ideas put forward by Kraitchik
(1926); see also Pomerance (1982). The history of the quadratic sieve factorization
algorithm is given by Pomerance (1984) and the double prime variation used to
take up the RSA challenge is from Lenstra and Manasse (1991). The factorization
algorithm based on elliptic curves is discussed in Lenstra (1987). The number field
sieve is described in Lenstra, Lenstra, Manasse and Pollard (1993). See also Koblitz
(1987) and Bressoud (1989). The technique for searching in an ordered list comes
from Janko (1976); see Problem 10.36. A detailed analysis of this technique is given
in Bentley, Stanat and Steele (1981), where it is also proven that an expected time
in Q( n ) is required in the worst case to solve this problem by any probabilistic
algorithm.

Several interesting probabilistic algorithms have not been discussed in this
chapter. We close by mentioning a few of them. Given the Cartesian coordinates of
points in the plane, Rabin (1976) gives an algorithm capable of finding the closest
pair in expected linear time; contrast this with Problem 7.39. A Monte Carlo algo-
rithm is given in Schwartz (1978) to decide whether a multivariate polynomial over
an infinite domain is identically zero and to test whether two such polynomials are
identical. Consult Zippel (1979) for sparse polynomial interpolation probabilistic
algorithms. Rabin (1980a) gives an efficient probabilistic algorithm for computing
roots of arbitrary polynomials over any finite field as well as an efficient proba-
bilistic algorithm for factorizing polynomials over arbitrary finite fields and for
finding irreducible polynomials. A very elegant Las Vegas algorithm for finding
square roots module a prime number is due to Peralta (1986); see also Brassard
and Bratley (1988). A rare example of an unbiased Monte Carlo algorithm for a
decision problem, which can decide efficiently whether a given integer is a perfect
number and whether a pair of integers is amicable, is described in Bach, Miller and
Shallit (1986).

375



Chapter 1 1

Parallel Algorithms

Elsewhere in this book, we implicitly assume that our algorithms will be executed
on a machine that can do only one calculation at once. Of course, any modern
machine overlaps computation with input/output operations such as waiting for a
key to be struck, or printing a file. Many of them also overlap different arithmetic
operations when computing an expression, so that additions, for example, may
be carried out in parallel with multiplications. However we have not so far con-
sidered the possibility that the machine might be able to compute several dozen,
or even several hundred, different expressions at the same time. If we allow this
possibility, then we may hope, if we are both clever and lucky, to speed up some
of our algorithms by a similar factor.

Computers that can perform such parallel computations are not yet on every
desk. However their numbers are increasing, and interest in parallel algorithms, that
take advantage of this ability, is widespread. Research in this area is so active that
it would be unrealistic to try to mention all the areas where parallel techniques are
being studied. In this chapter we therefore present only an introductory selection
of parallel algorithms that illustrate some fundamental techniques.

We first describe more precisely the machine we have in mind when designing
such algorithms. Next we illustrate one or two basic techniques, and discuss what
we mean by an efficient parallel algorithm. Finally we give a small number of
examples from the fields of graph theory, expression evaluation and sorting.

11.1 A model for parallel computation
The basic model of ordinary, sequential computation, on what is sometimes called a
von Neumann machine, is so widely accepted that we have not found it necessary in
this book to define it more precisely. Everyone accepts that such a machine executes
one instruction at a time, on one item of data at a time, following a program stored in
the machine's memory. The fact that in reality every modern machine incorporates
a certain degree of parallelism, that enables it, for example, to perform a limited

376



Section 11.1 A model for parallel computation

number of arithmetic operations in parallel, to fetch the next instruction while
the last is still being executed, or to overlap input and output with computation,
is essentially irrelevant to the conceptual model. Similarly, most programming
languages, like the informal language we use in this book, assume that the computer
executes one instruction at a time on just one variable.

In the area of parallel computation, working machines are relatively few and
their architectures are diverse, and no consensus exists as to which theoretical
model of computation is best. For example, it is not obvious what it might im-
ply in practice if we choose a model that allows several processors to assign new
values to the same variable in parallel. Practical constraints will probably prevent
such parallel assignments from being executed truly simultaneously. Should we
therefore suppose that the variable now has the last value assigned to it, and if so,
can we tell which this last assignment is? Or if truly simultaneous assignments
are possible, what is the result of assigning different values simultaneously to the
same variable? Such considerations lead some people to prefer a model that forbids
multiple parallel assignments to the same variable.

Again, suppose we have an array that is being changed by a number of parallel
processors, with one processor for each array element. If we want to model some
such instruction as "stop when all the array elements are zero", how much time
should we suppose is necessary to implement this instruction? Certainly each
processor can see immediately that its own element is zero; but what should we
suppose is the mechanism required to check every element? Do the processors have
to exchange messages with one another, is there an extra layer of processors for
overall control, or how exactly is a decision to be reached?

For these and similar reasons, there is no clear answer to the question of which
model of parallel computation is in general the best. In this book we use a popular
model called the parallel random-access machine, or p-ram. This model is certainly
the most natural one to use, and it is easy to understand, but it is not very close
to existing machines. The reader should therefore be warned that adapting the
algorithms in this chapter for use on a real machine may not be straightforward.
Section 11.11 contains pointers to more realistic parallel computers.

In the p-ram model a number of ordinary, sequential processors are assumed
to share a global memory. Each processor has the usual set of arithmetic and
logical instructions that it can execute in parallel with whatever is happening on
the other processors. However we assume that the processors do not all set off
doing different things, but that they all execute the same program supplied from
some central control point, albeit possibly on different items of data. Furthermore
the processors are synchronized to the extent that they are all working on the same
instruction at the same time. For obvious reasons such a model is also called a
single-instruction multiple-data-stream model. For the time being we shall not define
more precisely what we mean by this, relying on the examples to clarify the basically
simple idea.

Each processor has access to the whole of the global memory. At each step, it
may either read from or write to no more than one storage location. For our pur-
poses, we shall further assume that while any number of processors may read from

377



Parallel Algorithms Chapter 11

the same storage location in the same step, no two of them may write simultane-
ously into the same location, nor may a processor write into a location that is being
read. We thus avoid having to decide what happens if two or more processors try
to write different values into the same location, or if a value changes as it is being
read. A model defined in this way is called a concurrent-read, exclusive-write, or
CREW model. Other possible models that we shall not consider for the moment are
the EREW (exclusive-read, exclusive-write) and CRCW (concurrent-read, concurrent-
write) models, defined in the obvious way. Nobody seems to have found a use for
an exclusive-read, concurrent-write model.

When analysing parallel algorithms in the following sections, we make the cru-
cial assumption that an access to memory in our hypothetical CREW p-ram, whether
for reading or for writing, can be made in constant time, regardless of the number of
processors in use. This assumption is not true in practice. Since it is not feasible to
provide direct links in hardware from all the processors to all the storage locations,
the average time required to perform a memory access on a real system increases as
the number of processors goes up; furthermore, some patterns of memory access
are faster than others. In fact it is not true that even a single processor can ac-
cess every address in an arbitrarily large memory in constant time. For simplicity,
however, we ignore this complication in this book.

For simplicity, too, we ignore most of the problems raised by the overall control
of the parallel machine. To describe our parallel algorithms, we use statements of
the general form

for x E S in parallel do statement(x).

This is interpreted to mean that we assign a processor to each element x of the
set S, and then carry out the instructions in statement(x) for every such element in
parallel, using x as the data, and computing on the assigned processor. We suppose
that the processors are numbered in sequence, and that the elements of the set S
can also be numbered in some straightforward way, so that assigning a particular
processor to x can be done in constant time. Variants of this form of instruction
will be used without further explanation if their meaning is clear. For instance,

for 1 < i < 10 in parallel do statement(i)

means that statement(i) is to be executed in parallel for i = 1, 2,... 10.
We have to be careful that the statement to be executed respects our (so far ill-

defined) requirement that the processors "are all working on the same instruction
at the same time". For example, we do not allow the statement to be a function call,
since this might lead to quite different actions on the part of each processor. How-
ever assignment instructions, array accesses, and so forth are generally acceptable.
We allow conditional instructions, too, but not loops whose length depends on the
data. Our requirement is thus becoming a little clearer: by "the same instruction"
we mean more or less "the same machine instruction", not "the same statement in
some high-level language". However we accept that, in the case of conditional in-
structions, for instance, some of the processors may actually execute the instruction
while others may skip past it.

378



Section 11.2 Some basic techniques

If a computation requires that p processors be used, we may further suppose
that a time in 0 (log p) is required before the computation begins to send them the
necessary instructions and set them to work. This is easily achieved if initially one
processor is active, and then at each time step every active processor activates one
other, so the number of active processors doubles at each step. However in the
following paragraphs we do not take explicit account of this initialization time.

11.2 Some basic techniques

11.2.1 Computing with a complete binary tree
This simple technique is best illustrated by an example. Suppose we want to
compute the sum of n integers. To make life simple, suppose too that n is a power
of 2; should this not be the case, merely add dummy, zero elements as required.
These n elements are placed at the leaves of a complete binary tree, as illustrated
in Figure 11.1. Now in the first step, the sums of the elements lying beneath each
internal node at level 1 are calculated in parallel; in the second step, the sums of the
elements lying beneath each internal node at level 2 are calculated in parallel; and
so on, until at the (Ig n)-th step the value obtained at the root gives the solution to
our problem.

Step '

Step i

Step

Figure 11.1. Computing with a complete binary tree

More formally, let n = 2 k, and let T be an array indexed from 1 to 2n -1. This
array can be used to store a complete binary tree with 2n - 1 nodes, with the root
in T[l] and the children of node T[i] in nodes T[2i] and T[2i + 1], just like a heap.
Let the n elements to be summed be placed initially in the leaves of the tree, that
is, in nodes T[n] to T[2n -1]. Now the algorithm for calculating the sum of these
n elements is as follows.

function parsum (T, n)
{Calculates the sum T[n]+ * * + T[2n -1]}
for i - lgn - I downto O do

for 2i s j < 2i+1 -1 in parallel do
T[j]- T[2j]+T[2j + 1]

return T[1]

379



Parallel Algorithms Chapter 11

Here the only synchronization required is that all the parallel computations for
a particular value of i should be completed before those for the next value of i
begin. During one trip round the loop on i, each processor involved performs two
memory accesses to read its operands, one addition, and a final memory access to
store the result. Since we assume that a memory access takes constant time, the
total work required from each processor also takes constant time. Finally, because
the processors work in parallel, all the work required in one trip round the outer
loop can be executed in constant time. The algorithm makes Ig n trips round the
loop, so the total time required is in O(logn). It is evident that the maximum
number of processors ever required to operate simultaneously is n/2.

The same technique can clearly be applied to such problems as finding the
product, the maximum or the minimum of n elements, or deciding if they are all
zero.

11.2.2 Pointer doubling
In its simplest form, the pointer-doubling algorithm applies to lists of items. Sup-
pose we have a list L of n items, each containing a pointer to its successor. Let the
successor to item i be skij. If item k is the last element of the list, then s[k] is the
special pointer nil. For our first example, we wish to calculate for each item i the
distance d[il from that item to the end of the list. We suppose as many processors
are available as there are elements in L, so we can associate a separate processor to
each list item. Now the algorithm is as follows.

procedure pardist(L)
{Initialization}
for each item i e L in parallel do

if s[i]= nil then d[if- 0
else d[i] - 1

{Main loop}
repeat [ lg n1I times

for each item i E L in parallel do
if s[i]lz nil then

d[i] - d[i]+d[si[i]]
s[i- s[s[i]]

Figure 11.2 illustrates the progress of this algorithm on a list of 7 elements. As writ-
ten, the pointer fields in the original list are changed, and the list structure is de-
stroyed. If this is undesirable, copy the pointers in the initialization phase of the
algorithm, and then work with the copies.

Here the synchronization required is more subtle than in the previous example.
There is no problem with simultaneous attempts to write to the same location,
since each processor only assigns values to d and s in its own item. In the model
we adopted we do not have to worry about simultaneous attempts to read the
same location. However we do have to worry about values changing before we
have time to read them. When several processors are executing the instruction
d[i]- d[i]+d[s[i]] in parallel, for instance, the synchronization must be tight
enough to ensure that the processor assigned to item i reads the necessary value of

380



Section 11.2 Some basic techniques

Key: dJ FEId[i] denotes special pointer nil

Initialization:

Loop 1:

Loop 2:

Loop 3:

Figure 11.2. Pointer doubling

d [s [ i]] before the processor assigned to item s [ i] changes its value of d. The safest
way to ensure this for every i is to insist that all the reads necessary to evaluate
the right-hand sides are executed before any new values of the left-hand sides are
written. Similarly, in the instruction s[i] - s[s[iij, the reads necessary to evaluate
the right-hand sides must all occur before any new values of the left-hand sides are
written. The requirement stated above, that all the processors should be working
on the same instruction at the same time, now has to be interpreted more strictly,
with synchronization at the machine instruction level.

When the algorithm stops, s[i]= nil for every item i in L. To see this, observe
that the pointers are "doubled" at each execution of the statement s[El- s[s[i]].
More precisely, sfi] originally points to the element following i in L; after one
execution of this statement, s[i] points to the element originally two places along
from i; after two executions of the statement, it points to the element originally
four places along; and so on. When a pointer goes off the end of the list we give
it the special value nil. Since there are n elements in L, it suffices to "double" the
pointers FIg nI times to be sure they all go off the end. (For the case when n is
unknown, see Problem 11.21.)

To see that the computed values of d [i] are correct, observe that at the beginning
of each iteration, if we add the values of d for all the items in the sublist headed by
item i (of course, using the current values of s), we obtain the distance from i to
the end of the original list L. Now at each iteration the pointer s i] is modified so
as to omit i's immediate successor from this sublist. However the value of d for
this immediate successor is added to d[i], so the same condition is still true at the
beginning of the next iteration.

381



Parallel Algorithms Chapter 11

Still with the assumption that all memory accesses take constant time, we
see immediately that the work required from each processor on one iteration of
the repeat loop is constant, so the running time for the complete algorithm is in
O (log n). There is one processor per list element, so the total number of processors
required is n.

If the original data structure is not a list, but a disjoint set structure (see Sec-
tion 5.9), a similar algorithm can be applied. Suppose each set is represented by a
tree, as in Figure 5.21, with pointers from each item to its parent, except that the
roots point to themselves. Now applying an algorithm similar to pardist, except
that it omits all mention of the distances d, will "flatten" the trees so every item
points directly to the appropriate root. This may be seen as an extreme example of
path compression. Here is the algorithm.

procedure flatten (D)
{D is a disjoint set structure with n elements}
repeat [Ilg nl times

for each item i E D in parallel do
sli]- sLsA]]

Variations on the theme of pointer doubling are used for many other simple
computations. Suppose, for example, that each item i in a list L has a value v[i],
and let o be a binary, associative operator that takes these values as operands.
Consider the following variant of procedure pardist.

procedure paroper(L)
initializationn}
for each item i E L in parallel do

d[i]- v[i]
{Main loop}
repeat LIg nI times

for each item i E L in parallel do
if s[i]#+ nil then

d[i]- d[i]od[s[i]]
s[i]- S[S[i]]

Let xi be the value of v for the i-th item in the list, 1 < i < n. (This is not the same
as v[i]. In the case of xi, the suffix indicates that we want the value of the i-th
item in the original list; in the case of v[i] the index is a pointer to an item, not its
position in the list.) Define Xi,j by

Xij = Xi 1 Xi+0 ° ... * Xj,

that is, as the generalized product of the i-th to the j-th elements of L. Then it is
not difficult to prove (see Problem 11.3) that when the algorithm terminates, the
value of d for the first element of L is XI,,, the value of d for the second element of
L is X2,", and so on, along to the last element of L whose value of d is Xnsn = x,
Figure 11.3 illustrates the operation of the algorithm on a list of seven elements
where the operator - is ordinary addition.

382



Section 11.3 Work and efficiency

Key: dE ] ] denotes special pointer nil

Initialization:

Loop 1:

Loop 2:

Loop 3:

Figure 11.3. Algorithm paroper

By choosing an appropriate operator, several useful computations can be per-
formed. Taking o as addition, as in the example of Figure 11.3, gives us the sum
of the elements of L. When the algorithm stops, this sum is returned as the value
of d in the first element of L. The product of the elements of L, their maximum
or their minimum can be computed similarly. More imaginative schemes are also
possible. For instance, if each d[i] is initialized to be a pointer to the item i itself,
and o is an operator which, given two pointers, returns a pointer to the item with
the larger value of v, then paroper can be used to obtain a pointer to the element of
L with the largest value, not merely the value itself. For a further development of
this theme, see Problem 11.5.

The analysis of paroper is exactly like that of pardist. The running time of the
algorithm, provided the operator o can be treated as elementary, is in E) (log n), and
the number of processors required is n.

11.3 Work and efficiency
It seems likely that a parallel algorithm that takes t seconds to execute on, say, 20
processors, is doing more computation than one that takes the same time using only
5 processors, which in turn is doing more than an ordinary sequential algorithm also
taking t seconds. For this reason we define the work performed by an algorithm,
whether sequential or parallel, to be the product p t of pI the number of processors it
uses, and t, the running time. (Since for many algorithms the number of processors
needed during the computation varies, it can be argued that the work performed
would be better measured by EI its, where t1 is the time during which exactly i
processors are active. However this makes the implicit assumption that the unused
processors are freed to do something else. In any case, it is more involved than

383



Parallel Algorithms Chapter 11

we need at present.) It is easily seen that for a parallel algorithm this work is
the time needed to simulate the parallel algorithm using a single processor which,
at each step of the computation, imitates each parallel processor in turn. If we
have two algorithms A and B for the same problem that require work Wa and Wb

respectively to obtain a solution, we say that A is work-efficient with respect to B if
Wa E O(Wb).

In Section 12.5.1 we shall see that an ordinary, sequential algorithm is generally
regarded as efficient if its running time for a problem of size n is in 0 (nk) for some
constant k. For a parallel algorithm to be regarded as efficient, on the other hand,
we usually expect it to satisfy two constraints, one on the number of processors
required, and one on the running time. These are

c the number of processors required to solve an instance of size n should be in
Q (Wa) for some constant a, and

c the time required to solve an instance of size n should be in 0 (logbn) for some
constant b.

We say that an efficient parallel algorithm takes a polynomial number of processors
and polylogarithmic time.

A parallel algorithm is optimal if it is work-efficient with respect to the best
possible sequential algorithm. It may sometimes be called optimal if it is work-
efficient with respect to the best known sequential algorithm. In this case, however,
it is preferable to say that the corresponding problem has optimal speed-up. We shall
see in Chapter 12 that there are many problems for which no known efficient (that is,
polynomial-time) sequential algorithm exists. For such problems we cannot expect
to find an efficient parallel solution (that is, one that uses a polynomial number of
processors and polylogarithmic time): see Problem 11.6. On the other hand, there
are many problems for which an efficient sequential algorithm is known, but for
which no efficient parallel algorithm has yet been discovered. It is believed, but not
proved, that some problems that can be solved by an efficient sequential algorithm
have no efficient parallel solution.

Take the technique described in Section 11.2.1 as an example. We saw there
that we can compute the sum of n elements stored in an array using n/2 proces-
sors and a time in 0 (log n). The work required by that algorithm is therefore in
(n/2) x((log n) = 0(n log n). Since the sum of n elements can clearly be obtained
in (9 (n) operations by straightforward addition on a sequential processor, the par-
allel algorithm, although it is efficient, is not optimal. Similarly the techniques
described in Section 11.2.2 allow us to carry out a variety of operations (calculating
the distance to the end of a list of n elements, finding the sum or the maximum
of the list elements, etc.) in a time in ) (log n) using n processors. Here again the
work required is in E) (n log n). Since these operations can be carried out by a single
sequential processor in a time in 0 (n), these algorithms, too, are not optimal.

If we look more closely at the algorithm to compute the sum of n elements using
a binary tree, one possible reason for its being less than optimal is immediately
apparent. In the first trip round the main loop, n/2 processors are required, and
this determines the resources needed by the algorithm; for in the second trip round

384



Section 11.3 Work and efficiency

the loop only n/4 processors do useful work, in the third only n/8 are needed, and
so on, so that most of the time, most of the processors are idle. This suggests that
we may be able to use less processors without this having a catastrophic effect on
the computing time.

Suppose then we have only p < n/2 processors available. One way to proceed
is to divide the n numbers whose sum we require to calculate into p groups,
p - 1 of which contain [n/pl numbers, while the last contains the remaining
n - (p -1) [n/p] numbers. The last group may thus contain less than [n/p]
members, but it cannot contain more. Now assign one of the available processors
to each group, and set each processor to calculating the sum of its group. Although
the processors work in parallel, the individual calculations can be straightforward,
sequential computations taking 0 ( [n/p 1) operations. Because the processors work
in parallel, the total time required for this stage is also in 0 ([ n/p] ). The problem is
now reduced to finding the sum of the p group sums, and this can be solved by the
unmodified balanced tree technique using p/ 2 processors in a time in 0 (log p).
Overall, the modified algorithm using p < n/2 processors thus takes a time in
O(Fnlpl + logp).

In particular, if we take p = n/log n we obtain an algorithm that can find
the sum of n numbers in a time in 0 (log n). We have thus reduced the number
of processors required by a factor of (log n) /2 without changing the order of the
running time. The work done by the modified algorithm is in 0(p x log n)= ((n).
Clearly no sequential algorithm can do better than this, so the modified algorithm
is an optimal parallel algorithm.

In general, we may not be so fortunate. For example, dividing the items of a list
into groups is harder than dividing the items of an array. For the former, we may
have to begin by scanning the whole list; for the latter, a simple calculation using the
array indexes is usually sufficient. Nevertheless, using a similar technique we can
always reduce the number of processors required by a parallel algorithm. Suppose
we have an algorithm that runs in time t using p processors on a problem of size
n, but that we only have q < p processors available. (Here t, p and q are functions
of n.) How should we proceed?

As before, we divide the p processors into q groups, and use one of the q avail-
able processors to simulate each group. There will be q - 1 groups containing [ p / q l
processors, and a last group containing no more processors than the others, and
maybe less. Next, suppose the original algorithm carries out steps 1, 2,..., where
the p processors execute each step independently, but have to be synchronized
between steps. In the modified algorithm using only q processors, at step 1 one of
these simulates in turn each processor in the first group; a second simulates in turn
each processor in the second group; and so on. Since there are [p/ql processors
or less to simulate in each group, the simulation of step 1 using q processors takes
[p /q] times longer than the original step 1, and so on for the other steps. Thus
the complete computation using q processors takes [p / q 1 times longer than the
complete computation using p processors. In symbols, the modified algorithm
takes a time in 0 ([p /q It). (Remember that p, q and t may be functions of the size
n of the instance.) Since p/q < [p/ql < 2p/q when p > q, we have proved the
following theorem.

385



Parallel Algorithms Chapter 11

Here the original algorithm does work in ( (p(n)t(n)) and the modified algorithm
does work in 0((p(n)t(n)/q(n))xq(n))= 0(p(n)t(n)),so in terms of work we
have neither gained nor lost by the modification: the modified algorithm is work-
efficient with respect to the original algorithm. We can thus reduce the number
of processors used by an algorithm without altering its efficiency. In particular,
if the original algorithm is optimal, so is the modified algorithm. Of course the
algorithm using less processors will usually take longer to finish, even though the
work performed is the same.

11.4 Two examples from graph theory

11.4.1 Shortest paths

We have already encountered variants of this problem in Sections 6.4 and 8.5.
We repeat the details briefly. Let G = (N, A) be a directed graph. The nodes of
G are numbered from 1 to n, and a matrix L gives the length of each edge, with
Ljiit] O,L[i,jl>Oifi~ /j,andL[i,j= ooiftheedge(i,j)doesnotexist.Wewant
to calculate the length of the shortest path between each pair of nodes. We now give
a parallel algorithm for this problem. It is interesting to compare this to algorithm
Floyd of Section 8.5.

The parallel algorithm constructs a matrix D that gives the length of the shortest
path between each pair of nodes. It initializes D to L, that is, to the direct distances
between nodes, and then does [Ig n] iterations. After iteration k, D gives the
length of the shortest paths that use not more than 2 k edges, or, equivalently, not
more than 2 k - 1 intermediate nodes. Since the edge lengths are nonnegative, the
shortest paths we are looking for must be simple: that is, they cannot visit the same
node twice. They therefore use at most n - 1 edges. Hence after [ lg nI iterations,
D gives the result we want.

At iteration k, the algorithm must check for each pair of nodes (i, j) whether
or not there exists a new path from i to j using more than 2 k I and no more than

2 k edges that is better than the present optimal path that uses no more than 2 k-1

edges. Any such new path has a "middle" node m defined so that neither the
part of the path from i to m, nor the part from m to j, uses more than 2 k 1 edges.
The optimal lengths of these parts are therefore the current values of D[i, m] and
D [im, j] respectively. Since the principle of optimality applies, to check whether
an improved new path from i to j exists, it suffices to compare the length of the
best existing path with D [i, m] +D [m, j] for each possible value of m. Then we
simply choose the minimum. Here is the algorithm.

Theorem 11.3.1 (Brent) If there exists a parallel algorithm that takes time t(n)
to solve a problem of size n using p (n) processors, then for any q (n) < p (n) there
is a modified algorithm that can solve the same problem using only q (n) processors
in a time in O (p(n)t(n)/q(n)).

386



Section 11.4 Two examples from graph theory

procedure parpaths(L[1.. n, 1..nD: array [1.. n,1.. n]
array D[l.. n, .. n], T[l.. n, .. n,.. n]
for all i, j in parallel do D[i, j] - L[i, j]
repeat fIg nI times

for all i, j, m in parallel do
T[i,m,j]- D[i,m]+D[mJ]

for all i, j in parallel do
D[i, j] - min(D[i, j], T[i, 1, j], T[i, 2, j]. T[i, n, j])

return D

Here the array T stores path lengths to avoid conflicts between reading and writing
in the last for statement. There is no conflict between reading the old value of D [ i, j]
and writing its new value in this statement, since this is done by the same processor.
The variables i, j and m range from 1 to n.

Analysis of the algorithm is straightforward. The first for statement can be ex-
ecuted in constant time using n2 processors. Within the repeat statement, the first
for statement can be executed in constant time using n3 processors. The minimum
of n + 1 elements can be calculated in a time in 0 (log n) using 6 (n/ log n) proces-
sors, as described in Section 11.2.1. There are n2 such minima to be computed in
parallel, so one iteration of the second for statement can be executed in a time in
E)(logn) using E) (n 3 / logn) processors. Finally the repeat statement is executed
Ig ni| times, so the complete algorithm can be executed in a time in 0 (log2 n) using
(n3 ) processors.

It is easy to show that the number of processors can be reduced to 6 (n3 
/log n)

while keeping the same order for the time: see Problem 11.8. However this is still
not optimal.

11.4.2 Connected components

Let G = (N, A) be an undirected graph. As usual, we suppose that the nodes of G
are numbered from 1 to n. Let the matrix L be such that L [ i, j] = true if the edge (i, i)
exists, and L[i, j]= false otherwise. Since the graph is undirected, L[i, j]= Ll[j, i]
for every pair of nodes (i, j). We want to find the connected components of the
graph G. Problem 9.16 asks the reader to find a sequential algorithm for this
problem. Here we describe a parallel algorithm.

In outline, the algorithm proceeds by forming disjoint sets (see Section 5.9)
of nodes known to be connected, merging these into larger sets, and so on, until
finally the nodes in each connected component of the graph are in a single set. As in
Section 5.9 we represent these disjoint sets by rooted trees. With each node of G
we associate an entry in the vector set[1 . . n]. If set[i]= i, then i is both the label
of a set and the root of the corresponding tree; if set [i] = j i, then node i is in the
set whose label is j but is not the root of the tree. Note that in this application

(a) the trees are always "flattened"; that is, each node (including the root itself)
points directly to the root; and

(b) the label of the set, that is, the node at the root of the tree, is always the lowest-
numbered node in the set.

387



Parallel Algorithms Chapter 11

We begin by describing just one iteration of the parallel algorithm that merges
disjoint sets. To illustrate the operation of the algorithm, suppose for example that
we have a graph with 19 nodes, and that by some means or other we have reached
the situation shown in Figure 11.4. Here nodes 1, 2 and 3 are in the set labelled 1,
nodes 4 and 5 are in the set labelled 4, and so on. In terms of our representation, this
meansthatset[l]= set[2]= set[3]= 1,set[4]= set[5]= 4,andsoon. Thenodesinany
given set are already known to be connected, but there are also some connections
not yet taken into account. These are indicated by dotted edges in Figure 11.4. Thus
for example node 3 is connected to node 7 and node 4 is connected to node 8; in
other words, L [3, 7] = true, L [4, 8]= true, and so on, while for instance L [3,4] =false
because nodes 3 and 4 are not connected. Connections between nodes in the same
set are omitted, as they are no longer of interest.

Figure 11.4. Merging sets: initial situation

In the description of the algorithm, we need three arrays S[i. . n, 1.. n], T[1. . n]
and oldT[1 . . n]. The first step of the parallel merging algorithm can now be spec-
ified as follows.

{Step 1 }
for all i, j in parallel do

if L[ij] and set[i]# set[j] then S[i,j]- set[j]
else S[i,j]i oo

forall i in parallel do T[ti]- min(S[i, 1],S[i,2],...,S[i, n])
for all i in parallel do

if T[i]= oo then T[i]- set[i]

Here and throughout this section the variables i and j range from 1 to n.
The effect of this step is that for each node i, T[i] now points to the root of a

set. If node i is connected to nodes in other sets besides its own, then T[i] points
to the root of one of these other sets: in fact, to the one with the lowest number.
If node i has no connections outside its own set, then T[i]= set[i].

Applying step 1 to the situation in Figure 11.4 yields the situation in Figure 11.5,
where the connections between nodes are now omitted, and the arrows show the
values of T obtained. All the arrows point to root nodes. Thus, for instance, node 1,
which has no connections outside its own set, has T[1]= set[1]= 1. Node 3, which
is connected to node 8, a node not in its own set, points to the root of this other

388

)
)



Section 11.4 Two examples from graph theory

set, namely node 6. A slightly more complicated case is provided by node 8. This
is connected to both nodes 4 and 16, neither of which is in the same set as node 8.
Thus T[8] must point either to the root of the set containing node 4, or to the root of
the set containing node 16, that is, to either node 4 or node 15. Since the algorithm
chooses the lowest-numbered root, we obtain T[8]= 4.

set I set4 set6 set9 set II set 15 set 17

Figure 11.5. Merging sets: after step 1

The second step of the merging algorithm is as follows.

{Step 2}
for all i, j in parallel do

if set[j]= i and T[j]# i then S[ij].- T[j]
else S[ij]- oo

for all i in parallel do T[i] - min(S[i,1],S[i,2],...,S[i,n])
for all i in parallel do

if T[i]= oo then T[i]- set[i]

If node i is not the label of a set, there is no node j with set[j]= i, so this step
simply sets T[i] ]- set[i]. If on the other hand i is a label, the algorithm examines
all the values of T[j] for which j is a node in set i, and for which T[j]b i, that is,
T[j] points to a different set. It then chooses the smallest among these. If there
are no such values T[i] - set[i], that is, the label node i points to itself. This only
happens if none of the nodes in set i is connected to a node in a different set.

After step 2 is applied to the situation in Figure 11.5, we obtain the situation
illustrated in Figure 11.6. The arrows now show the new values of T. Every node
that is not a label points to the root of its own set, and arrows between sets only
join root nodes.

Consider this directed graph, which we shall call H: its nodes are the nodes
of G, but its edges are specified by the pointers T. It is redrawn in Figure 11.7
to make its structure clearer. Tracing through the algorithm, we see that if one of
the initial sets has no connection to any other (that is, if it includes every node in
some connected component of the graph G), then after steps 1 and 2 the pointers T
simply reproduce the initial set structure. This is the case of set 17 in the example.
The other nodes of H form one or more connected components, each of which
resembles a pair of trees whose roots are joined in a cycle. In the example one pair
of trees has nodes 1 and 6 as its roots, and the other has nodes 9 and 11.

389



Parallel Algorithms Chapter 11

set I set4 set 6 set9 set I I set 15 set 17

Figure 11.6. Merging sets: after step 2

To see why this is so, consider a component of H formed by the fusion of two or more
of the original sets. Suppose a is the label of the lowest-numbered set involved.
Since the label of a set is the lowest-numbered node in the set, this means that a
is in fact the lowest-numbered node in the given component of H. Now T[a]= b,
where b is the label of a set different from a, since at step 2 of the algorithm we
choose pointers across different sets whenever possible. Furthermore T[b]= a,
since if set a is connected to set b, then set b is connected to set a (because the
graph G is undirected), and T[b] is chosen in step 2 to be as small as possible.
Hence TEa]= b and T[b]= a and these two nodes form a cycle. All the remaining
nodes in this component of H must be joined to either node a or node b by a chain
of one or more pointers T, so they form two trees, one with a as root, and the other
with b as root.

Figure 11.7. Merging sets: the graph H

The third and final step of the algorithm uses the pointer-doubling technique to
flatten these double trees, rather as in Section 11.2.2. The only subtlety is that if we
"double" the pointer of a node sufficiently often, we are sure that it will point to one
of the pair of roots, but we cannot be sure which. In the example, if we "double"
the pointer from node 5, it will point to node 6; all subsequent doublings leave this
unchanged. If we double the pointer from node 4, it will point to node 1; again,
subsequent doublings do not alter this. However if the two roots are nodes a and
b, we have seen that before any pointer doubling T[a]= b and T[b] = a. Suppose
we save the original values of T in the array oldT. After a sufficient number of

390

)



Section 11.4 Two examples from graph theory

doublings the pointer from node i points to one of the pair of roots, and now we
can use the values in oldT to find the other. Comparing, we can choose the root
with the lower number. As pointed out above, this is the lowest-numbered node
in this component of H.

In a component of H that has only a single root, say a, at the outset T[a] a,
so the above technique, while unnecessary, does no harm. Since the whole graph
G contains n nodes, no component of H can contain more than this. Whether for
a single or a double tree, [ lg n] pointer doublings are therefore enough to ensure
that every node points to a root.

Here is the third step of the algorithm.

{Step 3}
for all i in parallel do oldT[i] - T[i]
repeat fig n] times

for all i in parallel do T[i]- T[T[i]]
for all i in parallel do set[i] - min(T[i],oldT[T[i]])

Suppose some connected component of G is initially represented by more than
one disjoint set. After execution of steps 1, 2 and 3, some of these will have been
merged into larger ones. In fact, each set representing only part of a connected
component of G must be linked to at least one other set representing a different
part of the same component. Hence such sets must at worst be merged two by two.
In other words, in the worst case the number of disjoint sets representing the same
connected component of G is halved by the application of steps 1, 2 and 3.

The complete parallel algorithm for finding the connected components of an
undirected graph G with n nodes can therefore be specified as follows. First, each
node of G is put into a separate disjoint set. Steps 1, 2 and 3 are then iterated fIg n]
times. Since the number of disjoint sets representing the same connected compo-
nent of G is at least halved at each iteration, this is sure to make all the possible
merges even if G has only a single connected component. When the algorithm
stops, the remaining disjoint sets therefore represent different components of G.
Here is the algorithm.

procedure concomps(L[1..n,1..n]): array [I..n]
{L is the Boolean adjacency matrix of an undirected

graph G. The algorithm returns a vector representing a
disjoint set structure, where each disjoint set corresponds
to a connected component of G. }

array set[l.. n], S[1.. n, 1. . n], T[1.. n], oldT[l. . n]
for all i in parallel do set[i] - i
repeat P lg n] times

Step 1
Step 2
Step 3

return set

391



Parallel Algorithms Chapter 11

Analysis of the algorithm
Analysis of the algorithm is straightforward. First, since the three steps are iterated
r ig n] times, and since each execution of step 3 causes the pointer-doubling state-
ment to be executed rIg n] times, the running time of the algorithm is in ( (log 2n),
no matter how many processors are available.

Now the first for statement of step 1 can be executed in constant time with n2

processors. In the second for statement of this step, the minimum of n values in an
array can be found in a time in O(log n) by the techniques of Section 11.2.1 using
( (n) processors. There are n such minima to be calculated, so the for statement can
be executed in a time in O(logn) using (n2 ) processors. The third for statement
can be executed in constant time using n processors. Thus overall step 1 can be
executed in a time in 6 (log n) using n2 processors. It is easy to check that there
are no write conflicts during this step. The analysis of step 2 exactly parallels that
of step 1.

As for step 3, the first and last statements can be executed in constant time with
n processors, while the repeat statement, as we saw, takes a time in O (logn) and
can be executed with n processors. Again, there are no write conflicts.

Pulling these facts together, we see that algorithm concomps can be executed in
a time in O (log2n) using (n2 ) processors. The work performed is in 6 (n2log2n),
which is not optimal. Indeed, it can easily be improved. The critical points in the
algorithm that determine the number of processors needed are the calculations of
n minima in steps 1 and 2. Using the result of Problem 11.2, we see that one mini-
mum can in fact be calculated in a time in 6 (log n) using a number of processors
in ()(n / log n); the n minima required can thus be calculated in the same time
using (n2 / log n) processors. With this improvement algorithm concomps can be
executed in a time in O (log2n) using (3(n2 / log n) processors. However this is still
not optimal.

The algorithm can be further improved by taking advantage of the fact that, as
the computation progresses, the number of disjoint sets to be handled decreases,
and less processors are needed. Space does not permit us to describe this improve-
ment in detail. However it leads to a parallel algorithm for the connected compo-
nents problem that still takes a time in 0 (log2 n), but now using only 6 (n2 /log2n)
processors. The work performed by this improved algorithm is in (n2 ). Since no
sequential algorithm that uses the adjacency matrix of the graph G can do better
than this, the improved parallel algorithm is optimal.

11.5 Parallel evaluation of expressions

There is a considerable literature on this subject, that we cannot hope to summarize
here. Instead we give just one example of how to compute simple expressions in
parallel. The example chosen is easy to explain; nonetheless the solution technique
has a pleasing novelty.

Suppose we are looking for a parallel algorithm to evaluate simple arithmetic
expressions, whose operands are constants, and that involve only the four opera-
tors +, -, x and /. Throughout this section, we assume that these four arithmetic

392



Section 11.5 Parallel evaluation of expressions

operations are elementary, that is, they can be computed in constant time. For sim-
plicity, we suppose that the expression to be evaluated is given in the form of an
expression tree: this is a binary tree where each internal node represents one of the
four available operators, and each leaf represents an operand. Figure 11.8 shows
such a tree, corresponding to the expression

((7 - (21/3))x3)+((9 x (10 - 8))-+6).

We further suppose that the leaves of the tree are numbered from left to right
around the bottom of the tree, again as illustrated in Figure 11.8. The x to the right
of each internal node in this figure will be explained later. If the tree has n leaves
(operands), then of course it has n - 1 internal nodes (operators). In the example,
n = 8.

2 3 6 7

Figure 11.8. A binary expression tree

The obvious way to evaluate such an expression tree in parallel is to assign one
processor to each internal node, and to use an algorithm with the following form.

repeat
for each internal node i in parallel do

if the values of the children of i are known then
compute the value of i
remove i's children from the tree

until only one node is left

393



Parallel Algorithms Chapter 11

The number of iterations needed is equal to the height of the expression tree. In the
worst case, however, a binary tree with n leaves can have height n - 1, and this
simple algorithm does not produce any parallelism at all! Only one processor does
useful work at each iteration, so the computation could just as well be carried out
on a sequential machine; see Problem 11.10.

To speed things up, the processors must do something useful even before both
their children have been evaluated. Hence we look for something a processor can
do when the value of at least one of its children is known. To this end, we associate
a function f (x) with each internal node of the tree. Initially, every internal node is
associated with the function x, as illustrated in Figure 11.8. The meaning of these
functions is that, when a processor at some node has calculated a value x, the value
it transmits up the tree is not x but f(x). Consider for example the fragment of
tree shown in Figure 11.9a. Here the processor assigned to internal node A receives
one value from its left child and one value from its right child, multiplies them to
obtain an answer x, then transmits the value f (x) up the tree to node B. In its turn
the processor attached to node B receives this value from its left child A and the
value 9 from its right child C (which is a leaf, corresponding to a constant operand),
adds them to obtain an answer x, then transmits the value g (x) up the tree to its
parent. And so on.

A
X g(x) + 9)

C

etc I etc 2

etc I etc 2

(a) (b)

Figure 11.9. A fragment of an expression tree

Even before receiving a value from node A, however, the processor at node B can
do useful work reconstructing the expression tree. Because the value of node B's
right-hand child is known, it can modify the function stored at node A and remove
node B and its child (the right-hand one, in this case) from the tree. The result is
shown in Figure 11.9b. If, when it calculates a value x, the processor at node A
transmits g(f(x) + 9) directly to B's parent, bypassing B and its right-hand child,
the result obtained at the root of the tree does not change.

There is nothing special about the operator + in the node B, nor about the value
9 that we gave to its right-hand child C. In general, if node B holds the operator o,

394



Section 11.5 Parallel evaluation of expressions

where a is any of +, -, x or /, and if the value of its right child is any constant k,
then B can replace A's function by g(f(x)ok) and cut itself and its right child out
of the expression tree. If the constant k is B's left child and the node A is B's right
child, B should replace A's function by g (k o f (x)). This is important because the
operators - and / are not commutative. Minor adjustments take care of the cases
when A is a leaf (take f (x) to be the constant function that returns the value of the
operand at A), or when B is the root of the tree (the final value of the tree is the
value that would normally be transmitted up to the next level).

The operation described above is called a cut. In the example, the leaf C and
its parent B were cut from the tree. It is important for what follows to see that
a cut can be performed in constant time. The manipulation of pointers in the
tree can certainly be done in constant time: only three pointers are involved in the
operation. It is less evident that the function associated with a node can be updated
quickly. For instance, if in the example nodes A and B had both been created by a
preceding series of cut operations, the functions f (x) and g (x) might already-or
so it appears-be quite complex, so that substituting f into g to obtain g (f (x) ok)
would be no trivial matter.

Fortunately, if the only operators permitted are +, x and /, the functions
that can be obtained in this way all have the form (ax + b)/(cx + d). To see
this, note first that the initial function at each internal node, namely x, can be
represented with a = d = 1 and b = c = 0. If f(x)= (ax + b)/(cx + d), then
f (x) +k = ((a + kc)x + (b + kd)) / (cx + d), and so on for the seven other operations
involving a functions (x) and a constant k. Finally if f (x)= (aix + bl) / (clx + dl)
and g(x)= (a 2 x + b2 )/(c 2 x + d2 ), then g(f(x))= (a 3 x + b3 )/(c 3 x + d3 ), where
a3 = aa 2 + b2 cl and there are equally simple expressions for b3, c3 and d3 ; see
Problem 11.11. Hence to represent any function associated with an internal node we
keep just the four corresponding constants a, b, c and d. Provided these constants
are not too large, the representation of any functional composition of the form
g(f (x)ok) or g(k a f(x)) can then be computed in constant time when required.
Furthermore, when the value of x becomes available, f (x) too can be computed
in constant time. (The proviso is necessary because in a complicated expression
tree the constants a, b, c and d can grow exponentially. However we shall not
consider this possibility here.)

The last consideration before we state the algorithm for evaluating expressions
is that only three nodes are involved in a cut operation. In Figure 11.9, these are
the nodes A, B and C. Pointers, values and associated functions are read and
changed for these three nodes and no others. It is therefore possible to execute a
cut operation elsewhere in the tree in parallel with the operation on A, B and C,
provided none of these is also involved in the second operation. Moreover, let A, B
and C be the nodes involved in one cut operation, and A', B' and C' be the nodes
involved in another, with C and C' being the two leaves involved. Remember that
the leaves of the expression tree are numbered in order round the tree. Then it is
a sufficient condition for the operations not to interfere with one another-that is,
for the sets {A, B, C} and {A', B', C'} to be disjoint-if C and C' are nonconsecutive
leaves that are either both left children or both right children. Problem 11.12 asks
the reader to prove this.

395



Parallel Algorithms Chapter 11

The complete parallel algorithm for evaluating simple expressions can now be
stated as follows. We assume that one processor is allocated to each internal node
of the expression tree.

function peval(T : expression tree)
{Evaluate an expression tree with n leaves and
n -1 internal nodes. The leaves are initially numbered
in order round the base of the tree. I

for each internal node of T in parallel do
initialize the function f (x) to x

repeat [Ilg nI times
for each internal node of T in parallel do

if the left child is an odd-numbered leaf, cut it
if the right child is an odd-numbered leaf, cut it
if either child is now a leaf, renumber it

return the value of the remaining leaf

We first cut all the odd-numbered leaves that are left children. By the remarks
above, this can be done in parallel without the cut operations interfering with one
another. Next we cut all the odd-numbered leaves that are right children. Again,
this can be done in parallel. Since every odd-numbered leaf is either a left or a right
child, all of them have now been removed, and only the [n/21 even-numbered
leaves remain. These are renumbered by dividing their numbers by 2, ready for
the next iteration. Since each iteration removes at least half the leaves from the
expression tree, after F lg n] iterations only one leaf remains. The value of this leaf
is the value of the expression.

Figure 11.10 illustrates one iteration of this process when applied to the expres-
sion tree of Figure 11.8. The first half of the figure shows the state of the tree after
the odd-numbered left leaves have been cut, and the second half the state after the
odd-numbered right leaves have been cut. It is readily seen that if the leaf numbers
are now halved, the tree will be ready for the next iteration. The reader may verify
that the second iteration reduces the tree to three nodes (one internal node and two
leaves), while the third reduces it to a single node holding the value of the original
expression, namely 24.

Because a cut can be performed in constant time, the algorithm described above
is easily seen to take a time in 0 (log n) using 0((n) processors. The work performed
is in 0 (n log n), so the algorithm is not optimal. As in previous examples, after one
iteration only half the processors are still useful, after two iterations only a quarter,
and so on. At the cost of additional complexity, we may take advantage of this to
reduce the number of processors required to 0 (n / log n) without increasing the
time required beyond 0 (log n). The improved algorithm does work in 0(n), and
is therefore optimal.

The form of input required for the above algorithm (an expression tree with
the leaves numbered from left to right) may be thought a little unusual. Although
we omit all details here, we note that if the expression to be calculated is not in
the required form, but is stored instead as a string (that is, an array of characters),

396



Section 11.6 Parallel sorting networks

2 4 6 8

(a) (b)

Figure 11.10. (a) Left children cut (b) Right children cut

then the numbered expression tree can be obtained in a time in O(log n) using
o (n/log n) processors: exactly the same orders as for the evaluation algorithm.
Transforming the input into the required form is therefore not a bottleneck.

11.6 Parallel sorting networks
Before we attack the problem of parallel sorting using a CREW p-ram, we digress
for a moment to look at an interesting class of networks that are able to sort their
inputs.

We begin by defining a comparator. This is a circuit with two inputs and two
outputs, which we shall represent as shown in Figure 11.11. By convention we
suppose that the inputs are on the left and the outputs on the right. If as shown
in the figure the two inputs are xl and x2 and the two outputs are Yl and Y2,

then Yi = min(xl,x2) and Y2 = max(xi,x2). In other words, the larger input
sinks to the lower output, while the smaller input floats up to the upper output.
In the sequel it will be convenient to suppose that the inputs are exchanged when
xI < X2. Thus two equal inputs are notionally exchanged, although of course this
has no visible effect. Clearly a single comparator is able to sort two inputs. We shall
suppose that this sorting operation can be carried out in constant time. We also
assume that any number of comparators whose inputs and outputs are disjoint can
operate in parallel. Comparators meeting these requirements are easy to build in
practice.

More generally, we want to design networks that can sort n inputs. If any
vector (xi, X2, . . ., x) is applied to the inputs of such a network, then the output
vector (yi, Y2,...,y,) will be a permutation of the inputs such that
YI < Y2 < ... < Y,- If we denote such a network by S., then SI requires no

397



Parallel Algorithms Chapter 11

xI4b y, = min(xi,x 2 )

X2 t Y2 = max(x1 , x2)

Figure 11.11. A comparator

comparators at all, while S2, as we have just seen, is a single comparator. One
way to build progressively bigger networks is to design S~,1 in terms of Sn, so
that starting with Si or S2 we can build all the networks we want. There are at
least two obvious ways to do this, illustrated in Figure 11.12. Both networks have
n + 1 inputs and n + 1 outputs. The network on the left corresponds to sorting by
selection: the largest element falls to the bottom, and then we use S, to sort the n
remaining values. The network on the right corresponds to sorting by insertion:
we use Sn to sort the first n inputs, and then the (n + 1)-st input is inserted in
its correct place. Interestingly, when we compare the networks obtained in this
way, they turn out to be the same. Figure 11.13 illustrates the network S5 obtained
whether we use selection or insertion.

SI' Sn1

(a) (b)

Figure 11.12. Selection and insertion sorting networks

There are two useful measures of the quality of our networks. First, we can simply
count the number of comparators needed to build S,. This is called the size of
the network. In the example S5 contains 10 comparators, and it is evident that
in general S, will contain Yn=- = n(n -1)/2 comparators. The second measure
of interest is the time the network takes to sort its inputs. We assumed that a
comparator takes a constant time to operate, but of course it cannot fire before its
inputs are ready. We define the depth of a network to be the maximum number
of comparators through which an input must pass before it arrives at an output.
The depth of the network in Figure 11.13 is 7. Comparators in the same vertical
line can all operate at once, while successive lines must be executed from left to
right. In this case input 2 passes through 7 comparators. In general it is easy to
see that a network Sn designed in this way has depth 2n - 3 when n > 2. If
each phase takes constant time, the time required to sort n elements using this
type of parallel sorting network is proportional to the depth of the network, and is
therefore in 0((n).

In the following sections we shall see how to improve this design.

398



Section 11.6 Parallel sorting networks

II-I-

Figure 11.13. A network for sorting five inputs

11.6.1 The zero-one principle
To prove our sorting networks work as they should, we shall use the following
somewhat surprising proposition, known as the zero-one principle.

Proposition 11.6.1 A sorting network with n inputs correctly sorts any set of
values on its inputs if and only if it correctly sorts all the 2n input vectors consisting
only of zeros and ones.

Proof The "only if " part of the proposition is obvious. To prove the "if " part, let f: -. R
be any nondecreasing function, so that f (x) < f (y) whenever x < y. Suppose
the sorting network under consideration correctly sorts all the 2' input vectors
consisting only of zeros and ones, but that there is some vector (XI X2, . x)
of inputs that it sorts incorrectly. Notice that even an incorrect sorting network
produces a permutation of its inputs. Let the (incorrect) output vector from this
set of inputs be (YI, Y2,..., yn ), and let yi be any element of this vector such that
yi > yi~j. Such an element necessarily exists since the vector is incorrectly sorted.

Now consider what would happen if instead of (xI, x2, .. .. , x) we applied the
input vector (1(x1 ) 2(xc), ... f (xn)) to the network. Because f is nondecreasing,
f(xi)< f(xj) whenever xi < xj. Thus the values f(xi) propagate through the
sorting network in exactly the same way as the values xi: whenever two values of
x were interchanged, now the two corresponding values of f (x) are exchanged.
(This is why we required the comparators to exchange two equal values.) The
output vector of the sorting network would therefore be (f (Y), f (Y2), . f (y) ,),
since the network would perform exactly the same permutation of its inputs as
before.

Finally let f be the function defined as follows: f (x) 0 when x < yi, and
f(x)= 1 otherwise. Now the input vector (f(xl) f(x 2 ),. .,f(xn)) is a vector
consisting solely of zeros and ones. In the output vector f (yj)= 1 and f (Yi 1)= 0,
because yi+ I < yi. The output vector would therefore be incorrectly sorted, contra-
dicting the assumption that the network correctly sorts all input vectors containing
only zeros and ones. It follows that no such input vector as (xI, x2,..,xn) can
exist: the network correctly sorts any input vector, and our proof of the zero-one
principle is complete. A

399



Parallel Algorithms Chapter 11

11.6.2 Parallel merging networks

We need one more tool before returning to sorting networks. For any positive in-
teger n, a merging network F0 is a network built of comparators, with two groups
of n inputs and a single group of 2n outputs. Provided each of the two groups
of inputs is already sorted, then each input appears on one of the outputs, and
the outputs are also sorted. (Compare this to the description of merging in Sec-
tion 7.4.1.) For instance, Figure 11.14 shows an F4 network, illustrating how the
inputs are transmitted to the outputs.

3 1
F3 T

first I I 1 3
sorted'
group
of inputs

second'
sorted'
group I

64

5 2

7 7
S

of inputs 8 8 8

sorted
outputs

Figure 11.14. A merging network

For simplicity, suppose from now on that n is a power of 2. A single comparator can
serve as Fl. From this base we can create merging networks F2 , F4 , and so on, always
designing F20 in terms of F,. This is another example of the divide-and-conquer
technique discussed in Chapter 7. Figure 11.15 shows how it is done. Suppose
the two groups of inputs are (wlW2,..., w) and (x1 ,x 2 , . ,xn) and the out-
puts are (Y1. Y2, . . ., Y2n) . We merge the odd-numbered inputs (WI, W3, . . ., Wn 1)

from the first group with the odd-numbered inputs (xI, X3, .X . , Xn 1) from the sec-
ond group using one merge network Fn, and we merge the even-numbered inputs
(w2, w 4 .. , w,) from the first group with the even-numbered inputs (x2 , x 4 , . . ., xn)
from the second group using another. Call the outputs of these two merges
(vIV2,...,v2n), numbering the outputs from the odd-numbered merge before
those from the even-numbered merge. Now permute the outputs vi so that, from
top to bottom, they are in the order (v 1 ,v+ 1,v 2 ,vn+2 , . . . ,v,,v2). This permu-
tation is the so-called perfect shuffle: if you cut a pack of 2n cards exactly in half
and then riffle them together so that cards fall alternately from each half, this is
the order you obtain. Finally install comparators between what are now outputs 2
and 3, 4 and 5,..., 2n - 2 and 2n - 1. The output on the right is the desired sorted
vector (YI, Y2, .. , Y2n)-

An argument exactly analogous to the one given above shows that the zero-one
principle also holds for merging networks. Hence to prove the proposed network
works, we first show that it works when the inputs w and x consist solely of zeros
and ones, and then invoke the zero-one principle to conclude that it works for any

400

Is



Section 11.6 Parallel sorting networks

Figure 11.15. Designing F2, in terms of F,

inputs. The argument is by mathematical induction. For the basis of the induction,
it is obvious that F1 , a single comparator, works correctly. For the induction step,
suppose all the networks F1 , F2, .. ., Fn have been shown to work correctly. Consider
what our proposed F2m does when the input vector w consists of r zeros followed
by n - r ones, and x consists of s zeros followed by n - s ones. (Remember that
both groups of inputs must already be sorted.) Since by the induction hypothesis
the networks F, work correctly, the output (vI, V2, . . .-, vO) of the upper merging
network consists of [r/21 + [s/2] zeros followed by the appropriate number of
ones, while the output (Vn+I, Vn +2, . . ., V2n) of the lower merging network consists
of [r /2] + [ s/2] zeros followed by ones. If r and s are both even, then after shuffling
the outputs from the two merging networks, the 2n lines from top to bottom hold
r + s zeros followed by ones; the final column of comparators is unnecessary, but
does no harm. If just one of r and s is odd, then after shuffling the outputs from
the two merging networks the 2n lines from top to bottom again hold r + s zeros
followed by ones; as before the final column of comparators is unnecessary. If both
r and s are odd, however, then after shuffling the outputs from the two merging
networks the values on the lines from top to bottom are r + s -1 zeros, 1 one, 1
zero, and then ones. This time the comparator between lines r + s and r + s + 1 is
necessary to finish the sort. The proposed F2n therefore correctly sorts any inputs
consisting solely of zeros and ones; by the zero-one principle, it correctly sorts any
inputs.

Figure 11.14 was obtained in this way, except that the network has been cleaned
up to remove some redundant crossings of the lines.

To compute the size s(n) of the network Fn obtained using this construction
we use the recurrence

s(2n)= 2s(n)+n/2 -1

that is immediate from Figure 11.15. The initial condition is s(1)= 1. Using the
methods of Section 4.7 it follows easily that s (n) = 1 + n lg n. It is equally easy to
show that the depth of the network F, is 1 + lg n.

401



Parallel Algorithms Chapter 11

11.6.3 Improved sorting networks

We can now use divide-and-conquer to design sorting networks S, that are a con-
siderable improvement on those seen at the beginning of Section 11.6. Figure 11.16
shows how this is done: two networks Sn are used to sort separately the first and
the last n inputs, and then a merging circuit F, is used to complete the sort. A proof
that the network S2n works correctly if the two smaller networks S, also work is
scarcely necessary. The divide-and-conquer approach stops at S2, that consists of
a single comparator.

Figure 11.16. An improved sorting network

It is easy to show that the sorting networks obtained in this way use a number of
comparators in O (n log2n) and that the time they require to sort their inputs is in
e (log 2 n). For obvious reasons the networks described above are called odd-even
merging and sorting networks. They were discovered by Batcher in 1964. These
sorting networks are not optimal. Anticipating a little, we shall see in the next
chapter that any algorithm that sorts n elements by making comparisons between
them must make at least [ lg n! I in the worst case. Thus any sorting network for
n elements must include at least [ lg n! I comparators. For example, any sorting
network for 16 elements must contain at least 45 comparators. The odd-even sorting
network S16 contains 63 comparators. A different network is known that uses only
60 comparators. It seems there is still room for progress! Concerning depth, too,
the odd-even sorting network is not optimal: for 16 inputs, the odd-even sorting
network has depth 10, but a different network is known that has depth 9. A class of
sorting networks with depth in ( (log n) and size in 0 (n log n) is known to exist,
but has not yet yielded networks that are useful in practice.

11.7 Parallel sorting

The previous sections describe how to perform parallel sorting using a network
of comparators. If each comparator is simulated by a processor, we obtain an
algorithm that can be executed on a CREW p-ram. Such an algorithm can sort n
items in a time in 0 (log 2 n) using O(nlog 2n) processors. (This follows directly

402



Section 11.7 Parallel sorting

from the result of Problem 11.17.) In this section we sketch a sorting algorithm due
to Cole that can be executed on a CREW p-ram, and that sorts n items in a time in
E) (logn) using a number of processors in 0(n). The work performed is therefore
in 0 (n log n). As we shall see in Section 12.2.1, this parallel algorithm is therefore
optimal, at least as far as sorting by comparison is concerned.

Throughout this section we assume for simplicity that we have n distinct items
to be sorted into ascending order, where n is a power of 2; otherwise we add the
necessary number of dummy elements. In essence, Cole's parallel algorithm is a
tree-based merge sort. It may be helpful to compare this with the ordinary sequen-
tial merge sort described in Section 7.4.1. The algorithm uses a complete binary
tree with n leaves. Initially one of the items to be sorted is placed at each leaf.
Then the computation proceeds up the tree, level by level, from the leaves to the
root. At each internal node the sorted subsets of items produced by its children are
merged. Suppose such a merge can be carried out in a time in 0 (M (n)), and that all
the merges at the same level of the tree can be performed in parallel. As there are
lg n levels of internal nodes in the tree, the whole sorting procedure can therefore
be carried out in a time in 0 (M(n)log n).

If we have no additional information about two sorted sequences each contain-
ing m items, it can be proved that with m processors the time required to merge
the sequences is in Q(loglogm). Using such an approach, we would expect a
tree-based merge sort to take a time at least in Q (log n log log n). Cole's idea was
to provide just the additional information needed for it to be possible to merge
two sorted sequences in a time in 0 (1), so the overall algorithm runs in a time in
o (log n).

The following section groups some necessary definitions, and then we outline
the algorithm.

11.7.1 Preliminaries

There are n items to be sorted. As the algorithm progresses, various subsets of
these n items are stored in ascending order in sorted arrays. In what follows, since
all the arrays of interest 'are sorted, we simply call them arrays, taking for granted
that the items they contain are ordered. We use lower-case letters to name items,
and capital letters to name arrays.

Let a, b and c be three items, with a < c. We say that b is between a and c if
a < b < c. We also say that a and c straddle b.

Let L be an array of items. If a is an item in L, then the rank of a in L is defined
straightforwardly: the smallest item in L has rank 1, the next smallest has rank
2, and so on. We tacitly suppose that every array L is extended by two invisible
items, namely - co with rank 0, and + co with rank IL I + 1. This allows us to define
the rank of an item from one array with respect to another (sometimes called the
cross-rank) as follows. Let L and J be two arrays, and let b be an item in J. If a and
c are the two consecutive items of L that straddle b (these necessarily exist because
of the presence of the two invisible items in L), then the rank of b in L is defined to
be the same as the rank of a in L. We denote by JIL the set of ranks in L of all the
items in J.

403



Parallel Algorithms Chapter 11

Again, let J and L be two arrays of items, and now let a and b be two consec-
utive items of L (including the invisible items). We define the interval induced by
these items to be [a, b). An item x belongs to this interval if a < x < b, that is, if
a and b straddle x. We say that L covers J if each interval induced by consecutive
items of L contains at most three items from J. (This time the invisible items in J are
not included.) For example, if L contains the items 10, 20 and 30, while J contains 1,
7, 22, 23, 26, and 35, then L covers J: the interval induced by the items -co and 10
from L contains two items from J, the interval induced by 10 and 20 contains none,
and so on. However if K contains the items 11, 12, 14, 17, 22, and 41, L does not
cover K because the interval induced by the items 10 and 20 from L contains more
than three items from K.

We use the symbol & to denote the operation of merging two sorted arrays.
Suppose L covers J and M covers K. Contrary to what one might hope, it is not
necessarily true that L&M covers J&K; see Problem 11.19. Finally, for any array L,
r(L) denotes the array obtained by taking every fourth item in L. If L contains less
than four items, r(L) is empty.

11.7.2 The key idea

We now give an informal account of the method of merging two arrays in a time
in 0 (1). Let J, K and L be three sorted arrays, and suppose L covers both J and K.
The situation is illustrated in Figure 11.17. Since L covers J, each interval induced
by two consecutive items of L, including those induced by the invisible items,
contains at most three items of J; the same is true for K. If we know the ranks J/L,
K/L, L/J and L/K, it is easy to determine which items are in which interval.

J *p pp p p ppK p

L

K

Figure 11.17. Merging J and K with help from L.

The items from J that lie in the first interval induced by L can be merged with those
from K that also lie in the first interval in a time in 0 (1) because there are at most
six of them altogether. The same is true of the items from J and K that lie in the
second interval induced by L, and so on. If we have enough processors, all these
merges of at most six items can be performed in parallel, so they can all be finished
in a time in 0(1). To obtain J&K, all that remains is to concatenate the results of
merging the intervals separately. With enough processors, this too can be done in
constant time. Thus the whole merge can be completed in constant time.

We call this operation merging with help. In the example above, arrays J and K
are said to be merged with help from L.

404



Section 11.7 Parallel sorting

11.7.3 The algorithm

The n items to be sorted are placed initially at the leaves of a complete binary
tree. At a typical internal node v of this tree the task is to compute Lv, an array
containing all the items in the subtree rooted at v. At each stage in the computation
at node v an array Av contains a subset of the items in Lv; Av is recalculated at
each stage. More precisely, let A,(t) be the array at hand at the start of stage t,
t = 0,1,..., and let Av (t + 1) be the array created during the stage. In general
A,(t + 1) is twice the size of Av (t), until finally A,(It + 1) = Lv. A node v at which
A, (t) f L is said to be active, while a node at which Av (t) = Lv is called complete.
Arrays associated with node v's children are given the suffixes x and y: it does
not matter which suffix refers to which child. At each stage three other arrays are
involved: Bv (t) is an array transmitted up the tree to v's parent, and B, (t) and
By(t) are two arrays received from v's children.

As a first approximation, the computation performed during each stage at each
internal node v comprises the following three phases (see Figure 11.18):

1. Compute the array Bv(t) - r(Av(t)), and send it up the tree to v's parent.

2. Read the two arrays B, (t) and By (t) that v's children have just sent up the
tree.

3. Compute Av(t + 1)- B,(t)&By(t). This merge operation is performed in
constant time as outlined above with help from array A, (t), which, as we shall
see, covers both B,(t) and By(t).

There are differences in the three phases according to whether node v is active or
complete. However for our present purposes it is unnecessary to give the details;
it is sufficient to note that

c at stage 0 nodes at level 1 read the values sent by their children, which are
leaves, merge these two values, and become complete;

• three stages after a node becomes complete, its parent in turn becomes com-
plete.

Since there are lg n levels of internal nodes in the tree, we conclude that the
algorithm has 3 Ig n - 2 stages.

B, (t) computed in phase I

available A
initially

Bx(t) B,(t) read in phase 2

Figure 11.18. Stage t at node v

405



Parallel Algorithms Chapter 11

It remains to prove that the merges required by phase 3 of each stage can be
performed in a time in 0(1). Combined with the above result, this will show that
the complete algorithm runs in a time in 0 (log n).

11.7.4 A sketch of the details
To show that at any internal node v with children x and y, and at any stage t,
the arrays B, (t) and By (t) can be merged in a time in 0 (1) with help from A, (t),
two things have to be proved: first, that Av (t) covers both B, (t) and By (t); and
second, thattheranksAv(t)/Bx(tAv(t)lBy(t)Bx(t)lAv(t) and B,(t)/Av(t) are
known or can be obtained quickly.

It is fairly straightforward to prove the required covering property. A lengthy
but not difficult argument then shows that the required ranks can all be obtained
in a time in 0(1) provided we allocate a processor to each item in the array A (t)
at every active node, another to each item in the array B (t) at every active node,
and finally another to each item in the array A(t + 1) at every active node. All the
operations required by a single stage of the algorithm can therefore be carried out
in a time in 0 (1) provided there are enough processors available to allocate one to
each item in each of the arrays A(t), B(t) and A(t + 1) at each active node.

For a node v, the size of the array Av (t) at v is one-quarter the size of the arrays
A, (t) and Ay (t) at its children, provided the children are not yet complete. Hence
the total size of the arrays A(t) at v's level is one-eighth the size of the arrays A(t)
at its children's level, provided the children are not complete. (There are twice as
many children as parents.) Although we have not given the details, this is also true
at the stage when the children first become complete. At the second stage when the
children are complete, the size of Av (t) at v is one-half the size of A, (t) and Ay (t)
at its children, so the total size of these arrays at v's level is one-quarter the size
at the children's level; similarly, at the third stage when the children are complete,
the total size of the arrays A(t) at v's level is one-half the total size of these arrays
at the children's level.

Since there can never be more than n items in all the arrays A(t) at the
same level, the total number of items in all the arrays A(t) throughout the whole
tree cannot exceed the maximum of three values: n + n/8 + n/16 + * = 8n/7
when there are n items at the level whose nodes have just become complete,
n + n/4 + n/32 + -- =9n/7 one stage later, and n + n/2 + n/16 + .. = 1In/7
one stage later still. Hence the total size of all the arrays A(t) is bounded by 11n/7.
Similarly it can be shown that the total size of all the arrays B (t), and hence the
total size of all the arrays A(t + 1) at active nodes, is not greater than 8n/7. The
total number of items in all the arrays A (t), B (t) and A (t + 1) at every active node
is therefore not greater than 27n/7.

We conclude finally that the algorithm can be executed in a time in 0 (1) using
a number of processors in 0(n). The algorithm as described is without write
conflicts, although simultaneous reads may occur.

11.8 Some remarks on EREW and CRCW p-rams
Throughout this chapter we have assumed that our algorithms are to be executed on
a CREW p-ram, that is, on a machine that allows several processors to read the same

406



Section 11.8 Some remarks on EREW and CRCW p-rams

storage location simultaneously, but that does not permit simultaneous writing to
the same location. It seems intuitively likely that such a machine should be more
powerful than an EREW p-ram, and less powerful than a CRCW p-ram. We now give
two simple examples to confirm this intuition.

To show that a CREW p-ram can outperform an EREW p-ram, consider the fol-
lowing problem. A binary tree contains n nodes, each node i except the root being
linked to its parent by a pointer p[i]. At the root, the pointer p has the special
value nil. Each node i also has a second pointer r[i]. We want to set the value
of r at every node so that it points to the root of the tree. Consider the following
parallel algorithm for doing this.

procedure find-root (T)
{T is a binary tree with n nodes}
for every ordered pair (i, j) in parallel do

if p[j]= nil then r[i] - j

Here i and j range from 1 to n, so we need n2 processors to execute the if statement
in parallel for every pair of nodes. Assuming these are available, the statement can
be executed in parallel for every pair of nodes on a CREW p-ram. When evaluating
the condition, n processors read the value of p [j] for every j; however concurrent
reads are allowed, so this causes no problem. As for the assignment statement,
only one processor for each value of i finds that the condition comes out true, so
only one processor for each value of i assigns a value to r [ i]. There are therefore
no write conflicts. The operations involved are elementary, so the algorithm can
be executed in a time in 0 (1) using n2 CREW processors.

On the other hand, a simple argument shows that no algorithm for an EREW

processor can produce the required result in a time in 0 (1), no matter how many
processors are available. For at each step on such a machine, an item of information
stored in memory can be read, and therefore copied, by at most one processor.
Hence the number of storage locations that contain this item of information can at
most double at each step. In the problem above, the identity of the root is known
initially to at most one node. To copy this information and store it in all n nodes
therefore require at least I lg n] steps. Thus any algorithm for the problem using
EREW processors requires a time in Q(log n).

A second simple problem will serve to show that a CRCW machine can outper-
form a CREW machine. The problem is to find the maximum of n numbers stored
in an array AI[l . . n]. Consider the following algorithm.

functionfind-max(A[P . . n])
array M[L . . n] of Boolean
for 1 < i < n in parallel do M[i] i true
for all ordered pairs (i, j) in parallel do

if A[i]< A[j] then M[i] - false
for 1 < i < n in parallel do

if M[i] then max - A[i]
return max

407



Parallel Algorithms Chapter 11

As before i and j range from 1 to n, so we need n2 processors to execute the first
if statement in parallel for every pair of items in the array A. Assuming these are
available, the statement can be executed in a time in 0 (1). Here, however, as many
as n -1 processors may try to write to MUi] simultaneously. The machine must
therefore permit concurrent write operations. Note that if several processors are in-
volved, they all try to write the same value, namelyfalse. This additional constraint
is often imposed on the CRCW model. After execution of the first if statement, M[i]
is true if and only if A[iI is equal to the largest value in A. (There may be several
such items.) Finally the second if statement writes this maximum value to max.
Again, several processors may try to write to max simultaneously, but if they do,
then they all try to write the same value. This statement too can be executed in a
time in 0(1). Hence the whole algorithm can be executed in a time in 0(1) on a
CRCW p-ram using n2 processors.

Although the argument is not simple in this case, it can be proved that any
algorithm (such as the ones described earlier in the chapter) for finding the max-
imum of n elements using a CREW p-ram must take a time in Q (log n), no matter
how many processors are available. Hence a CRCW p-ram is more powerful than a
CREW p-ram.

11.9 Distributed computation
In Section 11.1 we defined a model of parallel computation, called the single-
instruction multiple-data-stream model, in which the processors are more or less
synchronized. Suppose we relax this restriction, and allow each processor to work
on its own data at its own speed using its own program. When it has something
interesting to report it sends a message to its colleagues, and sometimes it may
receive messages from them. This is the multiple-instruction multiple-data-stream
model. The two models are often called the SIMD and MIMD models, respectively.

With the SIMD model, although it is not a logical necessity, it is usually conve-
nient to keep the processors involved in the execution of a parallel algorithm close
together, perhaps even in the same physical piece of equipment. Otherwise the
overhead involved in keeping them synchronized may be prohibitive. Once the
restrictions are relaxed, however, there is no longer any reason why all the proces-
sors involved in the execution of a parallel algorithm should be at the same site.
If messages are exchanged relatively infrequently, the processors can be anywhere
in the world, and the messages can be sent by electronic mail. Executing a parallel
algorithm in this way is an example of distributed computing. Two striking examples
of this technique involve respectively factorizing large integers, and the travelling
salesperson problem.

For the first example, consider the Las Vegas algorithm for factorizing large
integers described in Section 10.7.4. This depends essentially on finding a suffi-
cient number of integers with a special property (their squares module n must be
k-smooth-see the description of the algorithm in Section 10.7.4), where the can-
didates are chosen randomly. If several processors are available, it is obviously
possible to have one of them collect the necessary integers, while the others sift
possible candidates. Each processor can work independently of the others, except
perhaps for some arrangement to avoid unnecessary duplication of effort. When a

408



Section 11.10 Problems

suitable integer is found, the processor concerned can send a message to the keeper
of the collection with the new information, until eventually enough suitable inte-
gers are found. If finding a suitable integer is a relatively rare event, electronic mail
is quite fast enough to provide the message path.

Using this kind of technique, Lenstra and Manasse designed an experiment that
involved recruiting volunteers with access to the Internet, supplying them with the
necessary programs, and collecting results as they were acquired. The experiment
began in the summer of 1987 using the elliptic curve method of factorization, not
described in this book. In 1988 they changed to a variant of the quadratic sieve
algorithm outlined in Section 10.7.4. Their programs were designed to run on a
workstation during periods when it would otherwise have been idle-overnight or
at weekends, for example-so the computing power used was essentially free. They
estimate that they had access to the equivalent of some 1000 million instructions
per second of sustained computing power, allowing them to factorize 100-digit
integers in about a week. They expected the required computing time to roughly
double for each extra three digits added to the size of the number to be factorized.
See Section 10.7.4 for a recent example of an even more impressive success on a
number with 129 digits.

In the case of the travelling salesperson problem, all the existing efficient com-
puter programs are based on a scheme that involves finding suitable cutting planes.
(It does not matter if you don't know what these are.) Again, several processors can
be used to search for cutting planes independently. In 1993 a team of four people
solved a 4461-city problem after computing for 28 nights in parallel on a network
of 75 machines. They estimated that the computation involved would have taken
nearly two years had it been executed on a single workstation.

11.10 Problems

Problem 11.1. Prove that algorithmflatten is correct.

Problem 11.2. Show that the minimum of n elements stored in an array can be
found in a time in O(logn) using G (n/ logn) processors.

Problem 11.3. With the definitions of Section 11.2.2, prove that when algorithm
paroper terminates, the value of d for the first element of L is Xin, the value of d
for the second element of L is X2 ,", and so on, the value of d for the last element
being Xnsw.

Problem 11.4. Write an algorithm similar to paroper of Section 11.2.2 except that
when it terminates the value of d for the first element of L is X1 ,1, the value of d
for the second element of L is X1,2, and so on, the value of d for the last element
being Xin.

Problem 11.5. Write an algorithm similar to paroper of Section 11.2.2 except that
it takes two parameters: a list and a value. Assume that the operator a takes three
parameters, not two. Two of these are pointers to list items and the third is a value k.
When both list items have values less than or equal to k, o returns a pointer to the
item with the larger value; when only one item has a value less than or equal to k,

409



Parallel Algorithms Chapter 11

o returns a pointer to this item; when neither item has a value less than or equal
to k, o returns nil. Your algorithm should return a pointer to an item in the list
whose value is k if there is one; otherwise it should return a pointer to the item
with the largest value not exceeding k. This is a kind of "binary search" on a linked
list, which cannot be done sequentially.

Problem 11.6. Show that if we have an efficient parallel algorithm (using a poly-
nomial number of processors and taking polylogarithmic time) for some problem,
then we can find an efficient sequential algorithm (taking polynomial time) for the
same problem.

Problem 11.7. Show that if p > q then p/q < p/ql < 2p/q.

Problem 11.8. Show that algorithm parpaths can be executed using 0 (n3 / log n)
processors taking a time in 0 (log 2 n).

Problem 11.9. Draw figures to illustrate the progress of algorithm concomps on
the graph of Figure 11.19.

Figure 11.19. A graph

Problem 11.10. Give an example of an expression with five operands that requires
four iterations of the naive algorithm of Section 11.5 to evaluate.

Problem 11.11. If f(x)= (alx + bl)/(c1 + d1 ), g(x)- (a2 x + b 2 )/(c2 + d2) and

g(f (x)) = (a3x + b3) / (C3 + d3 ), find expressions for a3, b3 , C3 and d3 in terms of
a,, a2, b1 , b2 , etc.

Problem 11.12. Show that two cut operations (see Section 11.5) involving leaves
C and C' do not interfere with one another if C and C' are nonconsecutive leaves of
the expression tree, and either they are both left children or both right children.

Problem 11.13. Draw the expression

7 x (4 + (64/(10 (3 x (13 - (6 + 5))))))

as an expression tree with the leaves numbered from left to right, and illustrate the
operation of the parallel evaluation algorithm of Section 11.5 on this tree.

410



Section 11.10 Problems 411

Problem 11.14. State and prove a zero-one principle for merging networks.

Problem 11.15. Show that the size and depth of the merging networks F, de-
scribed in Section 11.6.2 are 1 + n Ig n and 1 + Ig n respectively.

Problem 11.16. In Section 11.6.2 we showed how to build merging networks F,
when n is a power of 2. Extend this by showing how to build a merging network
Fn for any n > 0. In terms of n, what are the size and the depth of the resulting
networks?

Problem 11.17. Show that the size and depth of the sorting networks Sn described
in Section 11.6.3 are n - 1 + n(lg2 n - lg n) /4 and (lg2n + lg n) /2 respectively.

Problem 11.18. Consider the networks defined as follows for n > 2. The network
contains n(n -1) /2 comparators arranged like bricks in a wall as illustrated in Fig-
ure 11.20: there are [n/21 comparators between inputs 1 and 2, Ln/2j comparators
between or behind these between inputs 2 and 3, fn/2] more directly under the
first group between inputs 3 and 4, and so on. Prove that these networks are valid
sorting networks. In terms of n, what is their depth?

n=5 n-6

Figure 11.20. Two networks

Problem 11.19. Let J, K, L and M be four sorted arrays such that L covers J and
M covers K, where covering is defined in Section 11.7.1. Give an example showing
that L&M does not necessarily cover J&K.

Problem 11.20. Point out where simultaneous read operations may occur in Cole's
parallel merge sort.

Problem 11.21. Suppose we want to write an algorithm like pardist of Section 11.2.2,
using pointer doubling, but on a list of unknown length. Instead of repeating the
doubling step log n times, we might try to use some construct such as the following.

repeat
the doubling step

until s[i]= s[s L i]] for every i in L



Parallel Algorithms Chapter 11

This poses a problem for the overall control of our parallel machine: how can every
processor be made aware that the loop has ended? Show how this can be done for
(a) an EREW p-ram, (b) a CREW p-ram, and (c) a CRCW p- ram. How much time is
required to test loop termination in each case?

11.11 References and further reading
Introductory books on parallel algorithms include Gibbons and Rytter (1988) and
Akl (1989). Lakshmivarahan and Dhall (1990) have a useful chapter on multi-
processors and multicomputers. Leighton (1992) is concerned about relationships
between the architecture of commercially available machines and efficient parallel
algorithms for a wide variety of problems. Reif (1993) is more advanced.

Brent's theorem is from Brent (1974). The parallel algorithm for finding short-
est paths described in Section 11.4.1 essentially follows Kucera (1982). The parallel
algorithm for finding connected components of a graph described in Section 11.4.2
is from Hirschberg, Chandra and Sarwate (1979). The optimal algorithm men-
tioned but not described at the end of this section can be found in Chin, Lam and
Chen (1982). More parallel algorithms for graph problems are presented in Quinn
and Deo (1984).

The example of parallel evaluation of simple arithmetic expressions given in
Section 11.5 follows Gibbons and Rytter (1988). There is more on this subject in
Brent (1974).

Several kinds of sorting networks are described in Batcher (1968), and
Knuth (1973) has a section on this topic, including a solution to Problem 11.18.
The parallel sorting algorithm sketched in Section 11.7 is from Cole (1988). More
on parallel sorting can be found in Bitton, DeWitt, Hsiao and Menon (1984), while
Akl (1985) gives twenty different algorithms for particular parallel machine archi-
tectures.

The example of factorizing large integers using electronic mail presented in
Section 11.9 is from Lenstra and Manasse (1990). Solving the travelling salesperson
problem for a network of 4461 cities was described by Vasek ChvAtal in a talk
in October 1993. To gain a better appreciation of the kinds of parallel machine
architectures currently in use, see Duncan (1990), a tutorial that reviews alternative
approaches to parallel processing. One particular successful design is described in
Tucker and Robertson (1988).

412



Chapter 12

Computational Complexity

Up to now we have been interested in algorithmics, which is concerned with the
systematic design and analysis of specific algorithms, each more efficient than its
predecessors, to solve some given problem. However, a book on algorithmics
is incomplete without an introduction to its sister craft: computational complexity.
This field, which runs in parallel with algorithmics, considers globally all possible
algorithms able to solve a given problem. This includes algorithms that have never
even been thought of.

Using algorithmics, we can prove by giving and analysing an explicit algo-
rithm that the problem under study can be solved in a time in O (f (n)) for some
function f (n) that we aim to reduce as much as possible. Using complexity, on
the other hand, we try to find a function g(n) as large as possible for which we
can prove that any algorithm capable of solving our problem correctly on all of its
instances must necessarily take a time in Q (g(n)). We call such a function g(n) a
lower bound on the complexity of the problem. Our satisfaction is complete when
f (n)e (g (n)) since then we know we have found the most efficient algorithm
possible, except perhaps for changes in the hidden multiplicative constant. Unfor-
tunately, such happiness does not come often in the current state of our ignorance.
Nevertheless, we can now and then find even the exact number of times that a
given operation-such as a comparison-is required to solve the problem. In this
chapter we introduce just a few of the principal techniques and concepts used in the
study of computational complexity: information-theoretic arguments, adversary
arguments, reduction and NP- completeness. We shall also see that complexity
techniques can be useful for the design of algorithms.

413



Computational Complexity

12.1 Introduction: A simple example

Consider the game of twenty questions as an introductory example. Your friend
chooses a positive integer no larger than one million, which you are to guess.
You are allowed a maximum of 20 yes/no questions. Your friend must be able to
decide unambiguously whether to answer "yes" or "no" to each of your questions.
For instance you may ask "Is your number a prime?" If you are familiar with this
game, you will use a divide-and-conquer approach to solve this riddle, halving
with each question the number of candidates for the mystery number. Thus your
first question will be "Is your number between 1 and 500000?" It is elementary
to show that you always find the answer within your allowed 20 questions in this
way because one million is less than 220.

Finding this algorithm, which shows that 20 questions are sufficient to solve the
problem, was a matter for algorithmics. Whether or not 20 questions are necessary,
on the other hand, is the concern of complexity. It is easy to show that our algorithm
will use all its 20 questions on most mystery numbers. Nevertheless, we cannot
conclude from the failure of this specific algorithm consistently to solve the riddle
with less than 20 questions that this cannot be done with a cleverer algorithm.
The techniques we are about to study, particularly information-theoretic arguments
and adversary arguments, allow us to prove in a snap that 20 questions are in fact
necessary. However, this problem is sufficiently simple that we can solve it with
an elementary approach.

Let Si be the set of candidates for the mystery number after the i-th question
has been asked, and let ki = I Si I be the number of remaining candidates. Initially,
So contains all the positive integers up to one million, and therefore ko = 106. Let Qi
be the i-th question, which may depend on the answers to previous questions, and
let Qi (n) denote the answer to that question if the mystery number is n. Let Yi
be tn E Si, l Qi(n)= "yes"} and let Ni be In e Si-1 I Qi(n)= "no"}. It is clear
that Y, n Ni = 0 and Y, u Ni = Si- . Therefore, ISi I = I Y, I + IN, 1, which implies
that at least one of Yi or Ni contains I ki-I /21 numbers or more. Since the mystery
number can be any of the candidates, we cannot rule out the possibility that your
friend's answer to Qi will result in your keeping the larger of Y1 or N, as the set of
remaining candidates Si. This is true regardless of how clever you are in your choice
of questions. Hence, it is possible that ki > FkI l/21 for each i. Since ko = 106, it
may be that k, > 500 000, hence it may be that k2 > 250 000, and so on. Continuing
in this way, we find that k19 2 2 is possible. We conclude that at least two candidates
may remain for the mystery number after 19 questions, and thus 20 questions are
necessary to solve the riddle in the worst case.

12.2 Information-theoretic arguments

This technique applies to a variety of problems, particularly those involving com-
parisons between items. A decision tree is a way to represent the working of an
algorithm on all possible data of a given size. Formally, it is a rooted binary tree.
Each internal node of the tree contains a test of some sort on the data. Each leaf

414 Chapter 12



Section 12.2 Information-theoretic arguments

contains an output, which we call the verdict. A trip through the tree consists of
starting from the root and asking the question that is found there. If the answer
is "yes", the trip continues recursively in the left subtree; otherwise it continues
recursively in the right subtree. The trip ends when it reaches a leaf; the verdict
found there is the outcome of the trip.

Consider again the game of 20 questions, but assume for simplicity that the
mystery number is known to be between 1 and 6. You will obviously not need
all 20 questions. How many do you really need? Figure 12.1 gives a decision tree
for this game. If the mystery number is n = 5, for example, your first question is
"Is n < 3?" and you continue in the right subtree because the answer is "no" (thus
you know that n E {4,5,6}). There, you find the question "Is n < 5?" and you
continue to the left since the answer is "yes" (so you know that n e {4, 5 }). Finally,
you ask the question "Is n • 4?" and reach the correct right-hand verdict "n = 5"
from the answer "no".

Figure 12.1. A decision tree for the game of three questions

This is relevant because to any deterministic algorithm to play the game there
corresponds a decision tree, provided there is a limit to the number of questions
the algorithm may ask. Conversely, any such decision tree can be thought of as
an algorithm. Assume for simplicity that decision trees are pruned in the sense
that all the leaves are accessible from the root by making some consistent sequence
of decisions. Though wasteful, it is allowable to ask a question whose answer is
determined by the sequence of questions and answers leading to that question.
For example, one may ask whether A < C in a node reached after learning that
A < B andB < C: weshallseeinFigurel2.5thatthisbehaviourmayoccurinnatural
algorithms. Recall that the height of the tree is the distance from the root to the most
distant leaf. Since one question is asked for each internal node on that path, and
since this leaf can be reached when processing at least one input, the height of the
tree corresponds to the number of questions asked in the worst case. Moreover, the
tree must have at least one leaf for each possible verdict. (Problem 12.5 illustrates
the fact that there may be more leaves than distinct verdicts in general.)

Come back now to the question of playing the original game of twenty ques-
tions, but with only 19 questions. Any solution would give rise to a decision tree
of height at most 19 that must have at least one million leaves. This is impossible

415



Computational Complexity

because the decision tree is binary, any binary tree of height k has at most 2 k leaves
(see Problem 12.1), and 219 is less than one million. We conclude immediately that
the game of twenty questions cannot be solved with 19 questions in the worst case.

Decision trees can also be used to analyse the complexity of a problem on
the average rather than in the worst case. Let T be a binary tree. Define the
average height of T as the sum of the depths of all the leaves divided by the num-
ber of leaves. For example, the decision tree of Figure 12.1 has average height
(3 + 3 + 2 + 3 + 3 + 2)/6 = 8/3. Just as the height of a pruned decision tree gives
the worst-case performance of the corresponding algorithm, its average height
gives the average-case performance, provided each verdict is equally likely and
each possible verdict appears exactly once as a leaf of the tree. Continuing our
simplified example, if each integer between 1 and 6 is equally likely to be the mys-
tery number, the algorithm corresponding to Figure 12.1 asks 8/3 questions on
the average. Can one do better? Can the average-case performance be improved,
perhaps if one is willing to ask more questions than required on a few instances?

The following theorem tells us that if the mystery number is randomly chosen
between 1 and 6 according to the uniform distribution, any algorithm to play the
game must ask at least lg 6 2.585 questions on the average, no matter how many
questions it may ask in some cases. But clearly the average number of questions
asked by any deterministic algorithm must be an integer divided by 6 since the
number of questions is an integer for each of the 6 equiprobable verdicts. The so-
lution given in Figure 12.1 asks 16/6 questions on the average. Any improvement
would ask no more than 15/6 = 2.5 questions. This is ruled out since Ig 6 > 15/6.
We conclude that our decision tree provides an optimal algorithm when the mys-
tery number is between 1 and 6, both in the worst case and on the average. Similarly,
20 questions are necessary in the worst case for the original game with one million
verdicts, and no algorithm can ask less than lg 106 19.93 questions on the average
if all verdicts are equally likely.

Theorem 12.2.1 Any binary tree with k leaves has an average height ofat least lg k.

Proof Let T be a binary tree with k leaves. Define H(T) as the sum of the depths of the
leaves. For example, H(T) = 16 for the tree in Figure 12.1. By definition, the average
height of T is H(T)/ k, and thus our goal is to prove that H( T) k lg k. The root of
T can have 0, 1 or 2 children; see Figure 12.2. In the first case, the root is the only
leaf in the tree: k = 1 and H(T) = 0. In the second case, the single child is the root of
a subtree A, which also has k leaves. The distance from any leaf to the root of T is
one more than the distance from the same leaf to the root of A, so H(T) = H(A) +k.
In the third case, T is composed of a root and of two subtrees A and B with i and
k - i leaves, respectively, for some 1 < i < k. By a similar argument we obtain this
time H(T)= H(A)+H(B) +k.

416 Chapter 12



Section 12.2 Information-theoretic arguments

0

I leaf

k leaves

root has 0 1 2 children

Figure 12.2. Minimizing the average height of a binary tree with k leaves

For k 2 1, define h(k) as the smallest value possible for H(X) when X is a binary
tree with k leaves. In particular, H(T)> h(k). Clearly, h(1)= 0. If we define
h (0) = 0, the preceding discussion and the principle of optimality used in dynamic
programming lead to

h(k)= min (h(i)+h(k -- i)+k)
Osisk

for every k > 1. At first sight this recurrence is not well founded since it defines
h(k) in terms of itself when we take i = 0 or i = k in the minimum. However it is
impossible that h(k)= h(k)+k, so those terms cannot yield the minimum. We can
thus reformulate the recurrence that defines h(k).

C0 if k <1
h(k)= k+ min (h(i)+h(k- i)) otherwise

1 <i<k-1

We now prove by mathematical induction that h(k)> klg k for all k > 1.
The base k = 1 is immediate. Let k > 1. Assume the induction hypothesis that
h (j) > j Ig j for every positive integer j smaller than k. By definition,

h(k) k+ min (h(i)+h(k i)).

By the induction hypothesis,

h(k)> k + min (ilgi + (k -i)lg(k -i)).

To have available the tools of real analysis for function minimization, let
9 [1,k 1]- -R be defined as g(x)= xlgx + (k - x)lg(k - x). Calculating
the derivative gives g'(x)= lgx - lg(k - x), which is zero if and only if x
k - x. Since the second derivative is positive, g (x) attains its minimum at x
k/2. This minimum is g(k/2)= klgk - k. But the minimum value attained by

417

k - i leaves



Computational Complexity

g (i) when i is an integer between 1 and k - 1 cannot be less than the minimum
value of g(x) when x is allowed to be a real number in the same range. There-
fore,

min g(i)> min g(x)> klgk - k.
iE[1..k 1] xe[lk-l]

Putting it all together we reach the desired conclusion:

H(T)>h(k)>k+ min g(i)>klgk,
ie[L..k-1]

and thus the average height of T, which is H( T) / k, is at least lg k. A

12.2.1 The complexity of sorting

What is the minimum number of comparisons needed to sort n items? For sim-
plicity we count only comparisons between the items to be sorted, ignoring those
that may be made to control the loops in our program. We saw in Section 2.7.2
that the answer is "none"! Indeed, pigeonhole sorting does not need any compar-
isons provided enough storage space is available. However, it is useful only in
special circumstances. To make the question interesting, we restrict our attention
to comparison-based sorting algorithms: the only operation allowed on the items
to be sorted consists of comparing them pairwise to determine whether they are
equal and, if not, which is the greater. In particular, arithmetic is disallowed on
the items to be sorted. Note that pigeonhole sorting performs implicit arithmetic
because indexing in an array involves adding the index to the array's base ad-
dress. The difference between allowing arithmetic on the items and restricting the
algorithm to comparing them is similar to the difference between hash coding and
binary search.

Our question is thus: what is the minimum number of comparisons needed
in any algorithm for sorting n items by comparison? Although the theorems in
this section hold even if we consider probabilistic sorting algorithms, we shall for
simplicity confine our discussion to deterministic algorithms. We resort once again
to decision trees. A decision tree for sorting n items is valid if to each possible order
relation between the items to be sorted it associates a verdict compatible with this
relation. For example, Figure 12.3 is a valid decision tree for sorting A, B and C.

Figure 12.3. A valid decision tree for sorting three items

418 Chapter 12



Section 12.2 Information-theoretic arguments

Every valid decision tree for sorting n items gives rise to an ad hoc sorting
algorithm for the same number of items. For example, to the decision tree of
Figure 12.3 there corresponds the following algorithm.

procedure adhocsort3(T[1 . .3] )
A - T[1]; B - T[2]; C - T[3]
if A < B then if B < C then {already sorted}

else if A < C then T - A, C, B
else T - C,A,B

elseifB<C thenifA<CthenT-B,A,C
else T - B, C, A

else T - C,BA

Similarly, to every deterministic algorithm for sorting by comparison there
corresponds, for each value of n, a decision tree that is valid for sorting n items.
Figures 12.4 and 12.5 give the trees corresponding to the insertion sorting algorithm
(Section 2.4) and to heapsort (Section 5.7) when three items are to be sorted. The an-
notations on the trees are intended to help follow the progress of the correspond-
ing algorithms. Notice that heapsort sometimes makes unnecessary comparisons.
For instance, if B < A < C, the decision tree of Figure 12.5 first tests whether B > A
(answer: no), and then whether C > A (answer: yes). It would now be possible
to establish the correct verdict. Nevertheless, heapsort asks again whether B > A
before reaching its conclusion. To avoid unreachable nodes in the decision tree, we
did not include the leaf that would correspond to the contradictory answer "yes"
to this useless question; the tree is therefore pruned. Thus heapsort is not optimal
insofar as the number of comparisons is concerned. This situation does not occur
with the decision tree of Figure 12.4, but beware of appearances: it occurs much
more frequently with the insertion sorting algorithm than with heapsort when the
number of items to be sorted increases.

As with the game of twenty questions, the height of the decision tree corre-
sponding to any algorithm for sorting n items by comparison gives the number
of comparisons carried out by this algorithm in the worst case. For example, a
possible worst case for sorting three items by insertion is encountered if the ar-
ray is already in descending order C < B < A; in this case the three comparisons
"B < A?", "C < A?" and "C < B?" on the path from the root to the appropriate
verdict in the decision tree all have to be made.

The decision trees we have seen for sorting three items are all of height 3.
Can we find a valid decision tree for sorting three items whose height is less? If so,
we shall have an ad hoc algorithm for sorting three items that is more efficient in
the worst case. Try it: you will soon see that it cannot be done. The reason is that
any correct sorting algorithm must be able to produce at least six different verdicts
when n = 3 since this is the number of permutations of three items. In the worst
case, solving the three-item sorting problem in less than three comparisons is just
as impossible-and for the same reason-as guessing an integer between 1 and 6
with less than three questions.

More generally, any valid decision tree for sorting n items must contain at
least n! leaves, and thus it must have height at least [Ilg n! I and average height

419



Computational Complexity

Figure 12.4. The three-item insertion sort decision tree

at least lg n! by Problem 12.1 and Theorem 12.2.1. This translates directly into the
complexity of sorting: any algorithm that sorts n items by comparisons must make
at least [ lg n! 1 comparisons in the worst case and ig n! on the average, provided
all verdicts are equally likely. Since each comparison must take at least some
constant amount of time and since lg n! E 0 (n log n) by Problem 3.24, it follows
that it takes a time in Qi(n log n) to sort n items both in the worst case and on the
average, no matter which comparison-based sorting algorithm is used. Thus we
see that quicksort is optimal on the average, even though its worst-case performance
is pitiful; see Section 7.4.2.

We have proved that any deterministic algorithm for sorting by comparison
must make at least f lg n! I comparisons in the worst case when sorting n items.
Beware of making complexity arguments such as these say things they do not say.
In particular, the decision tree argument does not imply that it is always possible
to sort n items with as few as F lg n! I comparisons in the worst case. In fact, it has
been proved that 30 comparisons are necessary and sufficient in the worst case for
sorting 12 items, yet [ lg 12! ] = 29.

In the worst case, the insertion sorting algorithm makes 66 comparisons when
sorting 12 items, whereas heapsort makes 59, of which the first 18 are made during
construction of the heap. Hence they are both far from optimal. However, it can
be shown that heapsort never makes much more than twice the optimal number of
comparisons, whereas insertion sorting becomes arbitrarily bad when the number
of items to be sorted becomes large. Even better than heapsort from this standpoint
is mergesort, which makes a number of comparisons that is essentially optimal;
see Problem 12.7. Do not believe that optimizing the number of comparisons is

420 Chapter 12



Section 12.2 Information-theoretic arguments

Figure 12.5. The three-item heapsort decision tree

a goal in itself, however: sorting by binary insertion makes as few comparisons
as mergesort, yet this requires a quadratic amount of data movement-and hence
time-in the worst case. (This is like insertion sorting except that the point at which
each successive item is to be inserted is determined by binary rather than sequential
search.)

12.2.2 Complexity to the rescue of algorithmics
Sometimes, techniques developed for computational complexity are useful for the
design of efficient algorithms. We illustrate this with a classic mindtwister. We are
given 12 coins and told that either they are all identical in weight or else 11 of them
are identical and one is different. Our task is to decide whether all the coins are the
same, and if not to find the odd coin and say whether it is lighter or heavier than the
others. To this end, we are given a balance scale. The only operation allowed is to
put some coins on the left-hand pan, some others on the right-hand pan, and to see
whether the weights are the same or whether the scale tilts one way or the other.
Figure 12.6 illustrates weighing two sets of four coins and finding that the left-hand
side is heavier than the right-hand side. To make the problem challenging, we are
restricted to using the scale only three times. We recommend putting down the
book and trying to find a solution on your own. Even if you succeed, you may find
the discussion below interesting.

Any algorithm to solve this problem can be represented by a decision tree. Each
internal node specifies which coins are in each pan of the scale and each leaf gives
a verdict such as "coin D is heavier". The tree must be of height at most 3 since
we are not allowed to make more than three measurements. How many verdicts
must we accommodate? One possible verdict is that all the coins are identical; for

421



Computational Complexity

EFGH

ABCD

IJKL

Figure 12.6. Weighing ABCD against EFGH

each of the 12 coins, there are also two possible verdicts corresponding to that coin
being either lighter or heavier than the others. The total number of verdicts is thus
1 + 12 x 2 = 25. This is disquieting at first since we have seen that a decision tree of
height 3 cannot accommodate more than 23 = 8 verdicts. Fortunately, our decision
tree is ternary rather than binary for this problem because each measurement has
three possible outcomes: the scale may tilt to the left, it may stay balanced, or it may
tilt to the right. Just as binary trees of height k have at most 2 k leaves, ternary trees
of height k have at most 3 k leaves. All is well since a ternary decision tree of height
3 can accommodate up to 33 = 27 verdicts and we need only 25. Nevertheless,
this does not prove that the problem has a solution: recall that 30 comparisons
are required in the worst case to sort 12 items even though [ lg 12! 29. See also
Problem 12.12.

Decision trees are useful for finding the solution because they help us avoid
false starts. The key insight is that there must remain at most 32 = 9 possible verdicts
for each of the three potential outcomes of the first measurement. Otherwise, there
would be no hope of solving the problem in the worst case with only two additional
measurements. Note also that it is pointless to use the scale with a different number
of coins on each pan: no useful information can be extracted if the pan tilts to the
side containing more coins. Therefore, we first use the scale to compare two sets of
k coins, for some 1 < k < 6. If the scale stays balanced, the odd coin can be any of
the 12 - 2k remaining coins, which leaves 25 - 4k possible verdicts, counting the
possibility that all the coins are the same. If the scale tilts to one side, on the other
hand, it could be because one of the coins on that side is heavier or because one
of the coins on the other side is lighter, leaving 2k possible verdicts. As we have
seen, there is no hope of solving the problem if there remain more than 9 possible
verdicts after the first measurement. Thus, we need simultaneously 25 - 4k < 9
and 2k < 9. The only integer solution to these equations is k = 4. This reasoning
still does not prove that a solution can be found if we start by comparing two sets
of four coins, but it does tell us that there is no point trying anything else.

There are two cases to consider after the first measurement: either one set
weighs more than the other or the two sets weigh the same. In either case, the
second measurement must be such that at most three verdicts remain possible
after its outcome becomes known. This is because the final measurement cannot
distinguish between more than three possibilities. If one set is found heavier than
the other in the first measurement, reasoning similar to the above shows that the
second measurement must involve either 5 or 6 of the 8 coins used in the first
measurement. Knowing this, it is easy to fill in the details and work out exactly
the last two measurements.

Chapter 12422



Section 12.3 Adversary arguments

The situation is more interesting if both sets weigh the same in the first mea-
surement: we are left with what looks like the original problem, except that we
have four coins rather than twelve and we are allowed only two measurements
rather than three. Using information-theoretic arguments yet again, it does not
take long to realize that this scaled-down version of the problem has no solution
(Problem 12.13), and it seems at first that this nails the coffin on the original prob-
lem as well. What saves us is that we are allowed to use some of the eight coins
that participated in the first measurement even though we know the coin we are
looking for is not among them. Since information-theoretic arguments tell us we
cannot succeed if we don't use at least one of those initial coins, we know we have
to try this if we are to succeed at all. At this point, not much challenge is left and
we invite you to work Problem 12.11 for the details.

12.3 Adversary arguments
Given a problem, we wish to prove a lower bound on the time required in the worst
case by any algorithm that solves it correctly on all instances. Throughout this sec-
tion, we shall assume for simplicity that the algorithms are deterministic, although
probabilistic algorithms can be taken into account with more careful arguments.
The idea behind adversary arguments is to start the algorithm on an input that is
initially unspecified, except for its size. Whenever the algorithm probes the input,
a malevolent daemon, known as the adversary, answers in a way that will force
the algorithm to work hard. The daemon must be consistent in the sense that there
must always exist at least one input that would cause the algorithm to see exactly
the daemon's answers on each of its probes. The daemon's goal is to keep the al-
gorithm uncertain of the correct answer for as long as possible. If the algorithm
claims to know the answer before it has probed the input a sufficient number of
times, the daemon must be able to exhibit a possible input that is consistent with all
its answers to the algorithm's probes, yet whose correct solution is different from
the output of the algorithm. Since this could have been the actual input for the
algorithm, the latter can be mistaken unless it probes the input sufficiently in the
worst case.

Consider again the game of twenty questions introduced in Section 12.1. The
honest way for your friend to play the game is for her to choose a number between
1 and one million even before you ask your first question. If she is sneaky, however,
she may delay her choice for as long as possible, making it depend on your actual
questions. Her goal is to answer each question in a way that is consistent with
previous answers, but also in a way that forces you to ask as many questions as
possible. When you ask question Qj, she forms the sets N1 and Y1 described in
Section 12.1, and answers "yes" if and only if Y1 contains more elements than Ni.
She is forced to decide on her mystery number only when there remains a unique
candidate. In this way, no matter which strategy you use, your friend makes sure
that you never do better than halve the number of candidates with each question.
Should you claim to know the answer after fewer than 20 questions, more than one
candidate remains, so at least one number different from your output is consistent
with all the information you have. Your friend could then "prove" you wrong by
pretending she had chosen her number from the beginning to be one of those.

423



Computational Complexity

Once information-theoretic arguments are well understood, they are easier
to use than adversary arguments to prove that 20 questions are required in the
worst case to play this game. However, there are problems for which information-
theoretic arguments are powerless, whereas adversary arguments can be used.
We now give three such examples. The first two are elementary, whereas the third
is more involved.

12.3.1 Finding the maximum of an array

Consider an array T[l. . n] of integers. We assume n > 0. Our task is to find
the index of a maximum value attained by the array. For example, if n = 7 and
T = [2,7,1,8,2,8, 1], both 4 and 6 are correct answers since T[4]= T[6]= 8 is the
largest value in the array. As with comparison-based sorting (Section 12.2.1), the
only operation allowed on the items is to compare them pairwise. The obvious
algorithm performs exactly n -1 comparisons.

function maxindex (T[I . .n])
m -T[1; k - 1
for i - 2 to n do

if T[i]> m then m - T[i]
k- i

return k

Is it possible to do better?
If we try to use an information-theoretic argument, we find that any decision

tree for this problem must accommodate n possible verdicts. Since the tree is binary,
it must have height at least [ lg n]. Therefore, any comparison-based algorithm to
find the maximum must perform at least FIg ni comparisons in the worst case. This
is a far cry from n - 1, the best we know how to achieve. Can adversary arguments
provide a tighter lower bound?

Consider an arbitrary comparison-based algorithm for this problem. Let it
run on an array T[1. . n], as yet unspecified. The daemon answers any question
concerning a comparisonbetween items as if T[i] were equal to i for all i. Each time
the algorithm asks "Is T[i] < T[j] ?" for i z j, we say that the smaller of i and j has
"lost a comparison". Assume the algorithm performs less than n - 1 comparisons
before it outputs the answer k. Let j be an integer different from k, 1 < j < n, that
has not lost any comparisons. Such a j exists since by assumption at most n - 2
comparisons have been performed and each comparison makes at most one new
loser. At this point, the daemon can claim that the algorithm is wrong. For this, it
pretends that T[i]= i for each i 7 j but that T[j]= n + 1. Indeed, T[k]= k is not
maximum in this array, yet the answers obtained by the algorithm are consistent
with it. This completes the proof that n - 1 comparisons are necessary to solve the
maximum problem with any comparison-based algorithm.

This result does not hold if arithmetic is allowed on the items in addition
to comparisons. To do better, compute a = iTr] and b = ,. pnT[ ],where

Chapter 12424



Section 12.3 Adversary arguments

?e = In/21. If there is anitem x in T[L. .P?] that is larger thananyitemin T[f + 1.. ,
then a > b because

e n

EnT[i] >x > I T[i]

Similarly, a < b if the maximum of T is in the second half. If the maximum appears
in both halves, any relation between a and b is possible. Thus, a single comparison
between a and b suffices to determine whether the maximum is in the first or the
second half of T. Proceeding as with binary search allows us to find the answer
after at most [ Ig nl comparisons. Of course, it would be silly to use this approach
in practice since it trades inexpensive comparisons for a larger number of time-
consuming arithmetic operations.

12.3.2 Testing graph connectivity

Consider an algorithm that tests whether or not an undirected graph with n ver-
tices, n > 2, is connected. The only questions allowed are of the form "Is there
an edge between vertices i and j?" We know from Section 9.3 that this problem
can be solved by depth-first search, which takes a time in 0 (n2 ) in the worst case.
Can it be solved faster by a more sophisticated algorithm? Information-theoretic
arguments are useless with this problem because there are only two possible ver-
dicts: either the graph is connected or it is not. Thus the decision tree has height
at least 1, which says that the algorithm must ask at least one question. Big deal!

To devise an adversary argument, the daemon splits the vertex set into two
subsets V and W of sizes In/21 and [n/21, respectively. Whenever the algorithm
asks whether or not there is an edge between vertices i and j, the dxmon says
"yes" if and only if both vertices belong to the same subset. If the algorithm claims
to know the answer before inquiring about the presence of each potential edge
whose endpoints are in not in the same subset, the dxmon can prove it wrong
as follows. If the algorithm claims the graph is connected, the daemon shows the
disconnected graph that has an edge between vertices i and j if and only if these
vertices are in the same subset. This graph is disconnected because there are no
paths between vertices in V and vertices in W. On the other hand, if the algorithm
claims the graph is disconnected, the daemon shows the connected graph obtained
in the same way, but throwing in one additional edge between V and W that
has not been queried by the algorithm. Such an edge exists by the assumption
that the algorithm did not query all the potential edges of this type. Clearly, the
daemon produces a graph consistent with the algorithm's queries that is connected
if and only if the algorithm said it was not. This proves that any algorithm that
does not ask at least Ln/21 x I n/21 E Q(n2 ) que4ions in the worst case cannot be
correct. Therefore, depth-first search is optimal in the worst case up to the hidden
multiplicative constant.

Do not conclude that it is enough to ask [n/2j x [n/21 questions to solve the
problem in general. One difficulty is that the algorithm does not know which
strategy the daemon will use, and even if it did, it would not know how the vertex

425



Computational Complexity

set was split between V and W. In fact, it can be shown by a more sophisticated
adversary argument that in the worst case each of the n(n -1)/2 potential edges
must be queried by any correct algorithm; see Problem 12.16.

12.3.3 The median revisited

We saw in Section 7.5 that a number of comparisons in 0 (n) is sufficient to find the
median of an array T[l . .n] of integers. Clearly a time in Q (n) is also necessary
because when all the items are distinct we must look at each of them at least once.
With any comparison-based algorithm, the trivial lower bound on the exact number
of comparisons is thus [n/21 because each comparison looks at only two items and
all of them must be looked at. Can we find a more interesting lower bound?

Assume for simplicity that n is odd and n > 3. We shall prove that at least
3(n -1)/2 comparisons are necessary for any comparison-based algorithm to lo-
cate the median in the worst case. If the algorithm does not make this many
comparisons, the daemon can force it to give an incorrect answer. Without loss of
generality, we assume the algorithm never compares an item with itself; if it did,
the daemon would respond with the only reasonable answer. We assume also that
each item of T is involved in at least one comparison requested by the algorithm.
Otherwise, it is impossible for the algorithm to locate the median with certainty,
and the demon's task would be easy. This is true because we shall see that the
daemon never sets two items of T to the same value.

Initially, the daemon sets each entry in T to "uninitialized". As the algorithm
makes comparisons, the daemon changes these values. Some items of T are set to
values between 1 and n, whereas others are set to values between 3n + 1 and 4n.
We call those values "low" and "high", respectively. The daemon makes sure there
are always as many low items as there are high. Intuitively, low items will be
smaller than the median and high items will be larger. However, the daemon may
change the values of T whenever it wishes, provided the answers it gave to the
algorithm previously are still valid. Thus one of the formerly low or high items
may turn out to be the median in the end. Each time the algorithm asks for a
comparison that involves T[i] and T[j], there are three possibilities.

• If both T[i] and T[j] are uninitialized, the daemon sets T[i] to i and T[j]
to 3n + j. Thus, T[i] becomes low and T[j] becomes high.

c If only one of T[i] and T[j] is initialized, there are five subcases.

- If a single item of T remains uninitialized, the daemon sets its value to 2n,
which is neither low nor high. This item becomes the provisional median:
all the low items are smaller, all the high items are larger, and there are as
many low as there are high items. However, the median may prove to be
elsewhere in the end.

- Otherwise, if T[i] is low, the daemon sets T[j] to the high value 3n + j.
To restore the balance between low and high items, it selects an arbitrary
uninitialized T[k] and sets it to the low value k.

426 Chapter l12



Section 12.4 Linear reductions

- If T[j] is low, the daemon acts as in the previous subcase with i and j
interchanged.

- If T[i] is high, the dxmon sets T[j] to the low value j. To restore the
balance between low and high items, it selects an arbitrary uninitialized
T[k] and sets it to the high value 3n + k.

- If T[j] is high, the daemon acts as in the previous subcase with i and j
interchanged.

o Otherwise, both T[i] and T[j] are initialized. If they are both low or if one is
low and the other is the provisional median, we say of the smaller that "it has
lost a comparison"; if they are both high or if one is high and the other is
the provisional median, we say of the larger that "it has lost a comparison".
Neither loses a comparison if one is low and the other is high.

Finally, the daemon answers the algorithm's request for a comparison in accordance
with the current values of T[i] and T[j].

Now assume the algorithm makes less than 3(n -1)/2 comparisons before it
outputs its guess of the median. Because items of T become initialized in pairs, ex-
cept for the provisional median, and because we assumed that each item is involved
in at least one comparison, exactly (n - 1) /2 comparisons were of the first or second
type above. Consequently, less than 3 (n- 1) - (n- 1)= n -1 comparisons in-
volved two items already initialized. Since items can lose a comparison only in this
case, at least one item in addition to the provisional median never lost a comparison.
Call it T[i]. Assume without loss of generality that it is low. By the definition of
losing a comparison, the daemon never had to admit to the algorithm that this item
is smaller than any other low item or than the provisional median. Therefore, no
contradiction appears if the daemon changes its mind and increases T [ i], provided
it keeps it smaller than any high item. This gives the daemon a choice of keeping
T [i] i so that the provisional median is indeed the final median, or of resetting
T[i] 2n + 1 so T[i] becomes the final median. Whichever answer was returned
by the algorithm, the daemon can thus exhibit an array T with a different median
even though it is consistent with all the answers seen by the algorithm. This proves
that the algorithm is incorrect unless it makes at least 3 (n -1)/2 comparisons in
the worst case.

12.4 Linear reductions

We saw that any algorithm for sorting by comparison takes a minimum time in
Q(n log n) to sort n items, both on the average and in the worst case. On the
other hand, we know that heapsort and mergesort both solve the problem in a time
in O (n log n). Except for the value of the multiplicative constant, the question of
the complexity of sorting by comparison is therefore settled: a time in 0 (n log n)
is both necessary and sufficient for sorting n items. Unfortunately, it does not
often happen in the present state of our ignorance that the bounds derived from
algorithmics and complexity meet so satisfactorily.

427



Computational Complexity

Because it is so difficult to determine the exact complexity of most of the prob-
lems we meet in practice, we often have to be content to compare the relative
difficulty of different problems. We say that a problem reduces to another if we can
efficiently transform instances of the first problem into instances of the second in
such a way that solving the transformed instance yields the answer to the original
instance. Suppose we prove that a certain number of problems are equivalent in
the sense that they each reduce to one another. As a result, these problems all
have about the same complexity: any algorithmic improvement in the method of
solution of one of them now automatically yields, at least in theory, a more efficient
algorithm for all the others. From a negative point of view, if these problems have
all been studied independently in the past, and if all the efforts to find an efficient
algorithm for any one of them have failed, then the fact that the problems are equiv-
alent makes it even more unlikely that such an algorithm exists. Section 12.5 goes
into this second motivation in more detail.

We encountered an example of reduction already: in Section 10.7.4 we saw that
factorization reduces to splitting and primality testing. Similarly, both splitting and
primality testing obviously reduce to factorization because they are immediately
solved once the number under consideration has been factorized as a product
of prime numbers. Even though we do not know the exact complexity of these
problems, this says that factorization is of similar difficulty to the combined tasks
of splitting and primality testing.

Another simple example concerns multiplying and squaring large integers. We
saw in Section 7.1 that it is possible to multiply two n-figure numbers in a time
in 0(n 1 5 9 ), which improves on the classic quadratic-time algorithm. Can we do
better? We saw in Problems 7.2 and 7.3 that the answer is "yes": we can multiply
in a time in 0 (na) for any real number a > 1, although the hidden multiplicative
constant grows when o( becomes smaller. Even better, Schonhage and Strassen
discovered a multiplication algorithm that takes a time in 0 (n log n log log n).
Is this the best possible? Finding a better algorithm is a matter for algorithmics;
proving that this algorithm is optimal is a concern for complexity. Unfortunately, no
nontrivial lower bound on the complexity of multiplication is known. Multiplying
two n-figure numbers obviously requires a time in Q(n) because each digit of the
operands must be looked at. For all we know a yet undiscovered multiplication
algorithm may exist that meets this bound by multiplying in a time in 0 (n).

Consider now the apparently simpler problem of squaring large integers. Could
it be handled in linear time whereas multiplication cannot? Even though the exact
complexity of squaring is as elusive as that of multiplication, there is one thing
we know how to prove: up to a small multiplicative constant, they require the
same time. Therefore, one of them can be solved in linear time if and only if they
both can. More interestingly, any significant algorithmic improvement on the art
of squaring would yield a better multiplication algorithm. Intuitively, this follows
from two formulas that relate the problems to one another.

X
2  

x x x

(X+y)
2 

(X -y)
2

XXY =- 4

428 Chapter 1 2



Section 12.4 Linear reductions

From these formulas we see that one squaring cannot be harder than one multipli-
cation, which is no big surprise, whereas one multiplication cannot be much harder
than two squarings.

Formally, we prove the computational equivalence of these problems by ex-
hibiting two algorithms. Each solves one problem by calling on an arbitrary al-
gorithm for the other. These algorithms could be used to teach one operation to
someone who only knows how to perform the other.

function square(x)
return mult(x, x)

function mult(x, y)
return (square(x + y) -square(x - y))/4

Let M(n) and S(n) be respectively the time needed to multiply and to square
integers of size at most n. The first algorithm makes it plain that S(n)< M(n)+c
for a small constant c that takes account of the overhead in square over and above
the time it spends inside mult. Therefore, S(n)e 0(M(n)).

The second algorithm must be analysed with slightly more care because x + y
can be one digit longer than x and y. Assume without loss of generality that x > y
to avoid worrying about the possibility that x - y might be negative. Thus

M(n) < S(n + 1) +S(n) +f (n), (12.1)

where f (n) is the time needed to perform the addition, subtractions and division
by 4 required by the algorithm, in addition to the overhead in mult. We know
already that additions and subtractions can be performed in linear time. Divi-
sion by 4 is trivial if the numbers are represented in binary and it can be done in
linear time even if another base is used; see Problem 12.21. Thus f(n)e 0(n) is
negligible since both M(n) and S(n) are in Q(n). However, Equation 12.1 is not
sufficient to conclude that M(n)e 0(S(n)). Consider what would happen if the
squaring algorithm were so inept as to take a time in O3(n!) to square an n-figure
number. In this case, multiplication of two numbers of that size could take a time in
( ((n + 1)!), which is about n times bigger than the time spent to square one such
number. Nevertheless, M(n)e 0(S(n)) does follow from a reasonable assump-
tion; see Theorem 12.4.4 below. Thus we conclude that the problems of integer
multiplication and squaring have the same complexity up to a multiplicative fac-
tor.

What can we say about other elementary arithmetic operations such as integer
division and taking a square root? Everyday experience leads us to believe that the
second of these problems, and probably also the first, is genuinely more difficult
than multiplication. This turns out not to be true. Under reasonable assumptions,
it takes the same time to multiply two n-figure numbers, to compute the quotient
when a 2n-figure number is divided by an n-figure number, and to compute the

429



Computational Complexity

integer part of the square root of an n-figure number. This is brought about by
exotic formulas such as

x = 1 I 1 x

x x-,-

x1 x+ x - x- x+1-i x 1+

and classic techniques such as Newton's method to find zeros of functions. Work
Problems 12.27 and 12.28 for more detail.

In addition to its usefulness for complexity purposes, the fact that one multi-
plication reduces to two squarings is interesting from an algorithmic point of view:
it provides an instructive example of preconditioning; see Section 9.2. Pretend for
the sake of argument that you are a Roman and that you know no other notation
for numbers. If you must frequently multiply numbers between 1 and 1000, you
may find it worthwhile to compile a multiplication table once and for all. However,
this table will span more than half a million entries even if you only compile the
product of x and y when x > y. A better solution is to compile a table of values
for x2 /4 for all x between 1 and 2000. (You will have to invent a pseudo-Roman
symbol to denote one-quarter.) Once you have this table, you can perform any
required multiplication with one addition and two subtractions, together with two
table look-ups.

12.4.1 Formal definitions

Intuitively, A <e B means that someone who knows how to handle problem B
can easily be taught how to handle problem A as well. It follows from Problem 3.10
that linear reductions are transitive: if A <e B and B <,e C, then A <e C. Linear
equivalences are also transitive, in addition to being reflexive and symmetric.

Formally, we prove A <t B by exhibiting an algorithm that solves an instance
of A by transforming it into one or more instances of problem B. The conclusion
that A <5t B follows immediately if the required instances for problem B are the
same size as the original instance of problem A, if a constant number of them are
required, and if the amount of work in addition to solving those instances is not
larger (up to a multiplicative constant) than the time required to solve problem B.
For example, we saw that one integer squaring reduces to a single multiplication
of the same size plus a constant amount of work. Thus integer squaring linearly
reduces to integer multiplication.

Definition 12.4.1 Let A and B be two problems. We say that A is linearly re-
ducible to B, denoted A <,0 B, if the existence of an algorithm for B that works in a
time in 0 (t(n)) foran arbitrary function t(n) implies that there exists an algorithm
for A that also works in a time in 0(t(n)). When A <e B and B <e A both hold,
we say that A and B are linearly equivalent and write A - e B.

430 Chapter 12



Section 12.4 Linear reductions

The situation is more complicated when solving instances of size n of problem A
involves instances of problem B of a different size or when it involves a number of
instances of problem B that is not bounded by a constant. For example, one integer
multiplication reduces to two integer squarings, one of which can be of a slightly
larger size. To handle such situations precisely, we must derive a formula for the
time taken by the reduction algorithm to solve an instance of size n of problem A
as a function of the time required to solve problem B on instances of arbitrary size.
Equation 12.1 is typical of this approach. To conclude the desired relation between
the times taken to solve both problems, however, it is usually necessary to make
assumptions that involve the concept of smoothness introduced in Section 3.4 and
other concepts introduced below.

Recall that function f: N - R O is smooth if it is eventually nondecreasing and
if f (bn) E O (f (n)) for every integer b > 2. We extend this definition to algorithms
and problems.

Even though a smooth function must be eventually nondecreasing by defini-
tion, this does not imply that the actual time taken by a specific implementation
of a smooth algorithm must also be given by an eventually nondecreasing func-
tion. Consider for example the modular exponentiation algorithm expomod of Sec-
tion 7.8. It takes longer with this algorithm to compute a (2k -1)-st power than a
2k-th power for any large k, and thus the actual time taken by any reasonable im-
plementation of this algorithm is not an eventually nondecreasing function of the
exponent. Nevertheless, this algorithm is smooth because it takes a time in 0 (log n)
to compute an n-th power, counting the multiplications at unit cost, and log n is a
smooth function. The restriction that the algorithm be reasonable in the definition
of a smooth problem is necessary because any problem that can be solved at all
can be solved by an algorithm that takes a time in Q (29 )-begin the algorithm by
a useless loop that counts from I to 2n-and such an algorithm cannot be smooth;
see Problem 12.22. Another example of an unreasonable algorithm would be one
that sorts n items by systematically trying all n! permutations until one is found
that is sorted: this is unreasonable because there exist obvious sorting algorithms
that are much more efficient.

Definition 12.4.2 An algorithm is smooth if it takes a time in e(t(n))forsome
smooth function t (n). A problem is smooth if any reasonable algorithm that solves
it is smooth. (By "reasonable" we mean that the algorithm is not purposely slower
than necessary; see below.)

Definition 12.4.3 A function t: N - IW> is at least quadratic if t(n)e Q(n2 ).
It is strongly quadratic if it is eventually nondecreasing and if t(an)> a2 t(n)
for every positive integer a and every sufficiently large integer n. At least and
strongly linearfunctions are defined similarly. These notions extend to algorithms
and problems as in the case of smooth functions.

431



Computational Complexity

It is easy to show that strongly quadratic functions are at least quadratic. Most
of the theorems that follow are stated conditionally on a "reasonable" assumption,
such as A 'i, B assuming B is smooth. This can be interpreted literally as meaning
that A <t B follows under the assumption that B is smooth. From a more practical
point of view it also means that, for any smooth function t(n), the existence of
an algorithm for B that works in a time in O(t(n)) implies that there exists an
algorithm for A that also works in a time in 0 (t (n)). Moreover, all these theorems
are constructive: the algorithm for A follows from the algorithm for B and the proof
of the corresponding theorem.

We are now in a position to state precisely and demonstrate the linear equiva-
lence between integer squaring and multiplication.

Theorem 12.4.4 Let SQR and MLT be the problems consisting of squaring an
integer of size n and of multiplying two integers of size n, respectively. Under the
assumption that SQR is smooth, the two problems are linearly equivalent.

Proof We argued previously that both problems must be at least linear. Let M(n) and
S(n) respectively be the times needed to multiply and to square operands of size
at most n. We saw that there exist a constant c and a function f (n) E 0 (n) such
that S(n)< M(n)+c and M(n)< S(n + 1)+S(n)+f(n). Because M(n) is at least
linear, M(n)> c for all sufficiently large n. Therefore, S(n) < 2M(n), also for all
sufficiently large n, which implies by definition that S(n) e 0 (M(n)) and thus
SQR -1 MLT.

For the other direction, assume that S(n)c O(s(n)) for some smooth func-
tion s(n). Let a, bi and b2 be appropriate constants such that s(2n)< as(n),
S(n)< bis(n) and s(n)< b2 S(n) for all sufficiently large n. Because any smooth
function is eventually nondecreasing by definition,

S(n + 1)< b1s(n + 1)< bis(2n)< blas(n)< biab2 S(n)

for all sufficiently large n. Because f(n)e 0(n) and S (n) cQi(n), there exists a
constant d such that f (n) < dS (n) for all sufficiently large n. Putting it all together,
we conclude that

M(n)< S(n + 1) +S(n)+f (n)< (b ab 2 + 1 + d) S(n)

for all sufficiently large n, and thus M (n) e 0(S(n)) and MLT <t SQR by definition.
.

We give more examples of linear reductions below, and we suggest others in
the exercises. In Section 12.5.2, we shall study the notion of polynomial reduction,
which is coarser than that of linear reduction, but easier to use because it does
not require the notions introduced in Definitions 12.4.2 and 12.4.3. It is also more
general.

432 Chapter 12



Section 12.4 Linear reductions

12.4.2 Reductions among matrix problems

Recall that an m x n matrix is square if m = n. An upper triangular matrix is a
square matrix M whose entries below the diagonal are all zero: Mij = 0 when i > j.
The transpose of an m x n matrix M is the n x m matrix Mt defined by Mt$ - M,1 .
A matrix M is symmetric if it is equal to its own transpose, which implies that it
must be square. A square matrix M is nonsingular if there exists a matrix N such
that M x N = I, the identity matrix; this matrix N is called the inverse of M and is
denoted M-1.

We saw in Section 7.6 that a time in 0(n 2 .8 1 )-or even 0(n 2-3 7 6 )-is sufficient
to multiply two arbitrary n x n matrices, contrary to intuition that suggests that
this problem inevitably requires a time in Q (n 3 ). Is it possible that the multiplica-
tion of upper triangular matrices could be carried out significantly faster than the
multiplication of arbitrary square matrices? How about symmetric matrices? More
interestingly, experience might well lead us to believe that inverting nonsingular
matrices should be inherently more difficult than multiplying them.

We denote the problems of multiplying arbitrary square matrices, multiply-
ing upper triangular square matrices, multiplying symmetric matrices and invert-
ing nonsingular upper triangular matrices, by MQ, MT, MS and IT, respectively.
We shall prove under reasonable assumptions that these four problems are linearly
equivalent. The problem of inverting an arbitrary nonsingular matrix is also linearly
equivalent to these problems, but the proof of this is more difficult and it requires
a stronger assumption; see Problem 12.31. Note however that the resulting algo-
rithm is numerically unstable. Consequently, we can invert any nonsingular n x n
matrix in a time in 0(n 2 3 7 6)-at least in theory. Moreover, any new algorithm to
multiply upper triangular or symmetric matrices more efficiently will also provide
a new, more efficient algorithm for inverting arbitrary nonsingular matrices.

In what follows we measure the complexity of algorithms that manipulate
n x n matrices in terms of n, referring for example to an algorithm that runs in a
time in E)(n 2) as quadratic. Formally speaking, this is incorrect because the run-
ning time should be given as a function of the size of the instance, so a time in 0 (n2 )
is really linear. All the problems considered are at least quadratic in the worst case
because any algorithm that solves them must look at each entry of the matrix or
matrices concerned. We proceed to prove the linear equivalence of our matrix prob-
lems by a sequence of reductions: we prove that MT < MO, MSse MQ, MO t MT,
MQ<f MS, MQ<- IT and IT•t MO. This implies that MQ-O MT, MO-= MS and
MO { IT. The equivalence of all four problems follows immediately by the transi-
tivity of linear equivalences.

Theorem12.4.5 MT•I MQandMQO< MS.

Proof Any algorithm that can multiply two arbitrary square matrices can be used directly
for multiplying upper triangular and symmetric matrices. U

433



Computational Complexity Chapter 12

Theorem 12.4.6 MQ<e MT, assuming MT is smooth.

Proof Suppose there exists an algorithm able to multiply two n x n upper triangular
matrices in a time in 0 (t (n)), where t (n) is a smooth function. Let A and B be
two arbitrary n x n matrices to be multiplied. Consider the following product of
3n x 3n upper triangular matrices

O A 0 O 0 0 0 0 AB
0 0O x 0 0 B = 0 0 00 0 0 ) ~0 0 12

where "O" denotes the n x n matrix all of whose entries are zero. This product
shows us how to obtain the desired result AB by a reduction to one larger multi-
plication of upper triangular matrices. The time required for this operation is in
0(n 2 ) for the preparation of the two upper triangular matrices and the extraction
of AB from their product, plus 0(t(3n)) for the multiplication of the two upper tri-
angular matrices. By the smoothness assumption, t(3n)E 0(t(n)). Because t(n)
is at least quadratic, t(n)e 0(n 2 ) and thus n2 E 0(t(n)). Consequently, the total
time required to multiply arbitrary n x n matrices is in 0(n 2 

+ t(3n)), which is
the same as 0(t(n)).

Theorem 12.4.7 MQ<4 MS, assuming MS is smooth.

Proof This is similar to the proof of Theorem 12.4.6: we reduce the multiplication of two
arbitrary n x n matrices A and B to a multiplication of 2n x 2n symmetric matrices.

0 A) X ( BtX (AB t B
(At 0)x (B ) (0 AtBt)

We leave the details to the reader. Note that the product of two symmetric matrices
is not necessarily symmetric. U

Theorem 12.4.8 MQ<t IT, assuming IT is smooth.

Proof Suppose there exists an algorithm able to invert a nonsingular n x n upper trian-
gular matrix in a time in 0(t(n)), where t(n) is a smooth function. Let A and B

434



Section 12.4 Linear reductions

be two arbitrary n x n matrices to be multiplied. Consider the following product
of 3n x 3n upper triangular matrices

(I A O I -A AB I 0 0
0 I B x 0 I -B = 0 I 0
0 0 I 0 0 I 0 0 I

where I is the n x n identity matrix. This product shows us how to obtain the
desired product AB by inverting the first of the upper triangular matrices above:
the result appears in the upper right corner of the inverse.

I A 0 1 I -A AB
0 I B = I -B
yO I O 0 I

As in the proof of Theorem 12.4.6, this entire operation takes a time in 0 (n2 + t (3n)),
which is the same as 0(t(n)). U

It remains to prove that IT•5 MQ, which is the most interesting of these reduc-
tions. For this it is useful to introduce yet another problem: IT2 is the problem of
inverting nonsingular upper triangular matrices whose size is a power of 2.

Lemma 12.4.9 IT'e IT2, assuming IT2 is smooth.

Proof Suppose there exists an algorithm able to invert a nonsingular m x m upper trian-
gular matrix in a time in 0 (t (m) I m is a power of 2), where t (m) is a smooth func-
tion. Let A be a nonsingular n x n upper triangular matrix for arbitrary n. Let m
be the smallest power of 2 not smaller than n. Let B be the m x m upper triangular
matrix such that Bi Aij for 1 < i < n and 1 < j < n, Bi, = I for n < i < m and
B1j = 0 otherwise:

B A~ 0)
where the O's are rectangular zero matrices of the proper size so that B is m x m
and I is the (m - n) x (m - n) identity matrix. It is easy to verify that the inverse
of A can be read off directly as the n x n submatrix in the upper left corner of B 1.
Thus the calculation of A 1 takes a time that is in 0(t(i)) for inverting B, plus
something in 0(n 2 ) to prepare matrix B and read the answer from B-1. Because
t(m) is a smooth function and m is even, t(m)= t(2(m/2))< ct(m/2) for an ap-
propriate constant c, provided n is sufficiently large. Because smooth functions
are eventually nondecreasing and m /2 < n, t (m /2) < t (n), again provided n is
sufficiently large. It follows that t (m) < ct (n). Thus matrix A can be inverted in a
time in 0(ct(n) +n2 ). This is the same as 0 (t(n)) because t(n) is atleastquadratic.

U

435



Computational Complexity

Lemma 12.4.10 IT24' MQ, assuming MQ is strongly quadratic.

Proof Let A be a nonsingular n x n upper triangular matrix to be inverted, where n is
a power of 2. If n = 1, inversion is trivial. Otherwise decompose A into three
submatrices B, C and D, each of size ' x n, defined by

A = ( CD).

Note that B and D are upper triangular whereas C is arbitrary. Similarly let F, G
and H be unknown ' x n matrices such that

A-' (F G).
( O H)

The lower left submatrix is zero because the inverse of a nonsingular upper tri-
angular matrix is upper triangular; see Problem 12.30. The product of A and A
should be the identity matrix.

(B C) (F G) ( (BF BG+CH) ( (I 0)
(O D) 0 HJ 0 DH 0 1OI

Therefore, BF = DH = I, which implies that B and D are nonsingular and that
F =B 1 and H = D-1. Moreover, BG + CH = 0, andthus G = -B- 1CH =B 1BCD-1 .
Putting it all together, the inverse of A is obtained from the inverses of B and D
after two matrix multiplications to compute -B - 1CD 1:

A-' (B-1 -BICD-)

Since both B and D are nonsingular upper triangular matrices half the size of A, this
suggests a divide-and-conquer algorithm to compute A 1 via two recursive calcu-
lations of inverses, two matrix multiplications, and some additional bookkeeping
operations that take a negligible time g(n) 0(n 2 ).

Let I(n) be the time spent by this algorithm to compute the inverse of an
n x n upper triangular matrix when n is a power of 2. Let M(n) be the time
we need to multiply two n x n arbitrary matrices. From the above discussion,
I(n)< 2I(n/2)+2M(n/2)+g(n) when n is a power of 2 larger than 1. By the as-
sumption that MQ is strongly quadratic, M(n) G3(t(n)) for some strongly quad-
ratic function t(n). Let a, b and c be constants such that g(n)< an2 , t(n)> bn2

and M (n) < c t (n) for all sufficiently large n. Constant b exists because all strongly

436 Chapter 1 2



Section 12.4 Linear reductions

quadratic functions are at least quadratic by Problem 12.23. By the definition of
strongly quadratic, t(n)> 4t(n/2) and thus t(n/2)< I t(n). It follows from all
these formulas that

l(n) < 21(n/2)+2M(n/2)+g(n)

< 21(n/2)+2ct(n/2)+an 2

<21(n/2)+ (2 + b ) t(n)

< 21(n/2)+dt(n) (12.2)

for all n > no that are powers of 2, for appropriate constants d and no. Without
loss of generality, we may choose no to be a power of 2.

It remains to prove that I(n)e O(t(n) I n is a power of 2). For this we use
constructive induction to determine a constant u such that l(n) < ut (n) for all
n > no that are powers of 2. The basis of the induction is established provided we
choose u > I (no) /t (no). For the induction step, consider any n > no that is a power
of 2 and assume the partially specified induction hypothesis that I (n/2) < ut (n/2).
By Equation 12.2, the induction hypothesis, and the fact that t (n/2) • I t (n),

I(n) < 21(n/2)+dt(n)

< 2ut(n/2)+dt(n)

< (2 +d) t(n).

This shows that I(n)< ut(n) provided 2 + d < u, which is the same as u > 2d.
In conclusion, I(n) < ut (n) holds for all n > no that are powers of 2 provided we
choose u > max(I (no) /t(no), 2d). This completes the proof that I(n) e O (t(n) I n
is a power of 2), and thus that IT2< MQ assuming MQ is strongly quadratic.

The reduction used in this proof is different from the reductions seen previ-
ously in the sense that a single inversion of an upper triangular matrix involves a
large number of matrix multiplications if those implied by the recursive calls are
counted. The linearity of the reduction is possible only because most of the implied
multiplications are performed on matrices much smaller than the one we seek to
invert. U

Theorem 12.4.11 IT<c MQ, assuming MQ is strongly quadratic.

Proof This is almost immediate from the two preceding lemmas. The only technical
problem is that we need the assumption that IT2 is smooth to apply Lemma 12.4.9,
and this is not a consequence of Lemma 12.4.10 even if MQ is strongly quadratic.
All is well nevertheless because the proof of Lemma 12.4.10 makes do with the
multiplication of matrices of size x to invert an upper triangular matrix of size
n x n, when n is a power of 2. Equation 12.2 can thus be refined as

437

I(n):5 2I(n/2)+dt(n/2)



Computational Complexity

and from there it follows that there exists a constant C1 such that I(n) < ft(n/2)
provided n is a sufficiently large power of 2. The proof of Lemma 12.4.9 then goes
through without needing t(n) to be smooth: it is enough that t(n) be eventually
nondecreasing, which it is by virtue of being strongly quadratic. We leave the
details to the reader. U

12.4.3 Reductions among shortest path problems

In this section lR denotes W2 u Ioo1, with the natural conventions that x + 00 = 0

and min(x, oo)= x for all x E IR.
Let X, Y and Z be three sets of nodes. Let f : X x Y - RlO and g: Y x Z -R

be two functions representing the cost of going directly from one node to another.
An infinite cost represents the absence of a direct link. Denote by f x g the function
h: X x Z -Roo defined for every x E X and z e Z by

h(xz)= min(f(xy) +g(yz)).
'E Y

This is the minimum cost of going from x to z passing through exactly one node
in Y. Notice the analogy between this definition and ordinary matrix multiplication:
addition and multiplication are replaced by the minimum operation and addition,
respectively.

The preceding notation becomes particularly interesting when the sets X, Y
and Z, and also the functions f and g, coincide. In this case f x A, which we shall
write f 2 , gives the minimum cost of going from one node of X to another (possibly
the same) while passing through exactly one intermediate node (still possibly the
same). Similarly, min(, f2 ) gives the minimum cost of going from one node of
X to another either directly or by passing through exactly one intermediate node.
The meaning of f i is similar for any i > 0. It is natural to define f 0 as the cost of
going from one node to another while staying in the same place.

f 0 (xy) =0 if x =Y
(cc otherwise

The minimum cost of going from one node to another without restrictions on the
number of nodes on the path, which we write f *, is therefore

f*(xy)= minf'(x,y).

This definition apparently implies an infinite computation; it is not even imme-
diately clear that f * is well defined. However, f never takes negative values.
Any path that passes twice through the same node can therefore be shortened by
taking out the loop thus formed, without increasing the cost of the resulting path.
Consequently, it suffices to consider only those paths whose length is less than the
number n of nodes in X. We thus have that

f*(x,y)= min f'(x,y).
Osi<n

438 Chapter 12

(12.3)



Section 12.4 Linear reductions

The straightforward algorithm for calculating f x g takes a time in 0(n 3 ) if
the three sets of nodes concerned are of cardinality n and if we count additions and
comparisons at unit cost. Unfortunately, there is no obvious way of adapting to this
problem Strassen's algorithm for ordinary matrix multiplication (see Section 7.6).
The difficulty is that Strassen's algorithm does subtractions, which are the reverse
of additions; there is no equivalent to this operation in the present context since
ordinary additions are replaced by taking the minimum, which is not a reversible
operation. Algorithms that are asymptotically faster than 0(n3 ) are known for
this problem, but they are quite complicated and have only theoretical advantages;
see Section 12.8.

Equation 12.3 yields a direct algorithm for calculating ft * in n times the time
needed for a single calculation of the type f x g. This is a time in 0(n 4 ) if the
straightforward algorithm is used. Thus, computing f * for a given function f
seems at first sight to need more time than calculating a simple product f x g.
However, we saw in Section 8.5 a dynamic programming algorithm for calculating
shortest paths in a graph, namely Floyd's algorithm. This is nothing other than the
calculation of f *. Thus it is possible to get away with a time in 0(n 3 ) after all. Could
it be that the problems of calculating f x g and f * are of the same complexity?
Surprisingly, the answer is yes: these two problems are linearly equivalent. The
existence of algorithms asymptotically more efficient than 0(n 3) for solving the
problem of calculating f x g therefore implies that Floyd's algorithm for calculat-
ing shortest routes is not optimal, at least in theory.

Here we are content to state the main theorem formally and relegate its proof
to the exercises. Assuming f and g are defined on the same domain, denote by
MUL and TRC the problems consisting of calculating f x g and f *, respectively.
(TRC stands for "transitive reflexive closure"). For simplicity, time complexities
will be measured as a function of the number of nodes; an algorithm such as
Floyd's, for example, is considered cubic because it takes a time in 0(n 3 ) even
though this is improper from a formal viewpoint because the size of an n-node
instance is in 0 (n2 ) if it is provided as a matrix of distances.

Theorem12.4.12 MUL e TRC, assumingbothproblemsaresmoothandassuming
MUL is strongly quadratic.

Proof Work Problems 12.32 and 12.33. M

When the range of the cost functions is restricted to {O, oo, calculating f *
comes down to determining for each pair of nodes whether or not there is a path
joining them. We saw in Problem 8.18 that Warshall's algorithm solves this problem
in a time in 0(n3 ). Let MULB and TRCB be the problems consisting of calculating
f x g and i *, respectively, when the cost functions are restricted in this way. It is
clear that MULB-P MUL and TRCB Jt TRC since the general algorithms can also
be used to solve instances of the restricted problems. Furthermore, the proof that

439



Computational Complexity

MUL_ TRC can easily be adapted to show that MULB- eTRCB under similar as-
sumptions. This is interesting because of the following theorem, which involves
the problem MQ of ordinary square matrix multiplication, which we studied in
Section 12.4.2.

Theorem 12.4.13 MULB<PMQ.

Proof Let f x g be an instance of size n of problem MULB. Assume without loss of
generality that the underlying sets of nodes are {1, 2,...,n}. Define two n x n
matrices A and B by

Aj= if f (i, j)= co
- 11 if f(ij)=

and similarly for B with respect to function g. Intuitively, Aij = 1 if and only if
there is a direct f-link between nodes i and j. By the definition of ordinary matrix
multiplication, (AB) ij counts the number of ways to reach node j from node i by
going first through an f-link and then through a g-link. Therefore,

(fx)(~j) 00 if (AB) ij 0
if Xg) (i, ' 0o otherwise.

Thus, one n x n ordinary matrix multiplication is all that is needed to solve an
instance of size n of problem MULB. 0

Strassen's algorithm can therefore be used to solve problems MU LB and TRCB in
a time in 0 (n238 1 ), thus showing that Warshall's algorithm is not optimal. However
using Strassen's algorithm requires a number of arithmetic operations in
0(n2 8 1 ); the time in 0(n3 ) taken by Warshall's algorithm counts only Boolean
operations as elementary.

An interesting situation occurs when we consider symmetric versions of the
problems studied in this section. These correspond to problems on undirected
graphs. A cost function f: X x X l-oo is symmetric if f (u, v) = f (v, u) for ev-
ery u, v E X. Each of the four problems discussed earlier has a symmetric version
that arises when the cost functions involved are symmetric; call them MULS, TRCS,
MULBS and TRCBS. Inspired by Theorem 12.4.7, which shows that ordinary ma-
trix multiplication is not easier when symmetric matrices are involved, it is tempt-
ing to conjecture that the same holds with shortest path problems. Indeed, the
proof of Theorem 12.4.7 applies mutatis mutandis to prove that MUL - MULS and
MULB - MULBS. However, the analogy breaks down when it comes to TRCBS.
A moment's thought will convince you that this is just a fancy name for the prob-
lem of finding the connected components in an undirected graph, which is easily
solved in a time in 0(n2 ) by depth-first search. On the other hand, no algorithm
is known that can solve MULB so quickly. But recall that TRCB - MULB. Thus it
seems that TRCB is genuinely harder than its symmetric version TRCBS. For the
same reason, it seems that MULBS is genuinely harder than TRCBS. This is odd in
a sense because the naive algorithm stemming directly from Equation 12.3 would
require that we solve n instances of MULBS to solve a single instance of TRCBS.

440 Chapter 12



Section 12.5 Introduction to XP-completeness

12.5 Introduction to !NP-completeness
There exist many real-life, practical problems for which no efficient algorithm is
known, but whose intrinsic difficulty no one has yet managed to prove. Among
these are such famous problems as the travelling salesperson, optimal graph colour-
ing, the knapsack problem, Hamiltonian cycles, integer programming, finding the
longest simple path in a graph, and satisfying a Boolean formula: some of these
are described below. Should we blame algorithmics or complexity? Maybe there
do in fact exist efficient algorithms for these problems. After all, computer science
is a relative newcomer: it is certain that new algorithmic techniques remain to be
discovered. On the other hand perhaps these problems are intrinsically hard but
we lack the techniques to prove this.

This section presents a remarkable result: an efficient algorithm to solve any
one of the problems listed in the previous paragraph would automatically provide
us with efficient algorithms for all of them. We do not know whether these problems
are easy or hard to solve, but we do know that they are all of similar complexity. The
practical importance of these problems ensured that each of them separately has
been the object of sustained efforts to find an efficient method of solution. For this
reason it is widely conjectured that such algorithms do not exist. If you have a
problem to solve and you can show that it is computationally equivalent to one
of those mentioned previously, you may take this as convincing evidence-but no
proof-that your problem is hard in the worst case. At least you will be certain
that at the moment nobody else knows how to solve your problem efficiently.

At the heart of this theory lies the idea that there may be problems that are
genuinely hard to solve, yet for which the validity of any purported solution can
be verified efficiently. Consider the Hamiltonian cycle problem as an example. Given
an undirected graph G = (N, A), the problem is to find a path that starts with some
node, visits each node exactly once, and returns to the starting node. We say that
the graph is Hamiltonian if such a cycle exists. This problem is believed to be
hard. However, it is obviously easy to verify whether a sequence of nodes defines
a Hamiltonian cycle. Another example is factorization. Given a composite number,
it may be hard to find a nontrivial divisor, but any purported divisor can be verified
easily. It may seem obvious that it is genuinely easier for many problems to verify
the validity of a purported solution than to find one from scratch. The greatest
embarrassment of modern computational complexity theory is that we do not know
how to prove this.

12.5.1 The classes Pand MiP
Before going further it will help to define what we mean by an efficient algorithm.
Does this mean it takes a time in 0 (n log n) ? 0 (n2 ) ? 0 (n2 81 ) ? It all depends on the
problem to be solved. A sorting algorithm that takes a time in ) (n2 ) is inefficient,
whereas an algorithm for matrix multiplication that takes a time in 0 (n2 log n)
would be an astonishing breakthrough. So we might be tempted to say that an
algorithm is efficient if it is better than the obvious straightforward algorithm, or
maybe if it is the best possible algorithm to solve our problem. However, this
definition would be fuzzy and awkward to work with, and in some cases "the best
possible algorithm" does not even exist; see Problem 12.34. Moreover, there are

441



Computational Complexity

problems for which even the best possible algorithm takes an exorbitant amount
of time even on small instances. Might it not be reasonable to admit that such
problems are inherently intractable rather than claiming that clever algorithms are
efficient even though they are too slow to be used in practice?

For our present purposes we answer this question by stipulating that an algo-
rithm is efficient if there exists a polynomial p (n) such that the algorithm can solve
any instance of size n in a time in 0 (p (n)). We say of such algorithms that they
are polynomial-time. This definition is motivated by the comparison in Section 2.6
between an algorithm that takes a time in 0 (2') and one that only requires a time
in 0(n3

), and also by some of the examples given in Section 2.7. An exponential-
time algorithm becomes rapidly useless in practice, whereas generally speaking a
polynomial-time algorithm allows us to solve much larger instances.

This notion of efficiency should be taken with a grain of salt. Given two al-
gorithms requiring a time in O (nlg9 flg) and in 0 (nW), respectively, the first is in-
efficient according to our definition because it is not polynomial-time. However,
it will beat the polynomial-time algorithm on all instances of size less than 10300,

assuming the hidden constants are similar. In fact, it is not reasonable to assert
that an algorithm requiring a time in 0 (n10 ) is efficient in practice. Nonetheless, to
decree that W(n

3
) is efficient whereas 0 (n4 ) is not, for example, would be rather

too arbitrary. Moreover, even a linear-time algorithm may be unusable in prac-
tice if the hidden multiplicative constant is too large, whereas an algorithm that
takes exponential time in the worst case may be very quick on most instances.
Nevertheless, there are significant technical advantages to considering the class of
all polynomial-time algorithms. In particular, all reasonable deterministic single-
processor models of computation can be simulated on each other with at most a
polynomial slow-down. Therefore, the notion of polynomial-time computability
is robust: it does not depend on which model you prefer, unless you use possibly
more powerful models such as probabilistic or quantum computers. Furthermore,
the fact that sums, products and composition of polynomials are polynomials will
be useful.

In this section, all our analyses for the time taken by an algorithm will be "up to
a polynomial". This means that we do not hesitate to count at unit cost an oper-
ation that really takes a polynomial amount of time. For example, we may count
additions and multiplications at unit cost even on operands whose size grows with
the size of the instance being solved, provided this growth is bounded by some
polynomial. This is allowable because we only wish to distinguish polynomial-
time algorithms from those that are not polynomial-time, and because it takes
polynomial time to execute a polynomial number of polynomial-time operations;
see Problem 12.35. On the other hand, we would not count at unit cost arithmetic
that involves operands of size exponentially larger than the instance. If the algo-
rithm needs such large operands, it must break them into sections, keep them in
an array, and spend the required time to carry out multiprecision arithmetic; such
an algorithm cannot be polynomial-time.

Our goal is to distinguish problems that can be solved efficiently from those
that cannot. For technical reasons we concentrate on the study of decision problems.

442 Chapter 12



Section 12.5 Introduction to N?-completeness

For these, the answer is either yes or no, or equivalently either true orfalse. For ex-
ample, "Find a Hamiltonian cycle in G " is not a decision problem, but "Is graph
G Hamiltonian?" is. A decision problem can be thought of as defining a set X
of instances on which the correct answer is "yes". We call these the yes-instances;
any other instance is a no-instance. We say that a correct algorithm that solves a
decision problem accepts the yes-instances and rejects the no-instances.

Definition 12.5.1 P is the class of decision problems that can be solved by a
polynomial-time algorithm.

For simplicity we do not allow probabilistic algorithms in this definition, even
those of the Las Vegas variety whose answers are guaranteed correct. This is one
more reason to take the definition with a grain of salt: there may be decision
problems that can be solved in expected polynomial time, but only by probabilistic
algorithms; such problems are not in P according to the definition.

The theory of 3P- completeness is concerned with the notion of polynomially
verifiable properties. Intuitively, a decision problem X is efficiently verifiable if an
omniscient being could produce convincing evidence that x E X whenever this
is so. Given this evidence, you should be able to verify efficiently that indeed x E X
without further interactions with the being. However, if in fact x X X, you should
not be falsely convinced that x E X regardless of what the being tells you. Consider
the problem of deciding if a graph is Hamiltonian as an example. Although this
problem is believed to be difficult, it is efficiently verifiable: if the being exhibits
a Hamiltonian cycle you can easily verify that it is correct. On the other hand,
nothing the being could show you-with the possible exception of a shotgun-
would convince you that the graph is Hamiltonian if it is not.

Consider a decision problem X. Let Q be a set, arbitrary for the time being,
which we call the proof space for X. A proof system for X is a set F of pairs (x, q).
For any x E X there must exist at least one q E Q such that (x, q) E F; on the other
hand no such q must exist when x X X. Thus, it suffices for the being to show you
some q E Q such that (x, q) E F to convince you that x E X. Seeing this q will
convince you that x is a yes-instance since no such q would exist should x be a no-
instance. Moreover, the being can always come up with such a q for yes-instances
because they always exist by definition. Formally, F is a subset of X x Q such that

(Vx E X) (iq e Q) [(x, q) E F].

Any q such that (x, q) E F is called a proof or a certificate that x E X. We did not
specify explicitly in the above formal definition that

(Vx X X) (Vq E Q) [(x,q) X F]

because it is implicit in the requirement that F must be a subset of X x Q.
For example, if X is the set of all Hamiltonian graphs, we may take Q as the

set of sequences of graph nodes, and define (G, v) E F if and only if the sequence
of nodes o- specifies a Hamiltonian cycle in graph G.

443



Computational Complexity

For another example, if X is the set of all composite numbers, we may take
Q = N as the proof space and

F = { (n, q)I1 < q < n and q divides n}

as the proof system. This proof system is not unique. Another possibility would
be

F' {(n,q) I1 < q < n and gcd(q,n)# 1}.

Still more proof systems for the same problem may come from the discussion in
Section 10.6.2, which shows that certificates that a number is composite may be of
no help in factorizing it.

The class NP corresponds to the decision problems that have an efficient proof
system, which means that each yes-instance must have at least one succinct certifi-
cate, whose validity can be verified quickly.

Both examples above fit this definition. A Hamiltonian cycle in a graph, if it
exists, takes less space to describe than the graph itself, and it can be verified in
linear time whether a sequence of nodes defines a Hamiltonian cycle. Similarly,
any nontrivial factor of a composite number is smaller than the number itself, and
a single division is sufficient to verify its validity. Thus both these problems are
in XP.

An important word of caution is required before we proceed: you may be
tempted to think that the letters NP stand for "non polynomial". Wrong! This
would be silly because (1) any problem that can be solved in polynomial time is
automatically in XNP (Theorem 12.5.3), and (2) we do not know how to prove
the existence of even a single problem in NP' that cannot be solved in polynomial
time, though we conjecture that they exist. In fact, [ P stand for "nondeterministic
polynomial-time" as we shall see in Section 12.5.6.

Another potentially slippery point is that the definition of N P is asymmetric:
we require the existence of succinct certificates for each yes-instance but there is no
such requirement for no-instances. Even though the set of all Hamiltonian graphs is
clearly in XP, there is no such evidence for the set of all non-Hamiltonian graphs.
Indeed, what kind of succinct evidence could convince you efficiently that a graph
is not Hamiltonian when this is so? It is conjectured that no such evidence can
exist in general and thus that the set of all non-Hamiltonian graphs is not in V?.
Problem 12.36 offers a surprise along these lines.

Definition 12.5.2 XNP is the class of decision problems X that admit a proof
system F c X x Q such that there exists a polynomial p(n) and a polynomial-time
algorithm A such that

o For all x E X there exists a q E Q such that (x, q) E F and moreover the
size of q is at most p (n), where n is the size of x.

o For all pairs (x,q), algorithm A can verify whether or not (x,q) E F.
In oTher words, F e P.

444 Chapter 12



Section 12.5 Introduction to iN2P-completeness

Our first theorem establishes a relation between P and yP.

Theorem 12.5.3 P c fP?

Proof Intuitively, this is because there is no need for help from an omniscient being when
we can handle our decision problem ourselves. Formally, consider an arbitrary
decision problem X C P. Let Q ={0} be a trivial proof space. Define

F ={(x,0) I xX}.

Clearly, any yes-instance admits one succinct "certificate", namely 0, and no-
instances have no certificates at all. Moreover, it suffices to verify that x E X and
q = 0 in order to establish that (x, q) e F. This can be done in polynomial time
precisely because we assumed that X E T. U

The central open question is whether or not the set inclusion in Theorem 12.5.3
is proper. Is it possible that P = fP? If this were the case, any property that can be
verified in polynomial time given a certificate could also be decided in polynomial
time from scratch. Although this seems very unlikely, no one has yet been able to
settle the question. In the remainder of this section, we shall study the consequences
of the conjecture that

P YA JP.

For this, we need a notion of reduction that allows us to compare the intrinsic
difficulty of problems in WP9 and to discover that there are problems in NP? that
are as hard as anything else in V P. Such problems, which are called NP- complete,
can be solved in polynomial time if and only if all the other problems in XVP can,
which is the same as saying P = fP. Thus, under the conjecture that P + XNP,
we know that f?- complete problems cannot be solved in polynomial time.

12.5.2 Polynomial reductions

The notion of linear reduction and of linear equivalence considered in Section 12.4
is interesting for problems that can be solved in quadratic or cubic time. However,
it is too restrictive when we consider problems for which the best known algorithms
take exponential time. For this reason we introduce a different kind of reduction.

Definition 12.5.4 Let A and B be two problems. We say that A is polynomially
Turing reducible to B if there exists an algorithm for solving A in a time that would
be polynomial if we could solve arbitrary instances of problem B at unit cost. This
is denoted A <C B. When A P B and B <P A both hold, we say that A and B are
polynomially Turing equivalent and we write A -P B.

445



Computational Complexity Chapter 12

In other words, the algorithm for solving problem A may make whatever use it
chooses of an imaginary algorithm that can solve problem B at unit cost. This imagi-
nary algorithm is sometimes called an oracle. As in the linear case, a reduction proof
usually takes the form of an explicit algorithm to solve one problem by calling on
an arbitrary algorithm for the other problem. Again, this could be used to teach
someone who only knows how to solve one problem how to solve the other. Again
too, polynomial reductions are transitive: if A <P B and B <4 C, then A <4 C. Un-
like linear reductions, however, we allow the first algorithm to take a polynomial
amount of time, still counting the calls to the second algorithm at unit cost, and to
call the second algorithm a polynomial number of times on arbitrary instances of
size polynomial in the size of the original instance.

As a first example, we prove the polynomial equivalence of two versions of the
Hamiltonian cycle problem. Let HAM and HAMD denote the problems of finding a
Hamiltonian cycle in a graph if one exists and of deciding whether or not a graph
is Hamiltonian, respectively. We allow an algorithm for HAM to return an arbitrary
answer when presented with a non-Hamiltonian graph. The following theorem
says that it is not significantly harder to find a Hamiltonian cycle than to decide if
a graph is Hamiltonian.

Theorem 12.5.5 HAM -T HAMD.

Proof First we prove the obvious direction: HAMD <T HAM. Consider the following
algorithm.

function HamD(G: graph)
C - Ham(G)
if o- defines a Hamiltonian cycle in G

then return true
else returnfalse

This algorithm solves HAMD correctly provided algorithm Ham solves problem
HAM correctly: by definition of HAM, algorithm Ham must return a Hamiltonian
cycle in G provided one exists, in which case HamD will correctly return true.
Conversely, if the graph is not Hamiltonian, the output ar returned by Ham cannot
be a Hamiltonian cycle, and thus HamD will correctly returnfalse. It is clear that
HamD takes polynomial time provided we count the call on Ham at unit cost.

Consider now the interesting direction: HAM <4 HAMD. We are tofind a Hamil-
tonian cycle assuming we know how to decide if such cycles exist. The idea is to
consider each edge in turn. For each, we ask if the graph would still be Hamiltonian
if this edge were removed. We keep the edge only if its removal would make the
graph non-Hamiltonian; otherwise we remove it before we proceed with the next
edge. The resulting graph will still be Hamiltonian since we never make a change

446



Section 12.5 Introduction to .P- completeness

that would destroy this property. Moreover, it contains only the edges necessary
to define a Hamiltonian cycle, for any additional edge could be removed without
making the graph non-Hamiltonian, and hence it would have been removed when
its turn came. Therefore, it suffices to follow the edges of the final graph to obtain a
Hamiltonian cycle in the original graph. Here is a sketch of this greedy algorithm.

function Ham(G= (NA))
if HamD(G) =false then return "No solution!"
for each e E A do

if HamD((N,A\ {e})) thenA - A\ {e}
a - sequence of nodes obtained by following

the unique cycle remaining in G

Clearly Ham takes polynomial time if we count each call on HamD at unit cost. E

Consider two problems A and B such that A ST B. Let p(n) be a polynomial
such that the reduction algorithm for problem A never requires the solution of more
than p (n) instances of problem B when solving an instance of size n, and such that
none of those instances is of size larger than p (n). Such a polynomial must exist
for otherwise the reduction algorithm would require more than polynomial time
even counting the calls on the algorithm for B at unit cost. Assume now that there
exists an algorithm SolveB capable of solving problem B in a time in 0 (t (n)) for
some eventually nondecreasing function t(n). We may now run the reduction
algorithm to solve problem A, calling SolveB whenever necessary. The entire time
spent inside SolveB will be in O(p(n)t(p(n))) since no more than p(n) calls on
instances of size at most p(n) will be necessary. Thus problem A can be solved in
a time in O (p (n) t (p (n)) +q (n)), where q (n) is a polynomial that takes account of
the time required by the reduction algorithm outside the calls on SolveB. Consider
now what happens if t(n) is a polynomial. In this case, p(n)t(p(n))+q(n) is
also a polynomial because sums, products and compositions of polynomials are
polynomials. Thus we have the following fundamental theorem.

Theorem 12.5.6 Consider two problems A and B. If A :ST B and if B can be solved
in polynomial time, then A can also be solved in polynomial time.

Proof This is immediate from the discussion above. M

In particular, we know from Theorem 12.5.5 that a polynomial-time algorithm
exists to find Hamiltonian cycles if and only if a polynomial-time algorithm ex-
ists to decide if a graph is Hamiltonian. By definition, the latter is equivalent to
saying that HAMD (E P since HAMD is a decision problem. Therefore, the question

447



Computational Complexity

of whether or not it is possible to find Hamiltonian cycles in polynomial time is
equivalent to a question concerning membership in P despite the fact that the class
P is defined only for decision problems. This is typical of many interesting prob-
lems, which are polynomially equivalent to a similar decision problem. We say
of such problems that they are decision-reducible. It is precisely because decision-
reducibility is commonplace that there is no severe lack of generality in defining P
and fP as classes of decision problems. Whenever you are interested in a prob-
lem that is not a decision problem, chances are that you can find a similar decision
problem that is polynomially equivalent. The problem that interests you can be
solved in polynomial time if and only if the corresponding decision problem is
in P. See Problems 12.43, 12.45, 12.46 and 12.47 for more examples.

The restriction to decision problems allows us to introduce a simplified notion
of polynomial reduction.

In other words, the reduction function maps all yes-instances of problem X onto
yes-instances of problem Y, and all no-instances of problem X onto no-instances
of problem Y; see Figure 12.7. Note that a necessary condition for the reduction
function f to be computable in polynomial time is that the size of f (x) must
be bounded above by some polynomial in the size of x for all x E I. Many-one
reductions are useful tools to establish Turing reductions: to decide if x E X, it
suffices to compute y = f (x) and ask whether or not y E Y. Thus we have the
following theorem.

J

Figure 12.7. Many-one reduction

Definition 12.5.7 Let X and Y be two decision problems defined on sets of instances
I and J, respectively. Problem X is polynomially many-one reducible to problem
Y if there exists afunction f: I - J computable in polynomial time such that x e X
if and only if f (x) e Yfor any instance x E I of problem X. This is denoted X < P Y
and function f is called the reduction function. When X <P Y and Y <M X both
hold, we say that X and Y are polynomially many-one equivalent and we write
X =-P Y.

448 Chapter 12



Section 12.5 Introduction to JfP-completeness

Proof Imagine solutions to problem Y can be obtained at unit cost by a call on DecideY and
let f be the reduction function between X and Y computable in polynomial-time.
Consider the following algorithm.

function DecideX(x)
Y - f (x)
if DecideY(y) then return true

else returnfalse

By definition of the reduction function, this algorithm solves problem X. Because
the reduction function is computable in polynomial time, it solves problem X in
polynomial time, counting the call on DecideY at unit cost. U

This theorem is so useful that we shall often prove X < P Y in cases where we really
need to establish X ST Y. Beware that the converse of this theorem does not hold in
general: it is possible for two decision problems X and Y that X <T Y yet X UP Y;
see Problems 12.38, 12.39 and 12.40.

Consider for example the travelling salesperson problem. An instance of this
problem consists of a graph with costs on the edges. The optimization problem,
denoted TSP, consists of finding a tour in the graph that begins and ends at some
node, after having visited each of the other nodes exactly once, and whose cost is
the minimum possible; the answer is undefined if no such tour exists. To define
an instance of the decision problem TSPD, a bound L is provided in addition to
the graph: the question is to decide whether or not there exists a valid tour whose
total cost does not exceed L. Problem 12.47 asks you to prove that this problem
is decision-reducible: TSP -T TSPD. Now we prove that the Hamiltonian cycle
problem is polynomially reducible to the travelling salesperson problem. In fact,
these problems are polynomially equivalent, but the reduction in the other direction
is more difficult.

Theorem 12.5.9 HAMD <P TSPD.

Proof Let G = (N, A) be a graph with n nodes. We would like to decide if it is Hamil-
tonian. Define f (G) as the instance of TSPD consisting of the complete graph
H = (N, N x N), the cost function

C (u, v) JI if {mv} eA
{ 2 otherwise

and the bound L = n. Any Hamiltonian cycle in G translates into a tour in H that
has cost exactly n. On the other hand, if there are no Hamiltonian cycles in G,

449



Computational Complexity

any tour in H must use at least one edge of cost 2, and thus be of total cost at
least n + 1. Therefore, G is a yes-instance of HAMD if and only if f (G) = (H, c, L)
is a yes-instance of TSPD. This proves that HAMD <P TSPD because function f is
easy to compute in polynomial time. U

12.5.3 XP-Ncomplete problems
As we saw, the fundamental question concerning the classes P and .P is whether
the inclusion T c .f MP is strict. Does there exist a problem that allows an efficient
proof system but for which it is inherently difficult to discover certificates in the
worst case? Our intuition and experience lead us to believe that it is generally
more difficult to discover a proof than to verify it: progress in mathematics would
be much faster were this not so. This intuition translates into the conjecture that
P W XT. It is a cause of considerable chagrin to workers in the theory of complexity
that they can neither prove nor disprove this conjecture. If indeed there exists a
simple proof that P 6 •KP, it has certainly not been easy to find!

On the other hand, one of the great successes of this theory is the demonstration
that there exist a large number of practical problems in 'f such that if any one
of them were in P then the whole of NT would be equal to P. The evidence that
supports the conjecture P Af MP therefore also lends credence to the view that
none of these problems can be solved by a polynomial-time algorithm in the worst
case. Such problems are called NP-complete. To be NP-complete, a decision
problem must belong to 1P and it must be possible to polynomially reduce any
other problem in MP to that problem.

Some authors replace the second condition by Y <P X or by other kinds of reduc-
tion. It is not known if this gives rise to a genuinely different class of fP- complete
problems.

What would happen if some Xf- complete problem X could be solved in
polynomial time? Consider any other problem Y C JP. We have Y <?P X by
definition that X is . P- complete. Therefore, Y can also be solved in polynomial
time by Theorem 12.5.6. Thus any problem in ?P belongs to P, implying that
fT cP P. But we know P c XP, and therefore P = XP. This proves that if any
V?- complete problem can be solved in polynomial time, then so can all problems

in XP. Conversely, no LP- complete problem can be solved in polynomial time
under the assumption that P LAP.

How can we prove that a problem is LAP- complete? If we already have a pool
of problems that have been shown to be XP- complete, the following theorem is
useful.

Definition 12.5.10 A decision problem X is XP-complete if

o X e'TP; and
o Y <P Xfor every problem Y E fXfP.

450 Chapter 12



Section 12.5 Introduction to ?P-completeness

Theorem 12.5.11 Let X be an ENS- complete problem. Consider a decision prob-
lem Z E ?P such that X <T Z. Then Z is also X?- complete.

Proof To be NtP- complete, Z must satisfy two conditions by Definition 12.5.10. The first
is that Z e JP, which is in the statement of the theorem. For the second condition,
consider an arbitrary Y E XP. Since X is XP- complete and Y E MP, it follows
that Y <T X. By assumption, X <T Z. By transitivity of polynomial reductions,
Y <P Z, which is what we had to prove to establish the WP- completeness of Z.

To prove that Z is fAP- complete, we choose an appropriate problem from the
pool of problems already known to be fT- complete, and show that it is poly-
nomially reducible to Z, either many-one or in the sense of Turing. We must also
show that Z c fTP by exhibiting an efficient proof system for Z. Several thousand
XP- complete problems have been enumerated in this way. For example, it suf-
fices to prove that the Hamiltonian cycle problem is fAP- complete to conclude in
the light of Theorem 12.5.9 that the travelling salesperson problem is NP- com-
plete as well.

This is all well and good once the process is under way, since the more problems
there are in the pool, the more likely it is that we can find one that can be reduced
without too much difficulty to some new problem. The trick, of course, is to get
the ball rolling. What should we do at the outset when the pool is empty to prove
for the very first time that some particular problem is MP- complete? How do we
even know that fAC-complete problems exist at all? This is the tour deforce that
Steven Cook and Leonid Levin managed to perform independently in the early
1970's, opening the way to the whole theory of XAP- completeness. The full proof
of this result is technically difficult; in the rest of this section, we give a rough
overview of the fundamental ideas behind it. Recall that Boolean formulas are
reviewed in Section 1.4.1.

Definition 12.5.12 A Boolean formula is satisfiable if there exists at least one
way of assigning values to its variables so as to make it true. We denote by SAT the
problem of deciding, given a Boolean formula, whether or not it is satisfiable.

For example, (p v q)=> (p A q) is satisfiable because it is true if we assign the
value true to both p and q. This formula is satisfiable despite the fact that there
exist other value assignments for the variables that make itfalse, such as p = true
and q = false. On the other hand, (-p) A (p v q) A (-q) is not satisfiable because it
remains false regardless of which Boolean values are assigned to p and q. Try it!

It is possible in principle to decide whether a Boolean formula is satisfiable
by working out its value for every possible assignment to its Boolean variables.
However this is impractical when the number n of Boolean variables involved is

451



Computational Complexity

large, since there are 2" possible assignments. No efficient algorithm to solve this
problem is known. On the other hand, any assignment purporting to satisfy a
Boolean formula is both succinct and easy to verify, which shows that SAT E XNP.

Consider now a special case of Boolean formulas.

For notational simplicity, it is customary to represent disjunction (or) in such
formulas by the symbol "+" and conjunction (and) by simply juxtaposing the
operands as if it were arithmetic multiplication; negation is often denoted by a
horizontal bar above the variable concerned.

Consider for example the following formulas.

(p + q + r) (p + q + r) q r

(p + qr) (p + q (q + r))

(p => q)># (p + q)

The first formula is composed of four clauses. It is in 3-CNF, and therefore in CNF,
but not in 2-CNF. The second formula is not in CNF since neither (p + qr) nor
(p + q (q + r)) is a clause. The third formula is also not in CNF since it contains
operators other than conjunction, disjunction and negation.

Definition 12.5.14 SAT-CNF is the restriction of problem SAT to Booleanformulas
in CNF. For any positive k, SAT-k-CNF is the restriction of SAT-CNF to Boolean
formulas in k-CNF.

Clearly, those problems are in NP. An efficient algorithm is known to solve
SAT-2-CNF but even SAT-3-CNF is intractable to the best of our knowledge. This is
not surprising as we shall see in Section 12.5.4 that this latter problem is WP- com-
plete.

The relevance of Boolean formulas in the context of XP- completeness arises
from their ability to simulate algorithms. Consider an arbitrary decision problem
that can be solved by a polynomial-time algorithm A. Suppose the size of the
instances is measured in bits. To every integer n there corresponds a Boolean
formula 'n (A) in CNF that can be obtained efficiently. This formula contains a

Definition 12.5.13 A literal is either a Boolean variable or its negation. A clause
is a literal or a disjunction of literals. A Booleanformula is in conjunctive normal
form (CNF) if it is a clause or a conjunction of clauses. It is in k-CNFfor some
positive integer k if it is composed of clauses, each of which contains at most k
liberals.

452 Chapter 12



Section 12.5 Introduction to MP- completeness

large number of variables, among which xi, X2, .. ., Xn correspond in a natural way
to the bits of instances of size n for A. The Boolean formula is constructed so that
there exists a way to satisfy it by choosing the values of its other Boolean variables
if and only if algorithm A accepts the instance corresponding to the Boolean value
of the x variables. For example, algorithm A accepts the instance 10010 if and only
if formula xIx2 x 3 x 4xY' 5 (A) is satisfiable.

The proof that this Boolean formula exists and that it can be constructed effi-
ciently poses difficult technical problems beyond the scope of this book. We content
ourselves with mentioning that the formula 'l' (A) contains among other things a
distinct Boolean variable bit for each bit i of storage that algorithm A may need to
use when solving an instance of size n, and for each unit t of time taken by this
computation. Once the variables xi, x2 , .. ., xn are fixed, the clauses of En, (A) force
the other Boolean variables to simulate the step-by-step execution of the algorithm
on the corresponding instance.

Consider now an arbitrary problem Y E NP whose proof space and efficient
proof system are Q and F, respectively. Assume without loss of generality that
there is a polynomial p (n) such that for all y E Y there exists a certificate q E Q
whose length is exactly p(n), where n is the length of y. Assuming that we can
solve instances of SAT-CNF at unit cost, we want to decide efficiently if y E Y for
any given instance y. For this, consider algorithm Ay, whose specific purpose is to
verify if its input is a certificate that y E Y. In other words, A, (q) returns true if and
only if (y, q) c F. This can be done efficiently by the assumption that proof system
F is efficient. By definition, Boolean formula Tp(n) (Ay) is satisfiable if and only if
there exists a q of length p(n) such that Ay accepts input q. By definition of the
proof system, this is equivalent to saying that y C Y. Therefore, it suffices to decide
whether or not Tp(n) (Ay) is satisfiable to know whether or not y E Y. This shows
how to reduce an arbitrary instance of problem Y to the satisfiability of a Boolean
formula in CNF, and therefore Y <m SAT-CNF. We conclude that Y <P SAT-CNF
for all problems Y in NVP. Remembering that SAT-CNF is itself in •NP, we obtain
the following fundamental theorem.

Theorem 12.5.15 (Cook) SAT-CNF is •VP-complete.

Armed with this first XAP- completeness result, we can now apply Theorem
12.5.11 to prove the •N- completeness of other problems.

12.5.4 A few !NrP- completeness proofs

We have just seen that SAT-CNF is •NP-complete. Let Z be some other decision
problem in NyP. To show that Z too is XP- complete, Theorem 12.5.11 applies and
we need only prove SAT-CNF < I Z. Thereafter, to show that some other W in AP is
3NP- complete, we have the choice of proving SAT-CNF •T W or Z < P W. Beware

453



Computational Complexity Chapter 12

not to proceed backwards: it is the problem already known to be JVP- complete
that must be reduced to the new problem, not the other way round. We illustrate
this principle with a few examples.

Theorem 12.5.16 SAT is A[P-complete.

Proof We already know that SAT is in iMP. Since SAT-CNF is the only problem that we
know to be f§P-complete so far, we must show that SAT-CNF <T SAT to apply
Theorem 12.5.11. This is immediate since Boolean formulas in CNF are a special case
of general Boolean formulas and it is easy to tell, given a Boolean formula, whether
or not it is in CNF. Therefore any algorithm capable of solving SAT efficiently can
be used directly to solve SAT-CNF. C

Theorem 12.5.17 SAT-3-CNF is XP-complete.

Proof We already know that SAT-3-CNF is in N . Because we now know two differ-
ent N?-complete problems, we have the choice of proving either SAT-CNF <r
SAT-3-CNF or SAT <T SAT-3-CNF. Let us prove the former and proceed by many-
one reduction: we prove SAT-CNF <P SAT-3-CNF. Consider an arbitrary Boolean
formula I' in CNF. We are to construct efficiently a Boolean formula ( = f (f) in
3-CNF that is satisfiable if and only if ' is satisfiable. Consider first the case when
T' contains only one clause, which is a disjunction of k literals.

* If k < 3, let = T', which is already in 3-CNF.

* If k = 4, let PI , 2 , i 3 and T4 be literals such that P is P1 + f2 + F3 + P4. Let u
be a new Boolean variable. Take

= VI + f2 +U) + 6+4).

Note that if at least one of the Pi's is true then TI is true and it is possible to select
a truth value for u so that 6 is true also. Conversely, if all the ei's arefalse then
T isfalse and 6 isfalse whatever truth value is chosen for u. Therefore, given
any fixed truth values for the -Pi's, ' is true if and only if 6 is satisfiable with a
suitable choice of value for u.

* More generally, if k > 4, let fl, P2, , 1k be the literals such that ' is F, + f 2 +

+ Pk. Let ul, U2, . . ., Uk 3 be new Boolean variables. Take

9 = (fl + -e2 + uI) ( ufl + -e3 + U2) .. (TUk 3 + fk-1 + -ek)

Again, given any fixed truth values for the Pi's, T' is true if and only if X is
satisfiable with a suitable choice of assignments for the ui's.

454



Section 12.5 Introduction to WNP-completeness

If the formula T consists of several clauses, treat each of them independently-
using different u variables for each clause-and form the conjunction of all the
expressions in 3-CNF thus obtained. For example, if

'P (p+4+r+s)(r+s)(p+s+x+v 4w)

we obtain

6 (p+q+u1) (ua +r+s)(r+s)(p+s+u2 )(u2 - +x+u 3 )(u 3 +v+W).

Because each clause is "translated" with the help of different u variables, and
because the only way to satisfy ' is to satisfy each of its clauses with the same truth
assignment for the Boolean variables, any satisfying assignment for ' gives rise to
one for Y and vice versa. In other words, ' is satisfiable if and only if 6 is. But X is
in 3-CNF. This shows how to transform an arbitrary CNF formula efficiently into
one in 3-CNF in a way that preserves satisfiability. Thus SAT-CNF <P SAT-3-CNF,
which completes the proof that SAT-3-CNF is X99- complete. U

Problems 12.43 and 12.44 ask you to prove that these problems are polynomially
equivalent: any one of them can be solved in polynomial time if and only if they
all can. As we are about to prove that 3COL is XP- complete, this is evidence that
all four problems are hard.

Theorem 12.5.19 3COL is fP-complete.

Proof It is easy to see that 3COL is in •P since any purported 3-colouring can be verified
efficiently. To show that 3COL is NP-complete we shall prove this time that
SAT-3-CNF sP 3COL. Given a Boolean formula ' in 3-CNF, we have to construct

Definition 12.5.18 Let G be an undirected graph and let k be (in integer. A colour-
ing of G is an assignment of colours to the nodes of G such that any two nodes joined
by an edge are of different colours. It is a k-colouring if it uses no more than k
distinct colours. The smallest k such that a k-colouring exists is called the graph's
chromatic number and any such k-colouring is an optimal colouring. We define
thefollowingfour problems.

o 3COL: Given a graph G, can G be painted with 3 colours?

o COLD: Given a graph G and an integer k, can G be painted with k colours?

o COLO: Given a graph G,find the chromatic number of G.

o COLC: Given a graph G, find an optimal colouring of G.

455



Computational Complexity

efficiently a graph G that can be painted with three colours if and only if 'P is
satisfiable. This reduction is considerably more complex than those we have seen
so far.

Suppose for simplicity that every clause of the formula 'P contains exactly
three literals (see Problem 12.54). Let k be the number of clauses in T. Suppose
further without loss of generality that the Boolean variables appearing in ' are
XI, X2,..., xt. The graph G we are about to build contains 3 + 2t + 6k nodes and
3 + 3t + 12k edges. Three special nodes of this graph are linked in a control triangle
shown on top of Figure 12.8: call them T, F and C. Because each is linked to the other
two, they must be a different colour in any valid colouring of the graph. When the
time comes to paint G in three colours, imagine that the colours assigned to T and
F represent the Boolean values true andfalse, respectively. We shall say that a node
is coloured true if it is the same colour as T, and similarly for nodes colouredfalse.
Any node coloured either true orfalse is called a truth node.

Figure 12.8. Graph representation of three Boolean variables

For each Boolean variable xi of ' the graph contains two nodes y, and zi linked
to each other and to the control node C. In any valid three-colouring of G, this
forces y, to be coloured either true orfalse and zi to be the complementary colour.
Think of the colour of node y, as the truth assignment for Boolean variable xi so
the colour of node zi corresponds to the truth value of x1 . We may think of the
yi's and zip's as corresponding to literals in the Boolean formula. For example,
Figure 12.8 shows the part of the graph that we have constructed up to now if the
formula is on three variables.

We still have to add 6 nodes and 12 edges for each clause in 'P. These are
added so that the graph will be colourable with three colours if and only if the
choice of colours for Y1, y2,.Y, yt corresponds to an assignment of Boolean values
to xI, x2, X2. - Xt that satisfies every clause. This is accomplished thanks to the widget
illustrated in Figure 12.9. We say that a widget is linked to nodes a, b and c if these
are the edge endpoints marked 1, 2 and 3. Each widget is also connected directly
to nodes T and C by two other dangling edges. It can be verified by trying all eight
possibilities that if the widget is linked only to truth nodes, then it can be painted
with the colours assigned to the control triangle if and only if it is linked with at least
one node coloured true. Thus, the widget can be used to simulate the disjunction
of the three literals represented by the nodes to which it is joined. To complete the

456 Chapter 12



Section 12.5 Introduction to NP-completeness

graph, it suffices to include one copy of the widget for each clause in T. Each widget
is linked to nodes chosen from the yj's and zip's so as to correspond to the three
literals of the clause concerned. Any valid three-colouring of the graph provides
a truth assignment for the Boolean formula and vice versa. Therefore, the graph
can be painted with three colours if and only if T is satisfiable. Because it can be
constructed efficiently starting from any Boolean formula T in 3-CNF, we conclude
that SAT-3-CNF sP 3COL, and therefore that 3COL is NP- complete. a

Figure 12.9. A widget

12.5.5 MP-hard problems
To provide evidence that a problem cannot be solved efficiently, there is no need
to prove that it belongs to •VP. We say that a problem X is fP-hard if there is an
JVP- complete problem Y that can be polynomially Turing reduced to it: Y <T X.
By definition of polynomial reductions, any polynomial-time algorithm for X would
translate into one for Y. Since Y is NX- complete, this would imply that P = NP,
contrary to the generally accepted belief. Therefore, no LNP-hard problem can be
solved in polynomial time in the worst case under the assumption that P # XVP.

There are several reasons to study NP-hardness rather than NP-comple-
teness. In particular, NP-hard problems do not have to be decision problems.
Consider for example the graph colouring problems stated in Definition 12.5.18.
It is obvious that any efficient algorithm to find an optimal graph colouring (COLC)
or to determine the chromatic number of a graph (COLO) can be used to determine
efficiently whether a graph can be painted with three colours (3COL). In symbols,
3COL <T COLO ST COLC. It follows from the NP-completeness of 3COL that

457



Computational Complexity

both COLO and COLC are X[P-hard even though they are not •NP-complete
because they are not decision problems. We shall see many PVP-hard problems
that are not ' P -complete for this reason in Chapter 13.

The notion of J'[P-hardness is interesting also for decision problems. There are
decision problems that are known to be TP-hard but believed not to be in X9P,
and thus not 2VP-complete. Consider for example the problem COLE of exact
colouring: given a graph G and an integer k, can G be painted with k colours but
no less? Again it is obvious that 3COL <P COLE because a graph is 3-colourable if
and only if its chromatic number is either 0, 1, 2 or 3. From the JNS- completeness of
3COL we conclude that the exact graph colouring problem is •P-hard. However,
this decision problem does not seem to be in WP. Although any valid colouring
of G with k colours can be used as a succinct certificate that G can be painted with
k colours, it is hard to imagine what a succinct certificate that G cannot be painted
with fewer colours would look like, and there are strong theoretical reasons to
believe that such certificates do not exist in general.

Finally, XN P-hardness is often the only thing we really care to establish. Unless
it should turn out that P = fP, it is not very useful in practice to know that a
given problem belongs to fAVTP. Thus even if the problem considered is a decision
problem and even if it is reasonable to expect it to be in •P, why waste time and
effort exhibiting a proof system for it?

12.5.6 Nondeterministic algorithms

The class AP was originally defined quite differently, although the definitions are
equivalent. The classic definition involves the notion of nondeterministic algo-
rithms, which we only sketch here. As we said earlier, the name fP arose from
this other definition: it represents the class of problems that can be solved by a
fondeterministic algorithm in Polynomial time.

Although nondeterministic algorithms can be defined with respect to general
problems, we concentrate again for simplicity on decision problems. In this context,
nondeterministic algorithms terminate their execution with either accept or reject,
two special instructions explained below, or they may loop forever. In addition,
nondeterministic algorithms may use a special instruction

choose n between i and j

whose effect is to set n to some integer value between i and j, inclusive. The actual
value assigned to n is not specified by the algorithm, nor is it subject to the laws
of probability. Thus nondeterministic algorithms should not be confused with
probabilistic algorithms

The effect of the algorithm is determined by the existence or the nonexistence
of sequences of nondeterministic choices that lead to an accept instruction. We are
not concerned with how such sequences could be determined efficiently or how
their nonexistence could be established. For this reason nondeterministic algo-
rithms are only a mathematical abstraction that cannot be used directly in practice:
we never program such an algorithm in the hope of running it efficiently on a real

458 Chapter 1 2



Section 12.5 Introduction to NP-completeness

computer. In particular, it would be pointless to replace the choose instructions by
probabilistic choices such as "n - uniform(i. .j)" because the probability of suc-
cess could be infinitesimal in general. Thus we are not worried by the fact that,
as we shall see, nondeterministic algorithms can solve •AIP- complete problems in
polynomial time.

Note that a nondeterministic algorithm accepts input x even if it has only one
accepting computation to pit against many rejecting computations. Note also that
there is no limit on how long a polynomial-time nondeterministic algorithm may
run if the "wrong" nondeterministic choices are made or if it is run on a rejected
instance; the algorithm may even loop forever in these cases. A computation may
be arbitrarily long even on an accepted instance, provided the same instance also
admits at least one polynomially bounded computation.

Consider for example the following nondeterministic algorithm to decide if a
graph is Hamiltonian. It chooses a sequence of nodes nondeterministically in the
hope of hitting a Hamiltonian cycle. Clearly, there exists at least one sequence of
choices that leads to acceptance if and only if a Hamiltonian cycle exists. On the
other hand, it would be pointless to try running the algorithm after replacing the
nondeterministic choices by probabilistic ones.

procedure HamND(G= (N,A))
{This algorithm assumes the graph contains at least 3 nodes}
n - INI
let the nodes beN= {V1, V2, ....*, Vn}
S-0
X - VI

for k - 2 to n do
choose i {between} 2 and n
if i E S or {x,vi} I A then reject
x - Vi

S - S U {x}

if {x, vI } c A then accept
else reject

Definition 12.5.20 An accepting computation of the algorithm is a sequence of
nondeterministic choices that leads to an accept instruction. The algorithm accepts
input x if it has at least one accepting computation when run on x; otherwise it
rejects the input. The algorithm solves decision problem X if it accepts every x E X
and rejects every x i X.
The time taken by a nondeterministic algorithm on an instance that it accepts is
defined as the shortest possible time that any accepting computation may cause it to
run on this instance; the time is undefined on rejected instances. A nondeterministic
algorithm runs in polynomial time if the time it takes on accepted instances is
bounded by some polynomial in the size of the instance.

459



Computational Complexity Chapter 12

Consider now an arbitrary problem X c JfP and let Q and F be its proof
space and efficient proof system, respectively. Assume for simplicity that Q is
the set of all binary strings. The relevance of nondeterministic algorithms is that,
given any x, they can nondeterministically choose a q e Q such that (x, q) e F
provided such a q exists. This q can be chosen bit by bit, after a sequence of binary
nondeterministic choices. In a sense, the algorithm uses its nondeterministic power
to guess a certificate that x E X if one exists. After guessing q, the algorithm
verifies deterministically whether or not (x, q) e F, and it accepts if this is so. This
nondeterministic algorithm accepts each yes-instance because there is at least one
sequence of binary nondeterministic choices that hits upon a proper certificate,
yielding an accepting computation. On the other hand, no-instances cannot be
accepted because (x, q) X F no matter which q is chosen when x et X. Moreover,
this nondeterministic algorithm runs in polynomial time because the existence
of a succinct certificate on yes-instances is guaranteed and because the test that
(x, q) E F can be performed in polynomial time by definition of J'P.

Formally, here is the polynomial-time nondeterministic algorithm to solve
problem X. Note that it never halts on no-instances, which is allowed in the defi-
nition of polynomial-time for nondeterministic algorithms.

procedure XND(x)
q - empty binary string
while (x, q) t F do

choose b between 0 and 1
append bit b to the right of q

accept

Conversely, any decision problem that is solved in polynomial time by a non-
deterministic algorithm belongs to J'TP. For this we use the set of all possible
sequences of nondeterministic choices as proof space. The proof system F is de-
fined as the set of pairs (x, a) such that x is a yes-instance and 0a is a sequence
of nondeterministic choices according to which the nondeterministic algorithm ac-
cepts input x. Because the nondeterministic algorithm runs in polynomial time, at
least one of these accepting sequences is of polynomial length, so there is at least
one succinct certificate for every yes-instance. Moreover, it is easy to verify in deter-
ministic polynomial time that a given af is a proper certificate that x E X: it suffices
to simulate the nondeterministic algorithm, except that sequence a is consulted to
decide deterministically how to proceed each time we come to a nondeterministic
choice.

From the discussion above, we see that Definition 12.5.2 of J7P is equivalent
to saying that 3VP is the class of decision problems that are solved in polynomial
time by nondeterministic algorithms. Again, this was the original definition from
which [P got its name.

12.6 A menagerie of complexity classes
A fruitful approach in the study of computational complexity revolves around the
notion of complexity classes. A complexity class consists of the set of all problems of

460



Section 12.6 A menagerie of complexity classes

some kind (decision problems for instance) that can be solved using a given model
of computation without exceeding some given amount of resources. For example,
P is the class of all decision problems that can be solved by deterministic algo-
rithms in polynomial time and NP is the class of all decision problems that can be
solved by nondeterministic algorithms in polynomial time. Many other complex-
ity classes have been studied. Here we merely scratch the surface of this rich topic.
Figure 12.10 summarizes the discussion below.

PSPACE = IP

L and NPC denote LOGSPACE and the class of /NI--complete problems,
respectively. This diagram is correct provided there are no XAfT--complete
problems in BQjP, which is believed but not proven. All the regions are
conjectured to be nonempty, but only COGSPACE and PSPACE are known
to be different.

Figure 12.10. A menagerie of complexity classes

461



Computational Complexity

PSP.ACE is the class of all decision problems that can be solved using at most a
polynomial number of bits of storage. More precisely, a decision problem belongs
to PSPACE if there exists an algorithm A that solves it and a polynomial p (n)
such that the amount of storage needed by A on any instance x is no more than
p (n) bits, where n is the size of x. Because any algorithm can be transformed
without significant slow-down into one that needs no more space than it uses
time, it is clear that P c PSPACE. However, it is not known whether or not
this inclusion is proper. This is even more embarrassing than our inability to
prove that P ¢ NP because JNP c PSTA CE; see Problem 12.60. You guessed it:
we do not know whether or not this latter inclusion is proper. Nevertheless, there
are things that we do know about PSPACE. There exist problems in PSPACE
to which all other problems in PSPACE can be polynomially Turing reduced.
Those PSPACE-complete problems can be solved in polynomial time if and only
if P = PSPACE. A surprising result is that nondeterminism does not buy much
computing power when the limiting resource is storage: PSPACE = NPSPA CE,
where NPSPT4CE is the nondeterministic version of PSPACE; see Problem 12.61.

Just as PSPSACE is believed to lie beyond 2 and NP, £ OGSPACE is believed
to be more restrictive than P. This is the class of all decision problems that can
be solved with an amount of storage that is no more than some constant times the
logarithm of the instance size. For this definition to make sense, we assume that the
instance is given in read-only storage, and we count only the number of additional
bits of read/write storage needed to perform the calculation. Problem 12.62 asks
you to prove that LO£9SPACE c P, but we have to admit ignorance of whether
or not this inclusion is proper. However, we do know that f OGSPACE is strictly
included in PSPACE. To summarize, we know that

LOGSPiACE - P N ASP PSP.ACE

and at least one of these inclusions is strict. It is conjectured they all are.
If C is a complexity class of decision problems, we denote by co-C the class

of decision problems whose complements are in C. In other words, if I is a set
of instances and X c I is a decision problem that belongs to C, then I \ X belongs
to co-C. For example, the set of Boolean formulas that are not satisfiable and the
set of graphs that do not contain a Hamiltonian cycle belong to co-MP. It is clear
that P is a subset of both NP and co-NX, and that NP and co-XP are both
subsets of PSTAC E. The discussion just before Theorem 12.5.3 gives credence to
the conjecture than NP X co-NP, but this is not something we know how to prove.
Nevertheless, it is known that NP = co-NP if and only if there exists an NP- com-
plete problem in co-NP. Not many problems are known to be in NPn co-NbP yet
believed not to be in P. Among those, we mention the set of prime numbers
and the decision problem polynomially Turing equivalent to factorization given in
Problem 12.48.

Probabilistic algorithms give rise to probabilistic complexity classes. For tech-
nical reasons, the formal definition of those classes restricts probabilistic algorithms
to tossing fair coins rather than having access to uniform (a, b) for arbitrary real
numbers a and b.

462 Chapter 12



Section 12.6 A menagerie of complexity classes

• Monte Carlo algorithms give rise to the class BRPP, which stands for bounded-
error probabilistic polynomial-time. A decision problem belongs to BP? if there
is a p-correct probabilistic algorithm that solves it in polynomial time for some
p > 1/2. As we saw in Section 10.6.4, the error probability canbe reduced below
any desired threshold by repeating the algorithm some number of times and
taking the most frequent answer.

c Las Vegas algorithms give rise to the class ZP§P, which stands for zero-error
probabilistic polynomial-time. A decision problem belongs to ZP? if there is a
probabilistic algorithm that solves it with no possibility of error in expected
polynomial time.

• Between B?? and ZiP? is the class RP, which stands for random polynomial-
time. A decision problem belongs to R? if there is a p-correct probabilistic
algorithm that solves it in polynomial time for some p > 0 so that the cor-
rect answer is obtained with certainty on all no-instances. As we saw in Sec-
tion 10.6.4, the error probability can be reduced below any desired threshold
much more efficiently than with general BP? algorithms. It is conjectured that
R? / co-R2P.

The following relations between probabilistic and deterministic complexity classes
hold.

P c ZPP c RP c BPP c PSACE

In addition, Problems 12.64 and 12.65 ask you to prove that RP c LNP and
ZPP = RiPn co-RP. On the other hand, it is believed that neither NiP nor 2?PP
is a subset of the other.

When we defined JsP, we said we could think of it as the class of decision
problems for which an omniscient being could convince you of the validity of
any yes-instance by showing you a succinct certificate whose validity you could
verify efficiently even though you may be unable to find the certificate yourself.
It is natural to extend this notion to allow interaction with the being: it shows you
something, you issue a challenge, it answers, you issue another challenge, and
so on. A decision problem X belongs to the class IP, which stands for interactively
provable, if the being can convince you that x E X whenever this is so, but if you
are almost certain to catch it lying if it tries to convince you that x E X when
in fact this is not so. The entire interaction is required to take a time bounded
by some polynomial in the size of the instance, assuming that the being answers
instantly. See Problem 12.66 for an example. It is obvious that iP c 1? since the
interaction could consist simply in the being showing you an X 7P certificate. Could
it be that there are statements that can be proved interactively, but only if several
rounds take place? In other words, is the inclusion WP c IP strict? Although we
do not know the answer for sure, it is a safe bet that this is so because one of the
most striking recent results in computational complexity is that IP = PSPAC§E.

Parallel algorithms give rise to parallel complexity classes. Although there
is a great number of these, we mention only the most popular. WC is the class
of problems that can be solved by efficient parallel algorithms. Recall from Sec-
tion 11.3 that this means that the problem can be solved in polylogarithmic time

463



Computational Complexity Chapter 12

on a polynomial number of processors. (The class WC is named after its inventor
Nicholas Pippenger: it stands for Nick's Class.) It is obvious that JSC c P be-
cause it is straightforward to simulate polynomially many processors working for
polylogarithmic time on a single processor in polynomial time. It is also known
that LOciSPACE c KVC. Neither inclusion is known to be strict. The theory of
W P- completeness has a close parallel in the study of [C: P-complete problems

are known to be in P but they are in WfC if and only if NC = P. The problem of
deciding, given a directed graph G = (N, A) and two nodes u, v E N, whether or
not there is a path from u to v is P-complete, for example.

Finally, quantum computers give rise to a whole new collection of complexity
classes. Although we do not explain in this book what a quantum computer is,
think of a device that uses the superposition principle of quantum mechanics for
computational purposes. This allows massive parallelism in a single piece of hard-
ware. Quantum computing is reminiscent of classical probabilistic algorithms,
except that sometimes the "probabilities" appear to go negative thanks to a phe-
nomenon known as quantum interference. It is not known if quantum computers
are genuinely more powerful than probabilistic machines. There is strong evi-
dence that they are, because the factorization of large integers can be performed
in polynomial time by quantum computers, whereas it is a task believed to be in-
tractable with classical machines. On the other hand, there is strong evidence that
quantum computers cannot solve JfP-complete problems in polynomial time.
Furthermore, quantum computers are still the stuff of dreams: they lie beyond the
reach of current technology. But for how long? Of all the quantum complexity
classes, we mention only one: 3QP is the class of decision problems that can be
solved in polynomial time on a quantum computer so that the correct answer is
obtained with probability at least p on all instances, for some p > 1/2. It is known
that BPP ' B3QP c PSPiAC~E; both inclusions are believed to be strict, but neither
has been proven so.

12.7 Problems

Problem 12.1. Prove by mathematical induction on the height that a binary tree
of height k has at most 2 k leaves. Conclude that any binary tree with t leaves must
have height at least [ lg t].

Problem 12.2. Consider a positive integer k. Let t = Llg kI and e = k - 2t. Prove
that h(k)= kt + 2?, where h(k) is the function used in the proof of Theorem 12.2.1.
Give an intuitive interpretation of this formula in the context of the average height
of a tree with k leaves.

Problem 12.3. Give the decision trees corresponding to the algorithms for sorting
by selection (Section 2.4) and by merging (Section 7.4.1), and to quicksort (Sec-
tion 7.4.2) for the case of three items. In the latter two cases, stop the recursive calls
when only a single item remains to be "sorted".

Problem 12.4. Give a valid decision tree for sorting four items.

464



Section 12.7 Problems

Problem 12.5. Give a valid decision tree for determining the median of five items.
Note that it has only 5 different verdicts, but many more leaves.

Problem 12.6. Give exact formulas for the number of comparisons carried out in
the worst case by the insertion and the selection sorting algorithms when sorting
n items. How well do these algorithms perform compared with the information-
theoretic lower bound [ lg 50! ] for n = 50?

Problem 12.7. Prove that if n is a power of 2, mergesort makes n lg n - n + 1
comparisons in the worst case when sorting n items. How does this compare
with the information-theoretic lower bound [ lg n! 1? Find the smallest power of 2
such that mergesort requires more comparisons than the information-theoretic lower
bound when sorting this number of items.

Problem 12.8. Continuing Problem 12.7, find an explicit formula for the number
of comparisons performed in the worst case by mergesort in general, as a function
of the number n of items to be sorted. Find the smallest positive integer such that
mergesort requires more comparisons than the information-theoretic lower bound
when sorting this number of items.

Problem 12.9. Suppose we ask our sorting algorithm not merely to determine the
order of the items but also to determine which ones, if any, are equal. For example,
a verdict such as A < B < C is not acceptable: the algorithm must specify whether
B = C or B < C. Give an information-theoretic lower bound on the number of
comparisons required in the worst case to handle n items. Rework this problem if
there are three possible outcomes for each comparison: " < ", " = " and " > ".

Problem 12.10. Let T[1. .n] be an array and k • n an integer. The problem
consists of returning in descending order the k largest items of T. Prove by
an information-theoretic argument that any comparison-based deterministic al-
gorithm that solves this problem must make at least k lg n comparisons, both
in the worst case and on the average. Conclude that this must take a time in
Q (k log n). On the other hand, give an algorithm able to solve this problem in a
time in 0 (n log k) and a space in 0(k) in the worst case. Your algorithm should
make no more than one sequential pass through the array T. Justify your analysis
of the time and space used by your algorithm.

Problem 12.11. Give a complete decision tree for the 12-coin problem of Sec-
tion 12.2.2. Each node of the tree should specify which coins are in each pan of the
scale. The left child of an internal node gives the next measurement to make if the
balance tilts to the left, as do the middle child if the scale is balanced and the right
child if the balance tilts to the right. Omit the right-hand descendants of the root to
make the tree smaller; these can be handled by symmetry. Refer to the coins as A, B,
C, ... , L, so the root of the decision tree should read ABCD: EFGH in accordance
with Figure 12.6 and the information-theoretic reasoning of Section 12.2.2.

465



Computational Complexity

Problem 12.12. Continuing Problem 12.11, prove by an information-theoretic ar-
gument that the coin-and-balance problem cannot be solved using the scale only
three times if we have 13 coins rather than 12. This is interesting because it seems
possible at first sight that this problem could be solved: 13 coins generate 27 poten-
tial verdicts and a ternary tree of height 3 has 27 leaves to accommodate them all.

Problem 12.13. Continuing Problems 12.11 and 12.12, prove that the four-coin
problem cannot be solved with only two measurements unless an additional coin
known to be of the "proper" weight is available.

Problem 12.14. Use an adversary argument to prove that any comparison-based
algorithm to decide if a target value appears among n possibilities must take a time
in Q(log n) in the worst case, regardless of how cleverly the table of possibilities
is arranged. In particular, this lower bound is achieved with binary search if the
table is sorted. Could you have proved this result with an information-theoretic
argument? How important was it to restrict our attention to comparison-based
algorithms?

Problem 12.15. Let T[I. . n] be a sorted array of distinct integers, some of which
may be negative. Problem 7.12 asked you for an algorithm that can find an
index i such that 1 < i < n and T[i]= i, provided such an index exists, in a
time in 0(logn) in the worst case. Use an information-theoretic argument to
show that any comparison-based algorithm that solves this problem must take a
time in Q(logn). On the other hand, prove by an adversary argument that any
comparison-based algorithm that solves this problem would require a time in 2 (n)
in the worst case were it not for the restriction that the items of T be distinct.

Problem 12.16. Use an adversary argument to prove that any correct deterministic
algorithm to decide if an undirected graph is connected must ask for each pair
{i, j} of vertices whether or not there is an edge between i and j. Assume as in
Section 12.3.2 that the only questions about the graph that are allowed are of the
form "Is there an edge between vertices i and j?"

Problem 12.17. Consider the problem of determining whether an undirected graph
with n vertices contains a path of length at least 2.

(a) Use an adversary argument to prove that any algorithm to solve this problem
must take a time in Q (n2 ) in the worst case if it is restricted to asking questions
of the form "Is there an edge between vertices i and j?" (This is the case if the
graph is represented with an adjacency matrix: type adjgraph in Section 5.4.)

(b) Prove on the other hand that this problem can be solved in a time in 0 (n) if the
algorithm can ask at each vertex for the list of adjacent vertices. (This is the case
if the graph is represented with adjacency lists: type lisgraph in Section 5.4.)

Problem 12.18. We saw that any correct comparison-based algorithm for finding
the median among n items must make at least 3 (n - 1) /2 comparisons in the worst
case. Use a much simpler adversary argument to prove that when all the items are

466 Chapter 1 2



Section 12.7 Problems

distinct it is not possible to locate the median with certainty without looking at
each item. On the other hand, show by an example that this is not true if the items
are not distinct.

Problem 12.19. The obvious algorithm to find both the minimum and the maxi-
mum items in an array of n items takes 2n - 3 comparisons. Prove by an adver-
sary argument that any comparison-based algorithm for this problem requires at
least [3n/21 - 2 comparisons in the worst case. (Optional: find an algorithm that
achieves this lower bound.)

Problem 12.20. Show how to use a factorization algorithm to split composite num-
bers and to decide on the primality of arbitrary numbers. (This is not to say that
the best primality test proceeds by factorization!)

Problem 12.21. Assume that large integers are represented in decimal in an array.
For example, T[l. . n] represents integer Zin=. 10-l 1 T[i]. Give an algorithm to
perform division by 4 of such integers in a time in 0 (n). Analyse the time taken
by your algorithm. Generalize it to bases other than 10.

Problem 12.22. Prove that it is impossible for a function in Q2(2n) to be smooth.

Problem 12.23. Prove that any strongly quadratic function is at least quadratic;
see Section 12.4.1.

Problem 12.24. Continuing Problem 12.23, give an explicit example showing it
was necessary to specify in the definition of a strongly quadratic function that it
be eventually nondecreasing. Specifically, exhibit a function t : N - 0R21 such that
t(an) a2 t(n) for every positive integer a and every sufficiently large integer n,
yet t(n) is not at least quadratic.

Problem 12.25. Give an explicit example of an eventually nondecreasing function
that is at least quadratic but not strongly quadratic.

Problem 12.26. A function t : N - >W is supra quadratic if it is eventually non-
decreasing and if there exists a positive £ such that t(an)> a2

+E t(n) for every
positive integer a and every sufficiently large integer n. Show that n2 log n is
strongly quadratic but not supra quadratic.

Problem 12.27. Let SQR, MLT and DIV be the problems consisting of squaring an
integer of size n, of multiplying two integers of size n, and of determining the
quotient when an integer of size 2n is divided by an integer of size n, respec-
tively. Clearly, these problems are at least linear because any algorithm that solves
them must take into account every bit of the operands involved. Assuming that
the three problems are smooth and that MLT is strongly linear, prove that the three
problems are linearly equivalent.
Hint: If lOn-1 < i < ion -1, its pseudo-inverse i* is defined as 102n-1 : i. For ex-
ample, 36* = 27 and 27* = 37. (In practice we would probably not use base 10.)
Let INV be the problem of computing the pseudo-inverse of an integer of size n.

467



Computational Complexity

Use INVinyourchainofreductions. Forexample,provethat i . j (i X j*) . 1 0 2n-1

when i and j are integers of (decimal) size 2n and n, respectively, and show how
to use this to conclude that DIV <- INV follows from MLT <t SQR •4 INV.

Problem 12.28. Continuing Problem 12.27, let SQRT be the problem of finding the
integer part of the square root of an integer of size n. Prove under suitable assump-
tions that SORT and MLT are linearly equivalent. State explicitly the assumptions
you need.

Problem 12.29. Denote by SU the problem of squaring a triangular matrix whose
diagonal consists only of is. Prove that SU -t MO under suitable assumptions.
What assumptions do you need?

Problem 12.30. Prove that the inverse of a nonsingular upper triangular matrix is
upper triangular.

Problem 12.31. Denote by IQ the problem of inverting an arbitrary nonsingu-
lar matrix. Prove that IQ -3 MO, assuming both IQ and MO are supra quadratic;
see Problem 12.26. Note that this reduction would not go through should an algo-
rithm that is capable of multiplying n x n matrices in a time in 0 (n2 log n) exist
because this function is not supra quadratic.

Problem 12.32. Prove that MUL < TRC, assuming TRC is smooth.

Problem 12.33. Prove that TRC <t MUL, assuming MUL is smooth and strongly
quadratic.

Problem 12.34. Exhibit a decision problem for which you can prove that to any
algorithm that solves it there corresponds another algorithm that solves it expo-
nentially faster on all but finitely many instances.

Problem 12.35. Prove that it takes polynomial time to execute a polynomial num-
ber of polynomial-time operations.

Problem 12.36. The set of all composite numbers is obviously in NP since any
nontrivial divisor of n is convincing evidence that n is composite. Recalling the
asymmetry of JVP mentioned just before Theorem 12.5.3, it is tempting to expect
that the complementary set of all prime numbers is not in INP. After all, it seems
certain at first sight that there is no succinct way to prove that a number is prime:
what could we possibly exhibit to prove the nonexistence of a nontrivial divisor?
However, nothing is certain in this world except death and taxes: primality too is
in JVP, although the notion of a certificate of primality is rather more subtle than
that of a certificate of nonprimality. Your problem is to figure it out!
Hint: An odd integer n > 2 is prime if and only if there exists an integer x between 1
and n - 1 such that Xn-1 mod n = 1 and x(n-,)/P mod n i 1 for each prime divisor
p of n-i.

Problem 12.37. Prove that polynomial reductions are transitive. Consider any
problems A, B and C such that A <P B and B <P C; prove that A <P C. Rework this
problem with many-one reductions " <m" with the restriction that A, B and C are
decision problems.

468 Chapter 12



Section 12.7 Problems

Problem 12.38. Exhibit two very simple decision problems X and Y such that
X<S Y, yet X ?m Y

Problem 12.39. Exhibit two decision problems X and Y such that X < PY, yet there
are good reasons to believe that X i Y. To make this problem more interesting than
Problem 12.38, your sets X and Y must be infinite and so must their complements.

Problem 12.40. Following Problem 12.39, exhibit two decision problems X and Y
such that X <S Y, yet you can prove that X P Y. Again, X and Y must be infinite
and so must their complements.

Problem 12.41. Consider two decision problems X and Y. Prove that if X G WNP
and Y <P X, then Y E AP.

Problem 12.42. Continuing Problem 12.41, give convincing evidence that it is pos-
siblethatX E NPandY ST X,yetY X J%[eventhoughYisadecisionproblem.

Problem 12.43. Prove that the problem of optimal graph colouring is decision-
reducible. Specifically, consider the problems COLD, COLO and COLC introduced
in Definition 12.5.18. Prove that these three problems are polynomially Turing
equivalent.

Problem 12.44. Continuing Problem 12.43, prove that problem 3COL, also intro-
duced in Definition 12.5.18, is polynomially Turing equivalent to COLD, COLO
and COLC. You may assume the result required in Problem 12.43 and you may use
the fact that 3COL is WNP-complete.

Problem 12.45. Given an undirected graph G = (N, A), a clique is a set of nodes
such that there is an edge in the graph between any two nodes in the clique. (Some-
times a clique is defined as a maximal set having this property; we do not insist on
this condition.) There are three natural problems concerning cliques.

• CLQD: Given a graph G and an integer k, does there exist a clique of size k
in G?

• CLKO: Given a graph G, find the size of the largest clique in G.

• CLKC: Given a graph G, find a clique of maximum size in G.

Prove that the clique problem is decision-reducible: all three problems above are
polynomially Turing equivalent.

Problem 12.46. Prove that the problem of finding a satisfying assignment in a
Boolean formula is decision-reducible: the problem of finding a satisfying assign-
ment for a Boolean formula is polynomially reducible to the problem of deciding
if such an assignment exists.

Problem 12.47. Prove that the travelling salesperson problem is decision-reducible:
TSP -P TSPD. (These problems are defined just before Theorem 12.5.9.)

469



Computational Complexity

Problem 12.48. Consider the decision problem

F = { (n, d) I n e M+ and n has a nontrivial divisor smaller than d}.

Prove that F is polynomially Turing equivalent to the factorization problem.

Problem 12.49. Prove that any two •MP-complete problems are polynomially
Turing equivalent.

Problem 12.50. Prove that HAMD, the problem of deciding if a graph is Hamilto-
nian, is JP- complete.

Problem 12.51. Prove that COLD is N P- complete; see Definition 12.5.18.

Problem 12.52. Prove that 3COL is •NP-complete even if we restrict ourselves to
planar graphs of degree not greater than 4; see Definition 12.5.18.

Problem 12.53. Find a polynomial-time algorithm to solve SAT-2-CNF.

Problem 12.54. Consider the problem of deciding the satisfiability of Boolean
formulas in CNF such that each clause contains exactly three literals. Prove that
this problem is •A P-complete by reducing SAT-3-CNF to it.

Problem 12.55. Prove that CLQD, the decision version of the clique problem in-
troduced in Problem 12.45, is LNP- complete.

Problem 12.56. You are given a collection xI, X2, Xn of n integers. Your task
is to decide whether or not there exists a set X c {1, 2_ . ., n} such that ZXie xi -
'itx xi. This is known as the PARTITION problem.

(a) Prove that this problem is NJP- complete.

(b) Prove that it is decision-reducible: an oracle to solve the decision problem can
be used in polynomial time to find an appropriate X whenever it exists.

Problem 12.57. Prove that if X e NP and Y is SIP-hard, then X <T Y. In other
words, JVP-hard problems are at least as hard as any problem in •[P.

Problem 12.58. Give explicitly a nondeterministic algorithm that solves the prob-
lem of nonprimality in polynomial time.

Problem 12.59. Continuing Problems 12.36 and 12.58, give explicitly a nondeter-
ministic algorithm that solves the problem of primality in polynomial time. Anal-
yse the running time of your algorithm.

Problem 12.60. Prove that 3VP c PSP.ACE. For this note that a polynomial
amount of storage is sufficient to enumerate all polynomially bounded potential
certificates and to try each of them to see if at least one is adequate.

Problem 12.61. Prove that PSPJ4CE = APSPJ4CE. For this, show that if
s (n)> Ig n can be computed efficiently, any decision problem that can be solved

Chapter 12470



Section 12.8 References and further reading

with an amount of storage in 0 (s (n)) bits by a nondeterministic algorithm can
also be solved with an amount of storage in 0 (S2 (n)) bits by a deterministic algo-
rithm.

Problem 12.62. Prove that LOGSTACE¶ c - For this, note that any deterministic
algorithm that finds itself twice in the same configuration loops forever; there are
only 25 different configurations when only s bits of storage are available; and
2 k1g = nk-

Problem 12.63. Assuming X'P #6 co-XP, prove that NP-complete problems
cannot belong to co-?P.

Problem 12.64. Prove that RP c N[P. For this note that any sequence of prob-
abilistic choices that leads an RP probabilistic algorithm to accept is convincing
evidence that the instance considered is a yes-instance.

Problem 12.65. Prove that ZPP = RPn co-XP. Note the similarity with Prob-
lem 10.28.

Problem 12.66. Two graphs G = (V,A) andH = (W,B) are isomorphic if there is a
correspondence between the vertices of G and those of H that preserves adjacency.
Formally, G and H are isomorphic if there exists a bijective function a : V - W such
that (V1 , V2 )e A if and only if (oi(VI), cr(v2 ))e B for all V1, V2 E V. Even though no
polynomial-time algorithm is known to decide whether or not two given graphs
are isomorphic, this problem is obviously in .ACP since the function C can serve as a
certificate. However, it is believed that the problem of graph nonisomorphism is not
in XP: what kind of succinct evidence could prove that two given graphs are not
isomorphic? Nevertheless, your problem is to show that graph nonisomorphism
belongs to the class ?IP.

Hint: If in fact G and H are isomorphic and if you present me with a graph K chosen
randomly among all graphs isomorphic to G, there is no way I can tell whether
you produced K from G or from H.

12.8 References and further reading

Computational complexity is covered in detail by Papadimitriou (1994). An intro-
duction for nonspecialists is given by Pippenger (1978). The proof by Wells that 30
comparisons are necessary in the worst case to sort 12 items is an early example of
massive calculation: it took 60 hours on a then state-of-the-art MANIAC II computer.
See Gonnet and Munro (1986) and Carlsson (1987a) for modifications of heapsort
that make it come very close to being optimal for the worst-case number of com-
parisons. It is possible to sort in a time faster than 0 (n log n) with the technique
of fusion trees introduced by Fredman and Willard (1990) even if the items to be
sorted are too large to use pigeonhole sorting; of course this sorting technique does
not proceed by comparisons.

471



Computational Complexity

The notion of smooth problems and its application to linear reductions is orig-
inal to Brassard and Bratley (1988). The linear reduction from integer division to
integer multiplication is from Cook and Aanderaa (1969). For further informa-
tion on reductions among arithmetic problems, consult Aho, Hopcroft and Ullman
(1974). The reduction from the inversion of arbitrary nonsingular matrices to ma-
trix multiplication is from Bunch and Hopcroft (1974). If f and g are cost functions
as in Section 12.4.3, an algorithm asymptotically faster than the naive algorithm
for calculating fg is given in Fredman (1976). The linear reduction from cost func-
tion multiplication to the calculation of transitive reflexive closures is from Fischer
and Meyer (1971) and the converse reduction is from Furman (1970); together they
prove Theorem 12.4.12. In the case of cost functions whose range is restricted to
{0, + oo , Arlazarov, Dinic, Kronrod and Faradzev (1970) present an algorithm to
calculate f g using a number of Boolean operations in 0 (n3 

/ log n); Theorem 12.4.13
is from Fischer and Meyer (1971).

The theory of .P-completeness originated with two fundamental papers:
Cook (1971) proves that SAT-CNF is JfP-complete and Karp (1972) underlines the
importance of this notion by presenting a large number of XNP-complete prob-
lems. To be historically exact, the original statement from Cook (1971) is that
X <T TAUT-DNF for every X e NVP, where TAUT-DNF is concerned with tautolo-
gies in disjunctive normal form; however this problem is probably not NiP- com-
plete because it does not belong to N'P unless •NP = co-NP. A similar theory
was developed independently by Levin (1973), who used tiling problems instead
of tautologies. The idea that polynomial time is a fundamental concept came ear-
lier to Cobham (1964) and Edmonds (1965). The uncontested authority in matters
of XP- completeness is Garey and Johnson (1979). A good introduction is also
provided by Hopcroft and Ullman (1979).

The term "decision-reducible" was suggested to the authors by Papadimitriou;
read Bellare and Goldwasser (1994) for more on the complexity of decision versus
search. Decision-reducibility should not be confused with the better-known no-
tion of self-reducibility according to which the solution of many problems can be
reduced to solving the same problem on smaller instances. See Naik, Ogiwara and
Selman (1993) for more detail on how decision-reducibility and self-reducibility
relate.

Probabilistic complexity classes were investigated by Gill (1977); the class RP
is from Adleman and Manders (1977). Interactive proofs and the class 2? are from
Goldwasser, Micali and Rackoff (1989); a similar idea was developed independently
by Babai and Moran (1988). The first serious investigation of [C is from Pippenger
(1979). Quantum computing originated with Benioff (1982), Feynman (1982, 1986)
and Deutsch (1985); see also Deutsch and Jozsa (1992), Bernstein and Vazirani
(1993), Lloyd (1993), Berthiaume and Brassard (1994), Brassard (1994), Shor (1994)
and Simon (1994). An encyclopedic source of information on the menagerie of
classical complexity classes is Johnson (1990); see also Papadimitriou (1994).

Many of the problems concerning polynomial reductions in Section 12.7 are
solved in Karp (1972). Problem 12.34 is from Blum (1967). The fact that the set of
primes is in NP (Problems 12.36 and 12.59) is from Pratt (1975); more succinct
primality certificates are given by Pomerance (1987). Problems 12.48 and 12.63 are

472 Chapter 12



Section 12.8 References and further reading 473

from Brassard (1979). Part of the solution to Problem 12.52 is from Stockmeyer
(1973). Problem 12.61 is from Savitch (1970). Problem 12.66 is from Goldreich,
Micali and Wigderson (1991).

Several important computational complexity techniques have gone unmen-
tioned in this chapter. An algebraic approach to lower bounds is described in Aho,
Hopcroft and Ullman (1974), Borodin and Munro (1975) and Winograd (1980).
Although we do not know how to prove that there are no efficient algorithms for
:1P- complete problems, there exist problems that are intrinsically difficult, as de-
scribed in Aho, Hopcroft and Ullman (1974). These can be solved in theory, but
it can be proved that no algorithm can solve them in practice when the instances
are of moderate size, even if it is allowed to take a time comparable to the age of
the Universe and as many bits of storage as there are elementary particles in the
known Universe; see Stockmeyer and Chandra (1979). There also exist problems
that cannot be solved by any algorithm, whatever the resources available; read
Turing (1936), Gardner and Bennett (1979) and Hopcroft and Ullman (1979) for a
discussion of these undecidable problems.



Chapter 13

Heuristic and

Approximate Algorithms

Knowing that a problem is hard to solve is instructive. It may even be useful if it
stops you wasting time searching for an efficient algorithm that probably does not
exist. However it does not make the problem go away. Sometimes you have to
find some sort of solution to a problem whether it is hard or not. This is the realm
of heuristic and approximate algorithms.

By a heuristic algorithm, often called simply a heuristic, we mean a procedure
that may produce a good or even optimal solution to your problem if you are lucky,
but that on the other hand may produce no solution or one that is far from optimal
if you are not. A heuristic may be deterministic or probabilistic. The essential
difference between a probabilistic heuristic and a Monte Carlo algorithm is that
the latter must find a correct solution with positive (preferably high) probability
whatever the instance considered. On the other hand, there may be instances for
which a heuristic, probabilistic or not, will never find a solution. In some cases,
a heuristic procedure may amount to little more than intelligent guesswork. One
example that we have already seen is the minimax heuristic described in Section 9.8.

We reserve the term approximate algorithm for a procedure that always provides
some kind of solution to your problem, though it may fail to find the optimal
solution. To be useful, it must also be possible to calculate a bound either on the
difference or else on the ratio between the optimal solution and the one produced
by the approximate algorithm. The following sections illustrate various kinds of
bounds that may be encountered.

Even when an exact algorithm is available, a good approximation algorithm
may sometimes be useful. The data involved in a particular instance to be solved
are often uncertain or inaccurate to a certain degree: the difficulty of gathering

474



Section 13.1 Heuristic algorithms

information in practical situations is such that it is rarely possible to achieve pre-
cision. If the error caused by using an approximation algorithm is less than the
possible error caused by using inexact data, and if the approximation algorithm is
more efficient than the exact algorithm, then for all practical purposes it may be
preferable to use the former.

13.1 Heuristic algorithms

13.1.1 Colouring a graph

We encountered graph colouring problems in Section 12.5.4. Several related prob-
lems are formally defined in Definition 12.5.18. The particular problem that con-
cerns us in this section is the following.

Let G = (N, A) be an undirected graph. We want to paint the nodes of G in
such a way that no two adjacent nodes are the same colour. The problem asks what
is the minimum number of colours required. This minimum is called the chromatic
number of the graph. For instance, the graph of Figure 13.1 can be painted using
only two colours, say red for nodes 1, 3 and 4, and blue for nodes 2 and 5. As we
saw in Section 12.5.5, this problem is NP-hard.

Figure 13.1. A graph to be coloured

An obvious greedy heuristic consists of choosing a colour and an arbitrary starting
node, and then considering each node in turn. If a node can be painted with the
first colour (in other words, if none of its neighbours has yet been painted), we
do so. When no further nodes can be painted, we choose a new colour and a new
starting node that has not yet been painted. Then we paint as many nodes as we
can with this second colour. This time we paint a node if none of its neighbours
has already been painted with the second colour; it doesn't matter whether one or
more neighbours have already been painted with the first colour. If there are still
unpainted nodes, we choose a third colour, paint as many nodes as we can with
that, and so on.

In the example, if node 1 is painted red, we are not allowed to paint node 2 with
the same colour. However nodes 3 and 4 can both be painted red, but then node 5
cannot be painted. If we start again at node 2 using blue paint, we can paint nodes
2 and 5 and finish the job using just two colours. This is an optimal solution to our
example, since obviously no solution using just one colour is possible. Suppose,
however, that we systematically consider the nodes in the order 1, 5, 2, 3, 4. Now
we get a different answer: in this case nodes 1 and 5 can be painted red, then
node 2 can be painted blue, but now nodes 3 and 4 require a third colour, since they

475



Heuristic and Approximate Algorithms

already have both a red neighbour and a blue neighbour. In this case the result is
not optimal. The greedy algorithm is therefore no more than a heuristic that may
possibly, but not certainly, find an optimal solution.

Even though the heuristic may not find an optimal solution, we may hope
that in practice it will be able to find a "good" solution, not too different from the
optimum. Let us see whether this hope is justified.

First, it is not hard to show that for any graph G there is at least one ordering
of the nodes that allows the greedy algorithm to find an optimal solution. In other
words, whatever graph you are working on, there is always a chance you might be
lucky and find an optimal solution. To see this, consider any graph G and suppose
that an optimal solution requires k colours. Suppose further that by magic you
are given a way of colouring G using just k colours. Number these k colours
arbitrarily, and then number the nodes of G as follows. First number consecutively
all the nodes of G that are painted with colour 1 in the optimal solution. Continue
the sequence by numbering all those nodes that are painted with colour 2 in the
optimal solution, and so on. When you finish colour k all the nodes will have been
numbered. Between nodes of the same colour it doesn't matter which is numbered
first.

Now if you apply the greedy heuristic to the graph G considering the nodes
in order of the numbers you just assigned, it is sure to find an optimal solution.
This may not be the same as the solution you were given to start with, however.
For consider applying colour 1. You will certainly be able to paint all the nodes
that had colour 1 in the original solution; maybe you will be able to paint some
more as well. When you apply colour 2, some nodes that had this colour in the
original solution may already be painted with colour 1. However there are sure to
be one or more nodes that had colour 2 in the original solution that have not been
painted. (Problem 13.2 asks you to justify this remark.) You will be able to paint
all these with colour 2, and maybe some more nodes as well. (The presence of
extra nodes of colour 1 cannot make it impossible to paint an unpainted node with
colour 2.) Continuing in this way, when you finish colour 1 you will have painted
at least as many nodes as had colour 1 in the original optimal solution; when you
finish colour 2 you will have painted in all at least as many nodes as had colour 1
or colour 2 in the original solution; and so on, until when you finish colour k you
will have painted at least as many nodes as had colours 1, 2, .. ., k in the original
solution: in other words you will have painted all the nodes. Thus you have found
a solution using just k colours, which is optimal.

On the negative side, there are graphs that make this heuristic as bad as you
choose. More precisely, there are graphs that can be coloured with just k colours for
which, if you are unlucky, the heuristic will find a solution using c colours where
c / k is as large as you please. To see this, consider a graph with 2n nodes numbered
from 1 to 2n. When i is odd, node i is adjacent to all the even-numbered nodes
except node i + 1; when i is even, node i is adjacent to all the odd-numbered nodes
except node i - 1. Figure 13.2 shows such a graph for the case n = 4. This graph
is bipartite: the nodes can be divided into two sets N1 and N2 (the odd and even-
numbered nodes respectively, in this example) such that every edge joins a node
in N1 to a node in N2. Such a graph can always be coloured with just two colours.

476 Chapter 13



Section 13.1 Heuristic algorithms

For example, we might paint the odd-numbered nodes red and the even-numbered
nodes blue. The greedy heuristic will find this optimal solution if it tries to paint
nodes in the order 1, 3,...,2n - 1, 2,4,...,2n, for example. On the other hand, if it
looks at nodes in the natural order 1, 2,. . ., 2n - 1, 2n, then it is easy to see that it
finds a solution requiring n colours: nodes 1 and 2 can be painted with colour 1,
then nodes 3 and 4 must be painted with a new colour 2, nodes 5 and 6 must be
painted with a new colour 3, and so on. By choosing n sufficiently large, we can
make this solution as bad as we please.

Figure 13.2. A bipartite graph

This procedure is definitely a heuristic and not an approximate algorithm: there is
no way to establish bounds for the error in the solution it provides. You might try
to protect yourself against major errors by running the heuristic several times on
the same graph with different, randomly chosen orderings of the nodes. Even so,
the absence of proper error bounds makes the procedure of little practical use. For a
graph with n nodes, in the worst case (when the graph is complete) the heuristic
might have to use n colours; for each colour it has to look at every one of the n
nodes; and for every node that is not yet painted it might have to look at n -1
neighbours. The running time is thus in 0 (n3 ).

13.1.2 The travelling salesperson

This problem was introduced in Section 12.5.2. We know the distances between a
certain number of towns. The travelling salesperson wants to leave one of these
towns, to visit each other town exactly once, and to arrive back at the starting
point having travelled the shortest distance possible. We assume that the distance
between two towns is never negative. Like the previous problem, the travelling
salesperson problem is N P-hard, and the known algorithms are impractical for
large instances. (Of course this depends what you mean by "large". Using linear
programming and cutting plane techniques of a kind not described in this book,
problems involving a few hundred towns can now be solved routinely. At the time
of writing, the largest real instance of the problem that had been solved involved
4461 towns; see Section 11.9.)

The problem can be represented as a complete undirected graph with n nodes.
(The graph can also be directed if the distance matrix is not symmetric. We shall not
consider this possibility here.) We remind the reader that a cycle in the graph that
passes through each node exactly once is called a Hamiltonian cycle. Our problem
therefore requires us to find the shortest Hamiltonian cycle in a given graph.

477



Heuristic and Approximate Algorithms

For example, suppose our problem concerns six towns with the following dis-
tance matrix.

From To: 2 3 4 5 6
1 3 10 11 7 25
2 8 12 9 26
3 9 4 20
4 5 15
5 18

In this instance the optimal tour has length 58. This can be achieved with a tour
that visits nodes 1, 2, 3, 6, 4, and 5 in that order before returning to the starting
point at node 1.

One obvious greedy heuristic consists of starting at an arbitrary node, and
then choosing at each step to visit the nearest remaining unvisited node. In the
example, if we start at node 1, then the nearest unvisited node is node 2. From
node 2 the nearest unvisited node is node 3, and so on. After visiting the last
node we come back to the starting point. The tour constructed in this way visits
nodes 1, 2, 3, 5, 4, 6 and 1, and has a total length of 60. Thus although the greedy
algorithm does not find an optimal solution in this case, it is not far wrong. With
other examples, however, it can be catastrophic; see Problem 13.4. Is it possible
to find an approximate algorithm that is guaranteed to find a reasonably good
solution? We are about to see that the answer is yes if we restrict the class of
instances considered (Section 13.2.1), and probably no otherwise (Section 13.3.2).

13.2 Approximate algorithms

13.2.1 The metric travelling salesperson
As we shall see in Section 13.3.2, finding a good approximate algorithm for the
travelling salesperson problem is impossible unless P- = NP. Here we describe
an efficient approximate algorithm for a special case. A distance matrix is said to
have the metric property if the triangle inequality holds: for any three towns i, j
and k

distance(i, j)< distance(i, k)+distance(k, j).

In other words, the direct distance from i to j is never more than the distance from i
to j via k. In particular, this property holds in Euclidean problems, where the towns
are considered to lie in a plane and the distances are the straight-line distances
between them. When by "distance" we actually mean a cost, the property may
arise less naturally. In the example above the distance matrix does indeed have the
metric property. For instance

10 = distance(1,3)< distance(1,2)+distance(2,3)= 3 + 8 = 11,

and a similar condition holds for every choice of three nodes.
Let G be a complete undirected graph with n nodes, and consider any Hamil-

tonian cycle in this graph. Suppose this cycle has length h. Clearly it consists of n
edges. If we remove any one of these, the remaining n - 1 edges form a path that

478 Chapter 13



Section 13.2 Approximate algorithms 479

visits each node of G exactly once but does not return to its starting point: this is
called a Hamiltonian path. Since the edge removed has a nonnegative length, the
length of this Hamiltonian path is at most h. However, the Hamiltonian path is
also a spanning tree for the graph G. If the length of a minimum spanning tree for
G is m (G), it follows that the Hamiltonian path must have length greater than or
equal to m(G). Thus for any Hamiltonian cycle in G, h > m (G).

Now suppose the distance matrix of G has the metric property. We illustrate
how the approximate algorithm works using the distance matrix given above. First
find a minimum spanning tree for G using either Kruskal's or Prim's algorithm;
see Sections 6.3.1 and 6.3.2. Figure 13.3 shows a minimum spanning tree for our
example. It is drawn with node 1 at the root since we are interested in tours that
start and finish at this node (but see Problem 13.8). The minimum spanning tree has
length 34. Now imagine you are an ant crawling round the outside of this figure.
You start at the root (node 1), crawl down the left-hand side of edge {1, 21 to node 2,
round node 2, back up the right-hand side of edge {1, 21 to node 1, down the left-
hand side of edge {1, 51 to node 5, past node 5 and down the left-hand side of edge
{5, 31 to node 3, round node 3, and so on. Eventually you arrive back at the root
after crawling up the right-hand sides of edges {4,6}, {4,5} and {5, 11. The dotted
line in the figure illustrates your complete track.

Figure 13.3. A minimum spanning tree

Since the tree spans the underlying graph, you are sure to visit each node at least
once during your tour. In fact, as the example shows, you may visit some nodes
more than once: the complete tour in the figure visits nodes 1, 2, 1, 5, 3, 5, 4, 6, 4, 5
and 1 in that order. Call this tour to. It is clear that during your tour you crawl along
each edge in the spanning tree twice, once down the left-hand side and once up the
right-hand side. If the length of the minimum spanning tree is m(G), therefore,
the length of your tour, len(to) say, is 2m(G).

The approximate algorithm now proceeds by cutting out duplicate nodes from
the tour. In the example, the first node revisited is node 1, which is revisited
between nodes 2 and 5. We shorten the tour by omitting this second visit to node 1.



Heuristic and Approximate Algorithms

The new tour is 1, 2, 5, 3, 5, 4, 6, 4, 5, 1. If we call this tour t1, then

len (to) len (to ) = distance(2, 1) +distance(1, 5) -distance(2, 5),

which must be greater than or equal to zero by the metric property of the distance
matrix. Thus t1 is no longer than to. In ti node 5 is revisited between nodes 3
and 4. As before, we can omit the second visit to node 5, obtaining a new tour t2
that visits nodes 1, 2, 5, 3, 4, 6, 4, 5, 1. A similar argument to the previous case
shows that len (t2 ) < len (t1). Proceeding thus, we omit successively from the tour
any nodes that have been visited previously (except for the final return to node 1);
each new tour obtained is no longer than its predecessor. In the example, the final
tour obtained, that we shall call simply t, visits nodes 1, 2, 5, 3, 4, 6 and 1. Its
length is 65. In general, since len(t) • len(to)= 2m(G), and the length h of any
Hamiltonian cycle in G is at least m(G), we have that

len(t)< 2m(G)< 2h.

The length of the tour found by this approximate algorithm is therefore no more
than twice the length of the optimal tour. In the example, the length of the optimal
tour is at least 34 and at most 65.

Although the proof that the algorithm works required us to obtain t in a round-
about way, it is easy to see that in fact t is simply a list of the nodes in a minimum
spanning tree of G in preorder; see Section 9.2. Implementing the algorithm is
straightforward. For a graph with n nodes, finding a minimum spanning tree
takes a time in 0 (n 2) using Prim's algorithm; see Section 6.3.2. Exploring this tree
in preorder takes a time in 0 (n). The approximate algorithm therefore takes a time
in E)(n 2 ).

Using a more sophisticated approximate algorithm, we can guarantee to get
within a factor 3/2 of the optimal solution; see Problem 13.10. There are many
variations on the theme of the travelling salesperson problem. For example, the
graph maybe directed, so that distance(i, j) is not necessarily equal to distance(j, i),
or certain of its edges may be missing. We shall not study these variations here,
beyond noting that for the case of a directed graph no heuristic with a guaranteed
worst-case performance is known even in the metric case.

13.2.2 The knapsack problem (5)

We have encountered several variations on the theme of the knapsack problem in
this book. Recall that we are given n objects and a knapsack. For each i, 1 < i < n,
object i has a positive integer weight wi and a positive integer value vs. The knap-
sack can carry a total weight not exceeding W. Our aim is to fill the knapsack in a
way that maximizes the value of the included objects, while respecting the capacity
constraint. In Section 6.5, we allowed objects to be split: we could carry one-third
of object i, for instance, with benefit vi /3 and cost wi /3. In this case, we saw that a
simple greedy algorithm finds the optimal solution in a time in 0 (n log n): it suf-
fices to choose the objects in nonincreasing order of value per unit weight and to
stuff the knapsack until it is full, splitting the last object considered if necessary.

480 Chapter 13



Section 13.2 Approximate algorithms

In Section 8.4 we tackled the more challenging problem of finding an optimal solu-
tion when splitting objects is not allowed: we may take an object or leave it behind,
but we may not take a fraction of an object. In this case, we saw that the greedy
algorithm can be suboptimal, which is not surprising since this version of the prob-
lem is MP-hard. Nevertheless, we saw a dynamic programming algorithm that
finds an optimal solution in a time in 0 (nW), which may be prohibitive when W
is large. Finally, we saw a third variation on the theme in Sections 9.6.1 and 9.7.2.
This will not concern us here, but look at Problem 13.12.

Although suboptimal when splitting objects is not allowed, the greedy algo-
rithm is so efficient in terms of computing time that it may be useful if its relative
error is guaranteed to be within control. For definiteness, we state this algorithm
explicitly.

function greedy-knap(wl l . . n], v[1 . . n], W)
Sort the instance so v[i]/w[i]> v[j]I/w[j] for all 1 <: i < j < n
weight, value 0
for i = 1 to n do

if weight + w[i]< W then value - value + v[i]
weight - weight + w[i]

return value

Unfortunately, this algorithm can be arbitrarily bad. To see this, fix an integer x > 2
as large as you wish and consider the instance consisting of a knapsack of capac-
ity W = x and two objects whose weights and values are wl = 1, vi = 2, w2 = X
and V2 x. The objects are in order of nonincreasing value per unit weight since
vl/wi 2 is larger than V2/W2 = 1. The algorithm first places object 1 into the
knapsack because wi < W; this reaps value 2. As a result, the second object no
longer fits into the knapsack and the algorithm returns 2 as its approximate solu-
tion. Of course, the optimal solution in this case is to leave out object 1 and pack
object 2 instead, for a yield of x. Thus the greedy algorithm returns a value that is
within a factor x /2 of optimality, which can be made as bad as desired.

Fortunately, it is easy to fix this. Consider the following slight modification
of the greedy algorithm, which assumes for simplicity that no object weighs more
than the knapsack's capacity.

function approx-knap(w[1 . . n], v[l . . n], W)
biggest - max{v[i] 11 < i < n}
return max (biggest, greedy-knap (w, v, W))

We now prove that the solution returned by approx-knap is always within a factor 2
of the optimal. Consider an arbitrary instance. Assume the knapsack is too small
to contain all the objects at once, since otherwise the greedy algorithm returns the
trivial optimal solution that includes all the objects. Assume too that the objects are
already sorted in order of nonincreasing value per unit weight. Let opt and opt be
the optimal solution and the solution returned by approx-knap, respectively. Let f

be the smallest integer such that Yt~ w1 > W. Such an ? exists by assumption.
Consider a modified instance of the knapsack problem that uses the same objects

481



Heuristic and Approximate Algorithms

but for which the capacity of the knapsack is increased to W' = I wi. The proof
of Theorem 6.5.1 applies mutatis mutandis to show that for the modified instance
it is optimal to pack the first X? objects. The solution of this instance is therefore

opt' =$ vi. But the optimal solution of the original instance cannot be larger
than that of the modified instance since more value cannot be packed into a smaller
knapsack when the same objects are available: opt < opt'. It remains to note that

greedy-knap(w, v, W)> vti because the greedy algorithm will put the first e - 1
objects into the knapsack before failing to add the t-th. (It may put in a few more
as well.) Moreover, biggest > ve, where biggest is the largest vi as calculated in
approx-knap. Putting it all together, and using the fact that max (x, y) > (x + y) /2,
we finally obtain

opt = max(biggest,greedy-knap(w, v, W))

> (biggest + greedy-knap(w, v, W))/2

> Ve + vi /2 = vi/2 = opt'/2

> optl2,

which proves that the approximate solution is within a factor 2 of the optimum,
as desired. In Section 13.5, we shall see that still better approximations can be
obtained efficiently for the knapsack problem.

13.2.3 Bin packing
Rather as in the knapsack problem, we are given n objects. Object i has weight wi,
1 s i < n. We are also given a number of identical storage bins, each of which can
hold any number of objects provided their total weight does not exceed the bin
capacity W. Objects may not be split between bins. Two related problems arise.
Given k bins, what is the greatest number of objects we can store? Alternatively,
what is the least number of bins needed to store all the n objects? The second
problem is usually called the bin-packing problem. Both problems are JN9P-hard.

We begin by looking at the first problem. Suppose without loss of generality
that the objects to be stored are numbered in order of nondecreasing weight, so
wi < wj when i < j. For the simple case when k = I it is obviously optimal to
load objects into the single bin in numerical order. Now consider the following
straightforward greedy algorithm for the case when k = 2. Take each object in turn
in numerical order. Put as many as possible into bin 1; when bin 1 is full put as
many of the remaining objects as possible into bin 2; then stop.

A simple example suffices to show that this algorithm does not always give
the optimal solution to our problem. For instance, if n = 4, the weights of the four
objects are 2, 3, 4 and 5 respectively, and the capacity of each bin is 7, the greedy
algorithm puts objects 1 and 2 into bin 1 and object 3 into bin 2, then stops. Thus
it has managed to store just 3 objects in the two bins. The optimal solution is
obviously to put objects I and 4 into bin 1, and objects 2 and 3 into bin 2, for a total
of 4 objects. However the greedy algorithm is never in error by more than 1 object,
as we shall now show.

482 Chapter 13



Section 13.2 Approximate algorithms

Let the optimal solution to the instance with two bins be s, that is, we can load
s objects into the two bins. Suppose first, however, that instead of two bins with
capacity W each, we have just one bin with capacity 2W. Construct the optimal
solution to this new instance by putting objects into the bin in numerical order.
Suppose t objects can be loaded in this way. Clearly s < t since splitting one large
bin into two can never allow us to include more objects than before. In the optimal
solution for the instance with one large bin, let j be the smallest index such that

Z wi > W. The index j is well defined unless ' 1' wi < W, in which case the
trivial optimal solution is to put all n objects in the first bin. Using this, and the
fact that Y_'=, w i < 2W, we obtain Y.'.j~l wi < W. The situation is illustrated in
Figure 13.4.

w w

1 2 ... j-2 j Ij+ . I t

Figure 13.4. Packing one large bin of capacity 2W

Returning to the instance with two bins, it is therefore possible to load objects 1 to
j - 1 into the first bin and objects j + 1 to t into the second bin. However because
the objects are numbered in order of nondecreasing weight, we have

tl1 t

SWi < Wi,
j~ j i j+1

so the greedy approximate algorithm will put objects 1 to j - 1 into the first bin,
and objects j to t - 1 into the second. Object t may possibly fit into the second bin,
too. The solution found by the greedy algorithm is therefore at least t - 1. Since
s < t, this solution is in error by at most one object.

If the n objects are not initially sorted then a time in 0 (n log n) is required
to sort them. Thereafter the greedy approximate algorithm takes a time in 0(n).
The approximate algorithm can be extended in the obvious way to the case where
k bins are available. In this case the solution it finds is never in error by more than
k - 1 items. This can be proved by an easy extension of the argument above.

The second of the two related problems asks, given n objects, how many bins
are needed to store them all. It is tempting to try the obvious variant of the ap-
proximate algorithm described above: take the objects in order of nondecreasing
weight, put as many of them as possible into the first bin, then into the second bin,
and so on, and count how many bins are necessary to store all the n objects.

Let b be the optimal number of bins required, and let s be the solution found
by this approximate algorithm. This time it is not true that the absolute error s - b
is bounded by a constant; however it is true that s is less than a constant multiple

483



Heuristic and Approximate Algorithms

of b. In other words, s/b is bounded. To illustrate the impossibility of obtaining
a constant additive error bound with this approximate algorithm, consider the
following family of instances.

We are given n = 2k objects and a supply of bins of capacity 2W. It is convenient
to suppose that k is even. The exact value of W is immaterial provided it is larger
than 3(k -1). The n objects have weights W - k, W - (k -1) . W -1, W + 1, ... ,
W + (k -1), W + k. Clearly these n objects can be packed into k bins by taking the
lightest with the heaviest, the next lightest with the next heaviest, and so on. The
greedy algorithm on the other hand first puts the object whose weight is W - k in
a bin with the object whose weight is W - (k - 1). The third object cannot go in the
same bin because

W - k + W - (k -1)+W - (k - 2)= 3W - 3(k -1)> 2W.

Thus the objects whose weight is less than W are packed two by two into k/2 bins,
while the remaining k objects occupy one bin each, for a total of 3k/2 bins. In this
case the difference between the optimal solution b = k and the solution s = 3k/2
found by the approximate algorithm can be made as large as we please by choosing
k large enough. On the other hand, for this family of instances the ratio s/b = 3/2
is constant.

In general it can be shown that for this approximate greedy algorithm

17
s <2+ lb.

10

A better approximate algorithm is obtained if objects are considered in order of
nonincreasing weight. Now we take each object in turn and try to add it to bin 1;
if it will not fit, we try to add it to bin 2, and so on; if it will not fit in any of the
bins used so far, we start a new bin with the next highest number. Observe that for
the instance discussed in the previous paragraph, this algorithm finds the optimal
packing. In general for this approximate greedy algorithm s < 4 + 1 b. The proofs
of the bounds given in this paragraph are not simple.

13.3 MP-hard approximation problems
Chapter 12 may have left you with the impression that there is no significant differ-
ence in the difficulty of solving one [ P -complete problem or another. Nothing
could be farther from the truth when it comes to finding approximate solutions.
We saw for example in Section 13.2.3 that even though it is WP-hard to deter-
mine the greatest number of objects we can store in two bins, a simple greedy
algorithm quickly finds a solution that never falls short of optimality by more than
one item. In contrast, other optimization problems remain NP-hard even if we
are satisfied with keeping the relative error within control. For instance, given any
ot > 1, it is NP-hard to find a tour for the travelling salesperson problem whose
length is guaranteed to be within a factor oa of the optimum; see Section 13.3.2.
Other problems fall in between: the metric travelling salesperson problem can be
solved efficiently within a factor 2 of the optimum with the algorithm seen in Sec-
tion 13.1.2-and better approximate algorithms exist (see Problem 13.10)-yet no

484 Chapter 1 3



Section 13.3 •MP-hard approximation problems

efficient approximate algorithm can guarantee a fixed upper bound on the absolute
error of its solutions unless P = NP; see Section 13.3.1. A spectacular example of
how the same optimization problem may give rise to two quite different approxi-
mation problems is presented in Section 13.4.

Consider an optimization problem and let opt (X) denote the value of an optimal
solution to instance X. For example, if we consider the graph colouring problem
of Section 13.1.1 and if G is a graph, opt(G) denotes the chromatic number of G:
the smallest number of colours sufficient to colour the vertices of G so that no two
adjacent vertices are assigned the same colour. On instance X, an approximate
algorithm will find some value opt(X) that may be suboptimal but is required to be
feasible. For example, if graph G can be coloured with five colours but no less, then
opt(G)= 5 and an algorithm that returns opt(G)= 7 is suboptimal yet acceptable,
because it is possible to colour G with seven colours provided there are at least this
many vertices. An algorithm that returned opt (G) = 4, on the other hand, would be
incorrect because G cannot be coloured with four colours. In most cases, requiring
feasibility corresponds to requiring opt(X) > opt(X) for minimization problems and
opt(X) < opt(X) for maximization problems. In practice, we may want the optimal
or approximate solution itself rather than merely its value or cost: we may want an
actual assignment of colours to the nodes of G using no more than opt(G) colours.
However, these problems are often equivalent by virtue of decision-reducibility:
see Problem 12.43.

Let c and E be positive constants. To each optimization problem P, there
correspond absolute and relative approximation problems. Assume for simplicity
that all feasible solutions to instances of problem P are strictly positive. The c-abso-
lute approximation problem, denoted c-abs-P, is the problem of finding, for any
instance X, a feasible solution opt(X) whose absolute error compared to the optimal
solution opt(X) is at most c:

opt(X) < opt(X)< opt(X)+c or

opt(X)-c < opt(X)< opt(X),

for minimization and maximization problems, respectively. The £-relative approxi-
mation problem, denoted E-rel-P, is the problem of finding, for any instance X, a
feasible solution whose relative error compared to the optimal solution is at most E:

opt(X) < opt(X)< (1 + E) opt(X) or

(1 -E)opt(X) < opt(X)< opt(X),

for minimization and maximization problems, respectively. Note that £ Ž 1 is in-
teresting only for minimization problems, unless it is a challenge to find a feasible
solution even without optimality constraints.

For example, we saw efficient algorithms for the 1-absolute approximation
problem corresponding to determining the greatest number of objects we can store
in two bins and for the 1-relative approximate metric travelling salesperson prob-
lem. We shall now see that the latter problem is harder to approximate than the

485



Heuristic and Approximate Algorithms

former, in the sense that the c-absolute approximate metric travelling salesperson
problem is just as hard as the exact problem no matter how large we are willing
to choose c. The unconstrained travelling salesperson problem is harder still to
approximate: even the E-relative approximate travelling salesperson problem is
as hard as the exact problem no matter how large we choose E. To prove these
results, we use the notion of polynomial reductions seen in Section 12.5.2 to show
how the exact problem could be solved efficiently if only we knew how to solve
the corresponding approximation problem efficiently.

13.3.1 Hard absolute approximation problems
Denote the metric travelling salesperson problem by MTSP. Assume for simplicity
that the distances between towns are integers. We saw in Section 13.1.2 an efficient
algorithm for 1-rel-MTSP. We shall now prove that MTSP <P c-abs-MTSP for
any positive constant c. For this, assume that an arbitrary algorithm to solve the
c-absolute approximate metric travelling salesperson problem is available. We are
to find an algorithm for the exact metric travelling salesperson problem that is
efficient provided we do not take account of the time spent using the approxi-
mate algorithm. Therefore, any efficient algorithm for the approximation problem
will translate into an efficient algorithm for the exact problem. Assuming the ex-
act metric travelling salesperson problem is genuinely hard (which is more than
likely since it is WP-hard-a fact rather hard to prove), we conclude that no effi-
cient algorithm can exist to find c-absolute approximations to the metric travelling
salesperson problem.

Theorem 13.3.1 MTSP <P c-abs-MTSP for any positive constant c.

Proof Let c be a positive constant and consider an arbitrary algorithm to solve c-abs-
MTSP, the c-absolute approximate metric travelling salesperson problem. Con-
sider an instance of MTSP represented by a symmetric n x n integer matrix M that
respects the triangle inequality. Let opt (M) be the length of an optimal tour on this
instance. Construct a new instance M' by multiplying each entry of M by L c I + 1.
It is clear that M' also satisfies the triangle inequality and that it is symmetric; hence
it defines a legitimate instance of MTSP. It is equally clear that any optimal tour of
the cities according to distance matrix M is also optimal according to M', and vice
versa, except that the length of the tour is [c] + 1 times greater according to M'.
Therefore, opt(M')= (Lc I + 1)opt(M). Consider now the result opt(M') of running
our assumed c-absolute approximate algorithm on M'. By definition,

([ci + 1)opt(M) = opt(M')< opt(M')< opt(M')+c

= ([c] + 1)opt(M)+c < ([ci + 1)(opt(M)+l).

Dividing by L ci + 1, we obtain

opt(M)• [Pc (I) < opt(M)+1.

486 Chapter 13



Section 13.3 JT-hard approximation problems

We conclude that opt(M)= [opt(M')M(lc] + 1)] because opt(M) is an integer. Thus
the exact solution to MTSP instance M is easily obtained from any c-absolute ap-
proximate solution to MTSP instance M', which completes the reduction. U

There are many other problems for which it is WT -hard to find c-absolute
approximate solutions, no matter how large c is allowed to be. Among these
are the knapsack problem and the maximum clique problem; see Problems 13.15
and 13.16. This is the case for all problems that allow "scaling up": if any instance
can be transformed efficiently into another whose optimal solution is [ cI + 1 times
larger, and if the optimal solution is a positive integer, then it is just as hard to find
c-absolute approximate solutions as to find optimal solutions..

13.3.2 Hard relative approximation problems
Denote the unconstrained-as opposed to metric-travelling salesperson problem
by TSP. (We used TSP in Section 12.5.2 to denote the problem of finding an optimal
tour rather than determining its length; this is admissible because both versions of
the problem are easily seen to be polynomially equivalent.) Not only are absolute
approximations to this problem as hard to find as exact solutions, but this is also
true for relative approximations. In symbols, TSP <P E-rel-TSP for any positive
constant E. Rather than prove this directly, however, we shall show how E-relative
approximations to TSP can serve to solve the Hamiltonian cycle decision problem
HAMD encountered in Section 12.5.2. The technique is similar to that used in The-
orem 12.5.9 to prove that the exact solution to TSP can be used to solve HAMD.
The desired conclusion follows as Corollary 13.3.3 because the Hamiltonian cycle
problem is W T- complete.

Theorem 13.3.2 HAMD <S E-rel-TSP for any positive constant E.

Proof Let E be a positive constant and consider an arbitrary algorithm to solve E-rel-
TSP, the E-relative approximate travelling salesperson problem. Consider an in-
stance of the Hamiltonian decision problem HAMD given by a graph G = (N A).
Let the number of nodes in G be n and assume without loss of generality that
N = { 1, 2, . . ., n }. Construct an instance M of the travelling salesperson problem as
follows.

M 1 I if {i,j} E A
L 2 + [nE] otherwise

Let opt(M) denote an optimal solution to the travelling salesperson problem M and
let opt(M) denote the approximation returned by our assumed E-relative approxi-
mate algorithm. By definition,

opt(M)< opt(M)< (1 + E)opt(M).

There are two cases.

487



Heuristic and Approximate Algorithms

• If there is a Hamiltonian cycle in G, this cycle defines a tour for the travelling
salesperson problem that uses only edges of length 1. Hence there is a solution
of length n, which is clearly optimal. In this case,

opt(M)< (1 + E) opt(M)= (1 + E) n.

• If there are no Hamiltonian cycles in G, any tour for the travelling salesperson
must use at least one edge of length 2 + I nE I in addition to n - 1 edges of
length at least 1 each, for a total length of at least 2 + [nE] + (n - 1) > (1 + E) n.
Therefore,

opt(M) > opt(M) > (1 + E) n.

Thus we can decide whether or not there is a Hamiltonian cycle in G by looking
at the answer returned by the approximate algorithm for the travelling salesper-
son problem: there is a Hamiltonian cycle if and only if opt(M) < (1 + E) n. This
completes the reduction. U

Note that the instance of the travelling salesperson problem constructed in the
above proof is not metric. If there is an edge in G between vertices i and k and
between vertices k and j but not between vertices i and j, and if n > I/E,

distance(i, j)= 2 + [nE J > 2 = distance(i, k)±distance(k, j).

This was inevitable given that 1-rel-MTSP can be solved efficiently.

Corollary 13.3.3 TSP <T E-rel-TSPfor any positive constant E.

Proof Recall from just before Theorem 12.5.9 that TSPD denotes the travelling salesper-
son decision problem. We know from Problem 12.47 that the travelling sales-
person problem is decision-reducible in the sense that TSP -T TSPD. On the
other hand, we know from Problem 12.50 that the Hamiltonian cycle problem
is XP- complete. By definition of S'EP- completeness and from the obvious fact
that TSPD belongs to WN, it follows that TSPD <T HAMD. We have just shown
that HAMD <T E-rel-TSP. We reach the desired conclusion by transitivity of poly-
nomial reductions. E

There are many other problems for which it is NP-hard to find E-relative
approximate solutions, no matter how large E is allowed to be (subject to E < 1 in the
case of maximization problems). Among these are the minimum cluster problem
(see Section 13.4 below), the maximum clique problem and the problem of finding
the chromatic number of a graph. In fact the latter two problems are known to
be even harder than this to approximate: assuming P a Ad, no polynomial-time
algorithm can find a clique in an n-node graph that is guaranteed to be within a
factor n of the optimal for 6 > 6, and the same holds for optimal graph colouring
with 6 > 14. On the other hand, there are optimization problems such as the metric

488 Chapter 13



Section 13.4 The same, only different

travelling salesperson problem for which it is easy to find E-relative approximations
for large enough E, yet the approximation problem becomes WN-hard when E is
too small; see Section 13.5 for additional examples.

13.4 The same, only different

Let G = (N, A) be an undirected graph and let c: A - R' be a cost function. Con-
sider a partition of N into three subsets N,, N2 and N 3 , henceforth called clusters,
such that each node in N belongs to exactly one of the clusters. For each node u,
let set(u) denote the unique i such that u (E Ni. This partitions the edges of G
between those that link two nodes in the same cluster, called internal edges, and
those that link nodes from different clusters, called cross edges. Our optimization
problem is to select N1 , N2 and N 3 so the total cost of the cross edges is maxi-
mized or, equivalently, the total cost of the internal edges is minimized. This prob-
lem is NP-hard-an immediate consequence of the proof of Theorem 13.4.2 be-
low. Figure 13.5 shows an example where the optimal solution is to form clusters
N1 = Ia, b}, N2 = {c, d} and N3  {e} so the total cost of the internal edges is 4 and
that of the cross edges is 31.

Figure 13.5. The MIN-CLUSTER/MAX-CUT problems

Although it is equivalent to maximize the total cost of the cross edges or to mini-
mize the total cost of the internal edges, consider the following two optimization
problems.

• MAX-CUT is the problem of maximizing the total cost of the cross edges over
all partitions of N.

• MIN-CLUSTER is the problem of minimizing the total cost of the internal edges
over all partitions of N.

Surprisingly, these two identical optimization problems become entirely different
when seen as approximation problems: the E-rel-MAX-CUT problem can be solved
efficientlyfor E> 1/3 whereas the E-rel-MIN-CLUSTERproblemremains LNP-hard
for all positive values of E.

489



Heuristic and Approximate Algorithms

Theorem 13.4.1 1 /3 -relative approximations to the MAX-CUT problem can be
calculated efficiently.

Proof Let G = (N, A) be a graph and c: A -. R be a cost function. Consider the following
greedy approximate algorithm. Initially, N1 , N2 and N3 are empty; they will form
a partition of N by the time the algorithm terminates. Consider each node of G
in turn. Add it to the cluster that causes the smallest increase in the cost of the
internal edges, and thus the largest increase in the cost of the cross edges. On the
graph in Figure 13.5, the algorithm first puts nodes a, b and c into N1, N2 and N3 ,
respectively. It then considers node d. Adding it to cluster N1, N2 or N3 would
increase the cost of internal edges by 3, 2 or 3, respectively: thus the algorithm
adds it to cluster N2, which becomes {b, d}. Finally, adding node e to cluster N1,
N2 or N3 would increase the cost of internal edges by 6, 7 or 8, respectively: thus
the algorithm adds it to cluster N1, which becomes {a, e }. The solution returned
by the algorithm is N1 = {a, e}, N2 = {b, d} and N3 = {c}, whose cost in terms of
cross edges is 27, better than 87% of the optimal solution 31.

Before we prove that the cost of cross edges returned by this algorithm is
never less than two-thirds of the optimum, it is useful to give explicit code for this
approximate algorithm. Here, sum accumulates the total cost of all edges in G and
clstr accumulates the cost of all internal edges in the approximate solution that is
chosen. The desired cost of all cross edges is given by the difference between sum
and clstr, which is computed at the end of the algorithm.

function MAX-CUT-approx(G = (N, A), c: A - R+)
N-, N2, N3 - 0

clstr, sum - 0
for each u E N do

mincost - 0o

for i - 1 to 3 do
cost 0 0
for each v E N, do

if {u,v} E A then cost - cost + c({u,v})
sum - sum + cost
if cost < mincost then mincost - cost

k - i
Nk - Nk U {U}

clstr - clstr + mincost
return sum - clstr

For each node u, let zi, Z2 and Z3 be the values accumulated in cost when i 1,
2 and 3, respectively; this is the increase in the total cost of the internal edges that
would be incurred by adding u to the corresponding cluster. The algorithm adds
u to the cluster Nk that minimizes zi and adds that value of Zk to clstr. All three
z's are added to sum. Therefore, each time round the outer loop, the value of sum

Chapter 13490



Section 13.4 The same, only different

is increased by at least three times the increase in clstr. Since both sum and clstr
are initialized to zero, it follows that sum Ž 3 x clstr at the end of the algorithm.
The total cost of the cross edges in the solution discovered by the algorithm is thus

opt(G, c)= sum - clstr Ž3 sum.

But the total cost opt (G, c) of the cross edges in an optimal solution cannot be
smaller than the cost of the cross edges in the approximate solution found by the
algorithm, and it cannot be greater than the total cost sum of all the edges in the
graph. It follows that

(1- 1/3 )opt(G,c)• 3 sum < opt(G,c)• opt(G,c).

By definition, this says that our algorithm supplies a 1/ 3-relative approximation to
the MAX-CUT problem. K

Even though the algorithm presented in this proof is guaranteed to perform
well on the MAX-CUT problem, it can be arbitrarily bad on the otherwise identical
MIN-CLUSTER problem. On the graph of Figure 13.5, for example, it finds 27 as
the approximate cost of a maximum cut, which is not bad compared to 31, the real
maximum. At the same time, it finds 8 as the approximate cost of the minimum
cluster, which is twice the true minimum. Problem 13.23 asks you to show that this
algorithm can be arbitrarily bad at finding approximations to the MIN-CLUSTER
problem, even on four-node graphs. Now we prove that this is not the fault of this
particular algorithm: no efficient algorithm is guaranteed to find a good E-relative
approximation to the MIN-CLUSTER problem unless P = fP.

Theorem 13.4.2 MIN-CLUSTER <s E-rel-MIN-CLUSTER for any positive
constant E.

Proof We shall in fact prove that 3COL <S E-rel-MIN-CLUSTER, where 3COL is the prob-
lem encountered in Section 12.5.4 of deciding if a given graph can be painted with
three colours. The desired result follows along the lines of Corollary 13.3.3 from the
fact that 3COL is JVP- complete (Theorem 12.5.19) and MIN-CLUSTER is decision-
reducible. We leave the details to the reader.

To prove that 3COL ST E-rel-MIN-CLUSTER, let £ be a positive constant and
consider an arbitrary algorithm to solve E-rel-MIN-CLUSTER. Let G = (N, A) be
a graph; we would like to know if it can be coloured with three colours. Consider
the complete graph K on node set N; in this graph there is an edge between u and
v for each distinct u and v in N. Define the following cost function on the edges
of K.

c(uVI) 1 2 l if {u,v} E A
M f(+ E) nt2 if {u, v} e A

491



Heuristic and Approximate Algorithms

Let opt(K, c) denote an optimal solution to the minimum cluster problem on graph K
with cost function c, and let opt(K, c) denote the approximation returned by our
assumed £-relative approximate algorithm. By definition,

opt(K,c)• opt(K,c)< (1 + E)opt(K,c).

There are two cases.

• If graph G is three-colourable, consider an arbitrary colouring of it in green,
blue and red. Form clusters N1 , N2 and N3 as the sets of green, blue and red
nodes, respectively. By definition of a three-colouring, there are no edges of G
between two nodes in the same cluster. By definition of the cost function on K,
the internal edges defined by N1, N2 and N3 all have cost 1. Clearly, there are
less than n2 edges in K, and thus less than n2 internal edges as well. Therefore,
the total cost of the internal edges is less than n 2. We conclude that the optimal
solution to the minimum cluster problem is less than n2 , and thus:

opt(K, c) < (1 + E) opt(K, c) < (I + E) n.

c If graph G is not three-colourable, any partition of N into three clusters neces-
sarily contains at least one internal edge belonging to A. By definition of the
cost function on K, the cost of that edge is [ (1 + E) n2 l, so the optimal solution
to the minimum cluster problem cannot be less than that:

-2opt (K,c)> opt(K,c)> [(1 + E) n2 1> (1 + E) n
2 .

Thus we can decide whether or not graph G is three-colourable by looking at the
answer returned by the approximate algorithm for the minimum cluster problem:
the graph is three-colourable if and only if opt(K, c) < (1 + E) n2 . This completes
the reduction. 0

13.5 Approximation schemes
Until now, the E-relative approximate algorithms we have seen work for a specific
value of E. For example, we saw in Section 13.4 an efficient 1/3 -relative approx-
imate algorithm for the maximum cut problem, but there is no obvious way to
improve this algorithm to guarantee a better approximation. Similarly, we saw in
Section 13.1.2 an efficient 1 -relative approximate algorithm for the metric travelling
salesperson problem. Although Problem 13.10 asks you to find a better algorithm
for the same problem that is 1/2 -relative approximate, the new algorithm is entirely
different from the one we saw. Moreover, it is NP-hard to find E-relative approx-
imations to the metric travelling salesperson problem when E is sufficiently small.
Another example is provided by Problem 13.19 according to which it is easy to find
a 1/3-relative approximate algorithm for the problem of painting a planar graph
with the minimum number of colours, yet any improvement in the approximation
would be as hard to compute in the worst case as the optimal solution.

492 Chapter 13



Section 13.5 Approximation schemes

In contrast, there are problems for which arbitrarily good E-relative approxima-
tions can be obtained. An approximation scheme is an algorithm that takes as input,
in addition to the instance itself, an upper bound - on the acceptable relative error.
Even though it is natural to expect the algorithm to work harder when E is smaller,
it is best if the tolerance can be reduced at a reasonable cost in computing time.
We say that the approximation scheme isfully polynomial if a time in O (p (n, 1IE)) is
sufficient in the worst case to find E-relative approximations for instances of size n,
where p is some fixed polynomial in two variables.

There are many LNP-hard problems for which fully polynomial approximation
schemes cannot exist unless 2 = NP and there are others for which they are known
to exist. Here we give one example of each situation.

13.5.1 Bin packing revisited
We saw in Section 13.2.3 that there is an efficient approximate greedy algorithm for
the bin packing problem that guarantees a solution using no more than 4 + -!-opt
bins to store the objects, where opt is the optimal number of bins required. How-
ever, a fully polynomial approximation scheme cannot exist for this AP-hard
problem if 2P : LN because it would be easy to obtain an optimal solution in poly-
nomial time from such a scheme. To see this, assume the existence of an algorithm
BPapprox(w[l . .n], W, E) that runs in a time in 0 (p(n, lIE)) for some polynomial p
and is guaranteed to find an E-relative approximation to the problem of storing n
objects of weight w [1 . . n] in as few bins of capacity W as possible. Assume for the
problem to make sense that w [i] < W for each i. Consider the following algorithm.

function BP(w[1 .. n], W)
return [BPapprox(w, W, 1/(n + 1))]

Clearly, algorithm BP runs in a time polynomial in the size of the instance since
11E = n + 1 in this case. By definition of E-relative approximations, the solution
opt returned by BPapprox(w,W,1/(n + 1)) must be such that

opt<opt< (1+1/(n+1))opt=opt+optl(n+1).

But opt! (n + 1) < 1 since it is surely possible to store the objects in n separate bins.
Therefore,

opt < opt < opt + 1,

and so opt = [Lpit since opt is an integer. This completes the proof that BP finds an
exact solution in polynomial time in the worst case. This is impossible if P # NAP
since the bin packing problem is W2-hard.

13.5.2 The knapsack problem (6)
We pay one final visit to the knapsack problem to show that it admits a fully
polynomial approximation scheme. Continuing from Section 13.2.2, we use the
version of the problem introduced in Section 8.4. Recall that in Section 13.2.2 we
saw an approximate algorithm that finds a solution guaranteed to be within a

493



Heuristic and Approximate Algorithms

factor 2 of the optimum in a time in 0 (n log n): this is a 1/ 2 -relative approximate
algorithm. We also saw in Section 8.4 a dynamic programming algorithm that finds
the optimal solution in a time in 0 (nW), where n is the number of objects and W
is the size of the knapsack. We now use these two algorithms together, except that
first we modify slightly the dynamic programming algorithm.

Recall from Section 8.4 that the heart of the dynamic programming algorithm
is a table V[1. .n, O.. W], with one row for each available object and one column
for each weight from 0 to W. In the table, V [i, j] gives the maximum value of the
objects we can transport if the weight limit is j and if we only take objects among
the first i. The table is built one entry at a time using the rule

V[i, j]= max(V[i -1, j], V[i -1, j - wi]+vi)

and the solution is then found in V[n, W]. (Return to Section 8.4 for details.)
A similar approach uses a table U[1.. n, O. . M], where M is an upper bound

on the optimal value that we can carry in the knapsack, again with one row for
each object available, but now with one column for each possible total value that
can fit inside the knapsack. We can obtain the bound M by running our I/ 2-relative
approximate algorithm and multiplying its answer by 2. (The value opt' defined
in Section 13.2.2 when we proved that our approximate algorithm returns a value
that is at least half the optimum is slightly better and easier to compute.) This time,
U [ i, jI gives the minimum weight of the objects we can transport to reap exactly
value j if we only take objects among the first i. This table is built one entry at a
time using the rule

U[i, j]= min(U[i -1, j], U[i - 1, j - vi]±+w).

Out-of-bound values are taken to be +oo (or any value larger than W) with the
exception of U[0, 0], which is taken to be 0. Intuitively, this rule says that to reap
value j with the first i objects, we may either not use object i at all, in which case
the load weighs at least Ul[i - 1, j], or we may add object i to a collection of objects
among the first i - 1 whose total value was j - vi and thus whose total weight was
at least U [ i - 1, j - vi I before the addition of object i. Once the table is constructed,
the solution is given by the largest j such that U[n, j1 < W. This approach takes a
time in 0 (n log n + nM) since a time in 0 (n log n) is needed to calculate the upper
bound M, each of the nM entries of U takes constant time to fill in, and a time in
0(M) is spent at the end to scan the n-th row of U. Table U can also be used to
determine not only the value of the optimal load, but also its composition, much
as in Section 8.4.

You may wonder why anyone would use this approach, which is slightly more
complicated and perhaps less natural than the dynamic programming algorithm
of Section 8.4. The point is that this new algorithm is preferable when the values
are smaller than the weights, since the time it requires depends on the total value of
the optimal solution rather than the total weight capacity of the knapsack. As we
shall see, we can force the values-but not the weights-to be small provided we
are satisfied with an approximate solution.

494 Chapter 13



Section 13.5 Approximation schemes

Consider an instance of the knapsack problem consisting of a knapsack of
capacity W and n objects. Object i has a positive integer weight wi and a positive
integer value vs. Let £ be the relative error we are willing to tolerate, 0 < E < 1.
Let opt be the (unknown) optimal solution to this instance. Let k be an integer
constant to be determined later. From the original instance, we create a new instance
using the same knapsack and the same number of objects, where each object weighs
the same as before, but the value of object i is reduced to v1' = vi . k. (This may
create objects of value zero, which is not allowed in the definition of the knapsack
problem. However this is of no consequence because the 1/2 -relative approximate
and the dynamic programming algorithms still work in this case.) We say that
X c{1, 2, .. ., n} isfeasible if we can fit the corresponding objects into the knapsack:

eix wi s W. This notion of feasibility does not depend whether we are talking
about the original or the modified instance since we modified neither the weights
of the objects nor the capacity of the knapsack. Let X* be a collection of objects we
can put into the knapsack that is optimal for the original instance: X* is feasible
and Yiex* Vi = opt. Let X' be a collection of objects we can put into the knapsack
that is optimal for the modified instance. Finally, let opt = iex' vi.

Because X' is optimal for the modified instance and X* is feasible, it follows
that z, -> I VE i 2 i.

ieFX' t eFX

Similarly,

opt= E vi> v Evi = opt (13.1)
icX* icX'

since X* is optimal for the original instance and X' is feasible. By definition of v'
we have vi > kv' > vi - k. Putting it all together,

opt = vi k E vi
ieX' iX

>kEv;Ž Y(vi- -k)
ieX* iEx*

= i V- Ek

iGX* iGX*

> opt - kn.

It suffices to choose k < Eopt/fn to obtain

opt > opt - En opt/n = (1- E) opt. (13.2)

Equations 13.1 and 13.2 say that opt is an E-relative approximation to opt.
It may seem at first that a proper choice of k cannot be made until we know

the value of the optimal solution, but this is not the case thanks to our 1/2-relative
approximate algorithm approx-knap. To summarize, the approximation scheme
proceeds as follows:

495



Heuristic and Approximate Algorithms

1. Compute A = approx-knap(w, v, W). If E < 2n/A, run the modified dynamic
programming algorithm on the original instance to find an exact optimal so-
lution, using M = 2A as an upper bound on the optimal solution. Otherwise,
set k = [ EA/nJ > 2, which is indeed no larger than Eopt/n as required, and
proceed with the following steps.

2. Form the modified instance in which vi = vi . k.

3. Use the modified dynamic programming algorithm to find a choice X' c
{1, 2, . . ., n} of objects that maximizes YiFx, vi subject to Zi~x wi < W. As first
step of this algorithm, use M' 2A / kI as an upper bound on the optimal solu-
tion of the modified instance. This is a valid upper bound because the optimal
solution of the original instance is bounded from below by k times the optimal
solution of the modified instance and bounded from above by 2A.

4. Return opt = iex' vi as an E-relative approximation to the optimal solution of
the original problem.

It remains to see how long it takes to compute this approximation. The first
step takes a time in O(nlogn) to compute the '/2-relative approximation. If
E < 2n/A, it takes a time in 0 (nM) to obtain the exact solution by dynamic pro-
gramming. ThisisinO(n 2 /E) sincenM = 2nA <4n2 /E. If E > 2n/A,thetimetaken
by the other steps is analysed as follows. The second step is negligible. The third
step takes a time in 0 (nM'), where M' = [2A/ k] is the upper bound on the optimal
solution of the modified instance used by the dynamic programming algorithm.
This is also in 0 (n2/E) since > EA1 > EA/2n. The last step is negligible. In con-
clusion, this approximation scheme takes a time in 0 (n2 I E), which is indeed fully
polynomial. Another scheme is known that can find an E-relative approximate
solution to the knapsack problem in a time in 0 (n log n + ni/ E2); yet another takes
a time in O(nlog'1/ + 1IE4).

13.6 Problems

Problem 13.1. Give an efficient algorithm to determine whether a graph can be
painted with just two colours, and if so how to do it.

Problem 13.2. In Section 13.1.1, while proving that the greedy heuristic can always
find an optimal solution, we remarked that "When you apply colour 2, some nodes
that had this colour in the original solution may already have been painted with
colour 1. However there are sure to be one or more nodes that had colour 2 in the
original solution that have not been painted." Justify this remark.

Problem 13.3. Show that any planar graph (one that you can draw on a sheet of
paper in such a way that none of the edges cross) can be painted using at most four
colours.

Problem 13.4. Show that the greedy heuristic from Section 13.1.2 canbe arbitrarily
bad: as a function of parameter o > 1, construct an explicit instance of the travelling
salesperson problem on which the heuristic finds a tour at least oa times longer than
the optimum.

496 Chapter 13



Section 13.6 Problems

Problem 13.5. Devise and implement an algorithm to determine whether an n x n
distance matrix has the metric property or not. How much time does your algo-
rithm take?

Problem 13.6. Consider the complete undirected graph with 8 nodes and the
following distance matrix.

From To: 2 3 4 5 6 7 8
1 41 19 99 83 108 120 140
2 35 88 96 121 137 151
3 80 70 95 108 127
4 53 66 87 86
5 26 42 57
6 22 34
7 27

This distance matrix has the metric property. Use the algorithm of Section 13.1.2
to obtain an approximate solution to the travelling salesperson problem for this
graph. You can do this without a computer. If you do have a machine available,
use an exhaustive search to obtain the exact solution.

Problem 13.7. The approximate algorithm of Section 13.1.2 begins by finding a
minimum spanning tree of the graph. Is there a good reason for preferring either
Kruskal's algorithm or Prim's algorithm in this context?

Problem 13.8. To illustrate the approximate algorithm of Section 13.1.2, after find-
ing a minimum spanning tree of the graph we arbitrarily chose node 1 as the root of
the tree. However any other node would serve as well. Using the example of Sec-
tion 13.1.2, explore what happens if you choose another node as the root. Does the
left-to-right order of the branches make a difference to the approximation found?

Problem 13.9. In some instances it is possible to find a shorter optimal tour for the
travelling salesperson if he is allowed to pass through the same town more than
once. Give an explicit example illustrating this. On the other hand, show that if
the distance matrix has the metric property then it is never advantageous to pass
through the same town more than once.

Problem 13.10. We saw in Section 13.1.2 an efficient approximate algorithm for the
metric travelling salesperson problem that is guaranteed to find a solution within
a factor 2 of the optimum. Give another efficient algorithm that is guaranteed to
find a solution within a factor 3/2 of the optimum.

Problem 13.11. We saw in Section 13.2.2 an approximate algorithm approx-knap
for the knapsack problem that returns an answer guaranteed to be at least half the
optimal load. The first step of this algorithm is to sort the n objects by order of
value per weight. For this reason, the algorithm takes a time in n (n log n) in the
worst case. Find a way to compute the same approximation in a time in 0 (n) by
use of the linear-time median-finding algorithm of Section 7.5.

497



Heuristic and Approximate Algorithms

Problem 13.12. We saw in Section 13.2.2 that the greedy algorithm of Section 8.4
can be arbitrarily bad at solving the knapsack problem. Show that this is not the case
when we consider the variation on the knapsack theme studied in Sections 9.6.1
and 9.7.2: the greedy algorithm is guaranteed to return a solution within a factor 2
of the optimum if we can use as many copies as we wish of each available object.

Problem 13.13. You are given 9 objects whose weights are respectively 2,2,2, 3,3,
4, 5, 6 and 9, and a number of bins of capacity 12. Use the approximate algorithms
of Section 13.2.3 to estimate (a) what is the most objects you can pack into 2 bins,
and (b) how many bins are needed to pack all 9 objects. Find the optimal solutions
and compare these to your approximate answers.

Problem 13.14. Is it meaningful to consider -- relative approximations to maxi-
mization problems when E > 1?

Problem 13.15. For every constant c, prove that it is just as hard to find a c-abso-
lute approximate solution to the knapsack problem as to find an exact solution.

Problem 13.16. Prove that finding a c-absolute approximate solution to the max-
imum clique problem is NP-hard for every positive constant c. For this, prove
that CLKO <T c-abs-CLKO for all c, where CLKO was defined in Problem 12.45.
You may use the results of Problems 12.45 and 12.55.

Problem 13.17. Continuing Problem 13.16, prove that finding an E-relative ap-
proximate solution to the maximum clique problem is NP-hard for every positive
constant E smaller than 1. Be warned that this is very difficult.

Problem 13.18. Failing Problem 13.17, prove that for any positive constants E and
6 smaller than 1, finding an E-relative approximation to the maximum clique prob-
lem is polynomially equivalent to finding a 6-relative approximation. In symbols,
prove that E-rel-CLKO =T 5-rel-CLKO.

Problem 13.19. Following Problem 13.3, prove that it is easy to compute 1-abso-
lute as well as 1/3-relative approximations to the problem of painting a planar
graph with the minimum number of colours. On the other hand, prove that better
approximations would be as hard to compute as the optimal solution.

Problem 13.20. Prove that finding an E-relative approximate solution to the bin
packing problem of Section 13.2.3 is W P-hard for any E < 1/2. You may use without
proof the fact that PARTITION is •XP- complete; see Problem 12.56.

Problem 13.21. Prove that it is as hard to find a 1-relative approximation to the
chromatic number of general graphs as it is to find the exact solution.

Problem 13.22. Continuing Problem 13.21, prove that it is as hard to find an E-rela-
tive approximation to the chromatic number of general graphs as it is to find the
exact solution for all E > 0.

498 Chapter 13



Section 13.6 Problems

Problem 13.23. Prove that algorithm MAX-CUT-approx from the proof of Theo-
rem 13.4.1, which is guaranteed to find a 1/3-relative approximation to the MAX-CUT
problem, can yield arbitrarily bad relative approximations to the MIN-CLUSTER
problem. For this, show how to assign positive integer costs to the edges of the
complete graph on four nodes as functions of an arbitrary of > 1 so that the approx-
imate solution found by the algorithm for the MIN-CLUSTER problem is at least ac
times greater than the optimum.

Problem 13.24. The maximum cut and minimum cluster problems can be gener-
alized in the obvious way to the case where we wish to create k clusters for any
constant k > 2. This gives rise to the problems k-MAX-CUT and k-MIN-CLUSTER.
Although we introduced these problems with k = 3 to make the proof of Theo-
rem 13.4.2 easier, it is more usual to define MAX-CUT and MIN-CLUSTER with k = 2.

(a) Give an efficient 1/k-relative approximate algorithm for k-MAX-CUT for all
k > 2.

(b) For all k > 3 and E > 0, prove that finding an E-relative approximate solution
to k-MIN-CLUSTER is as hard as finding an exact solution.

Problem 13.25. We continue Problem 13.24 with the special case k = 2.

(a) Prove that 2-MAX-CUT (and therefore 2-MIN-CLUSTER) is 'P-hard. Hint:
Use the fact that PARTITION is •fP-complete; see Problem 12.56.

(b) We know from Problem 13.24 that there exists an efficient 1/2 -relative approx-
imate algorithm for 2-MAX-CUT; find a better approximate algorithm. At the
time of writing, the best efficient algorithm known is 0.12144-relative approx-
imate.

(c) On the other hand, prove the existence of a positive E such that it is J'P-hard
to find an E-relative approximate solution to 2-MAX-CUT.

(d) Prove that it is NP-hard to find an E-relative approximate solution to 2-M IN-
CLUSTER for all positive E. (The proof of Theorem 13.4.1 fails in the case of
two clusters because it is easy to decide if a graph can be painted with two
colours.)

Problem 13.26. Give an elementary proof that there cannot exist a fully polyno-
mial approximation scheme for the maximum clique problem, unless P = -NP.

This is obvious in the light of Problem 13.17, but no elementary proofs are known
even for the existence of a positive E < 1 for which finding an E-relative approxi-
mate solution to the maximum clique problem is •[P-hard. You may use the fact
that the maximum clique problem is fkP-hard.

Problem 13.27. Consider the following instance of the knapsack problem. There
are four objects whose weights are respectively 2,5,6 and 7 units, and whose values
are 1,3,4 and 5. We can carry a maximum load of 11 units of weight.

(a) Apply the 1 /2 -relative approximate greedy algorithm from Section 13.2.2 to this
instance. Deduce an upper bound on the value of the optimal solution. (There
are two ways to obtain this upper bound: one is obvious and one is clever.)

499



Heuristic and Approximate Algorithms

(b) Now that you have an upper bound on the value of the optimal solution, use it
to apply the dynamic programming algorithm given in Section 13.5.2 to find
an optimal solution. Give a table resembling that of Figure 8.4. Determine
not only the optimal value that can be carried, but also the list of objects that
should be packed.

Problem 13.28. In Section 8.4, we studied a dynamic programming algorithm for
the exact solution of the knapsack problem, and applied it to an instance consisting
of five objects, whose weights are respectively 1,2,5,6 and 7 units, and whose val-
ues are 1,6,18,22 and 28. We can carry a maximum load of 11 units of weight. Apply
the fully polynomial approximation scheme of Section 13.5.2 to the same instance
with E = 0.75. You are probably on the wrong track if the solution to Problem 13.27
does not seem relevant. (In practice it would be silly to apply this algorithm with
E = 0.75 since the much simpler greedy algorithm from Section 13.2.2 is 1/2-rela-
tive approximate, which is better than 3/4 -relative approximate. Unfortunately, the
fully polynomial approximation scheme becomes useful only on instances that are
too large to solve by hand.)

13.7 References and further reading

Good early references on approximation algorithms are Garey and Johnson (1976)
and Sahni and Horowitz (1978). Approximate algorithms for the metric travelling
salesperson problem are given by Christofides (1976), which includes the solution
to Problem 13.10. Laporte (1992) surveys both exact and approximate algorithms
for the general problem. Early approximate algorithms for the knapsack problems
are given by Sahni (1975). Johnson (1973) proves the bounds for the approximate
bin packing algorithms described in Section 13.2.3. Strong non-approximability
results for the maximum clique problem and the problem of finding the chromatic
number of a graph are from Bellare and Sudan (1994). They built on the earlier work
of Arora, Lund, Motwani, Sudan and Szegedy (1992), which gives a solution to
Problem 13.17. The approximation scheme we described for the knapsack problem
is from Ibarra and Kim (1975). Other approximation schemes for the knapsack
problem are given by Lawler (1979), where the solution to Problem 13.11 can be
found. Problem 13.21 is from Johnson (1974). Problem 13.25(b) is from Goemans
and Williamson (1994).

500 Chapter 13



References

ABRAMSON, Bruce and Mordechai M. YUNG (1989), "Construction through decomposition:
A divide-and-conquer algorithm for the N-queens problem", Journal of Parallel and Dis-
tributed Computing, vol. 6, no. 3, pp. 649-662.

AcKERMANN, Wilhelm (1928), "Zum Hilbertschen Aufbau der reellen Zahlen", Mathemat-
ische Annalen, vol. 99, pp. 118-133.

ADEL'SON-VEL'sKIl, Georgil M. and EvgeniI M. LANDIS (1962), "An algorithm for the organi-
zation of information" (in Russian), Doklady Akademii Nauk SSSR, v ol. 146, pp. 263-266.

ADLEMAN, Leonard M. and Ming-Deh A. HUANG (1992), Primality Testing and Abelian Vari-
eties Over Finite Fields, Lecture Notes in Mathematics, vol. 1512, Springer-Verlag.

ADLEMAN, Leonard M. and Kenneth MANDERS (1977), "Reducibility, randomness, and in-
tractability", Proceedings of the 9th Annual ACM Symposium on Theory of Computing,
pp. 151-163.

ADLEMAN, Leonard M., Carl POMERANCE and Robert S. RUMELY (1983), "On distinguishing
prime numbers from composite numbers", Annals of Mathematics, vol. 117, pp. 173-206.

AHMES (1700bc), Directionsfor Obtaining the Knowledge of All Dark Things, Egyptian "Rhind"
papyrus kept at the British Museum.

AHO, Alfred V., John E. HoPCROFT and Jeffrey D. ULLMAN (1974), The Design and Analysis of
Computer Algorithms, Addison-Wesley.

AHO, Alfred V.,John E. HOPCROFT and Jeffrey D. ULLMAN (1976), "On finding lowest common
ancestors in trees", SIAM Journal on Computing, vol. 5, no. 1, pp. 115-132.

AHo, Alfred V., John E. HOPCROFT and Jeffrey D. ULLMAN (1983), Data Structures and Algo-
rithms, Addison-Wesley.

AKL, Selim G. (1985), Parallel Sorting Algorithms, Academic Press.
AKL, Selim G. (1989), The Design and Analysis of Parallel Algorithms, Prentice-Hall.
ALFORD, W. R., A. GRANVILLE and Carl POMERANCE (1994), "There are infinitely many

Carmichael numbers", Annals of Mathematics, vol. 139, pp. 703-722.
ALLISON, L., C. N. YEE and M. McGAUGHEY (1989), "Three-dimensional queens problems",

Technical Report no. 89/130, Department of Computer Science, Monash University,
Australia.

501



References

ARLAZAROV, V. L., E. A. DINIC, M. A. KRONROD and I. A. FARAD2EV (1970), "On economical
construction of the transitive closure of a directed graph" (in Russian), Doklady Akademii
Nauk SSSR, vol. 194, pp. 487-488.

ARORA, Sanjeev, Carsten LUND, Rajeev MOTWANI, Madhu SUDAN and Mario SZEGEDY (1992),
"Proof verification and hardness of approximation problems", Proceedings of the 33rd An-
nual Symposium on Foundations of Computer Science, pp. 14-23.

BAASE, Sara (1978), Computer Algorithms: Introduction to Design and Analysis, Addison-
Wesley; 2nd edition, 1987.

BABAI, Laszl6 (1979), "Monte Carlo algorithms in graph isomorphism techniques", Re-
search Report no. 79-10, D6partement de math6matiques et de statistique, Universit6
de Montreal.

BABAi, Liszlo and Shlomo MORAN (1988), "Arthur-Merlin games: A randomized proof
system, and a hierarchy of complexity classes", Journal of Computer and System Sciences,
vol. 36, pp. 254-276.

BACH, Eric, Gary MILLER and Jeffrey SHALLIT (1986), "Sums of divisors, perfect numbers and
factoring", SIAM Journal on Computing, vol. 15, no. 4, pp. 1143-1154.

BACHMANN, Paul G. H. (1894), Zahlentheorie; Volume 2: Die Analytische Zahlentheorie,
B. G. Teubner.

BALL, Walter W. R. (1967), Mathematical Recreations and Essays, 11th edition, Macmillan &
Co.

BATCHER, Kenneth E. (1968), "Sorting networks and their applications", AFIPS Conference
Proceedings, vol. 32, Spring Joint Computer Conference 1968, pp. 307-314.

BEAUCHEMIN, Pierre, Gilles BRASSARD, Claude CREPEAU, Claude GOUTIER and Carl
POMERANCE (1988), "The generation of random numbers that are probably prime", Journal
of Cryptology, vol. 1, no. 1, pp. 53-64.

BELLARE, Mihir and Shafi GOLDWASSER (1994), "The complexity of decision versus search",
SIAM Journal on Computing, vol. 23, no. 1, pp. 97-119.

BELLARE, Mihir and Madhu SUDAN (1994), "Improved non-approximability results", Pro-
ceedings of the 26th Annual ACM Symposium on Theory of Computing, pp. 184-193.

BELLMAN, Richard E. (1957), Dynamic Programming, Princeton University Press.

BELLMAN, Richard E. and Stuart E. DREYFUS (1962), Applied Dynamic Programming, Princeton
University Press.

BELLMORE M. and George NEMHAUSER (1968), "The traveling salesman problem: A survey",
Operations Research, vol. 16, no. 3, pp. 538-558.

BENIOFF, Paul (1982), "Quantum Hamiltonian models of Turing machines", Journal of Statis-
tical Physics, vol. 29, pp. 515-546.

BENNETT, Charles H., Gilles BRASSARD and Artur K. EKERT (1992), "Quantum Cryptography",
Scientific American, vol. 267, no. 4, pp. 50-57.

BENTLEY, Jon L. (1980), "Multidimensional divide-and-conquer", Communications of the
ACM, vol. 23, pp. 214-229.

BENTLEY, Jon L. (1984), "Programming pearls: Algorithm design techniques", Communica-
tions of the ACM, vol. 27, no. 9, pp. 865-871.

BENTLEY, Jon L., Dorothea HAKEN and James B. SAXE (1980), "A general method for solving
divide-and-conquer recurrences", ACM Sigact News, vol. 12, no. 3, pp. 36-44.

BENTLEY, Jon L., Donald F. STANAT and J. Michael STEELE (1981), "Analysis of a random-
ized data structure for representing ordered sets", Proceedings of the 19th Annual Allerton
Conference on Communication, Control, and Computing, pp. 364-372.

502



References

BERGE, Claude (1958), Theorie des graphes et ses applications, Dunod; 2nd edition, 1967. Trans-
lated as The Theory of Graphs and Its Applications, Methuen, 1962.

BERGE, Claude (1970), Graphes et hypergraphes, Dunod. Translated as Graphs and Hypergraphs,
North Holland, 1973.

BERLEKAMP, Elwyn R., John H. CONWAY and Richard K. GuY (1982), W inning Ways for Your
Mathematical Plays; Volume 1: Games in General, Academic Press.

BERLINER, Hans J. (1980), "Backgammon computer program beats world champion", Artifi-
cial Intelligence, vol. 14, pp. 205-220.

BERNSTEIN, Ethan and Umesh V. VAZIRANI (1993), "Quantum complexity theory", Proceed-
ings of the 25th Annual ACM Symposium on Theory of Computing, pp. 11-20.

BERTHIAUME, Andre and Gilles BRASSARD (1995), "Oracle quantum computing", Journal of
Modern Optics, vol. 41, no. 12, pp. 2521-2535.

BISHOP, Errett (1972), "Aspects of constructivism", 10th Holiday Mathematics Symposium,
New Mexico State University, Las Cruces.

BITTON, Dina, David J. DEWITT, David K. HSIAO and Jaishankar MENON (1984), "A taxonomy
of parallel sorting", Computing Surveys, vol. 16, no. 3, pp. 287-318.

BLUM, Leonore, Manuel BLUM and Mike SHUB (1986), "A simple unpredictable pseudo-
random number generator", SIAM Journal on Computing, vol. 15, no. 2, pp. 364-383.

BLUM, Manuel (1967), "A machine independent theory of the complexity of recursive func-
tions", Journal of the ACM, vol. 14, no. 2, pp. 322-336.

BLUM, Manuel, Robert W. FLOYD, Vaughan R. PRATT, Ronald L. RIVEST and Robert E. TARJAN
(1972), "Time bounds for selection", Journal of Computer and System Sciences, vol. 7, no. 4,
pp. 448-461.

BLUM, Manuel and Silvio MICALI (1984), "How to generate cryptographically strong se-
quences of pseudo-random bits", SIAM Journal on Computing, vol. 13, no. 4, pp. 850-864.

BORODIN, Allan B. and J. Ian MUNRO (1975), The Computational Complexity of Algebraic and
Numeric Problems, American Elsevier.

BORUVKA, Otokar (1926), "O jistemproblemu minimilnim", PrficeMoravskU Pfirodoved Spolec-
nosti, vol. 3, pp. 37-58.

BRASSARD, Gilles (1979), "A note on the complexity of cryptography", IEEE Transactions on
Information Theory, vol. IT-25, no. 2, pp. 232-233.

BRASSARD, Gilles (1985), "Crusade for a better notation", ACM Sigact News, vol. 17, no. 1,
pp. 60-64.

BRASSARD, Gilles (1988), Modern Cryptology: A Tutorial, Lecture Notes in Computer Science,
vol. 325, Springer-Verlag.

BRASSARD, Gilles (1994), "Cryptology column -Quantum computing: The end of classical
cryptography?", ACM Sigact News, vol. 25, no. 4, pp. 15-21.

BRASSARD, Gilles and Paul BRATLEY (1988), Algorithmics: Theory and Practice, Prentice-Hall.

BRASSARD, Gilles, Sophie MONET and Daniel ZUFFELLATO (1986), "L'arithmetique des tres
grands entiers", TSI: Technique et Science Informatiques, vol. 5, no. 2, pp. 89-102.

BRATLEY, Paul, Bennett L. Fox and Linus E. SCHRAGE (1983), A Guide to Simulation, Springer-
Verlag; 2nd edition, 1987.

BRENT, Richard P. (1974), "The parallel evaluation of general arithmetic expressions", Journal
of the ACM, vol. 21, no. 2, pp. 201-206.

BRESSOUD, David M. (1989), Factorization and Primality Testing, Springer-Verlag.

BRIGHAM, E. Oran (1974), The Fast Fourier Transform, Prentice-Hall.

503



BROWN, Mark R. (1978), "Implementation and analysis of binomial queue algorithms", SIAM
Journal on Computing, vol. 7, no. 3, pp. 298-319.

BUNCH, James R. and John E. HOPCROFT (1974), "Triangular factorization and inversion by
fast matrix multiplication", Mathematics of Computation, vol. 28, no. 125, pp. 231-236.

BUNEMAN, Peter and Leon LEVY (1980), "The Towers of Hanoi problem", Information Pro-
cessing Letters, vol. 10, nos. 4-5, pp. 243-244.

CALINGER, Ronald (ed.) (1982), Classics of Mathematics, Moore Publishing Co.

CARASSO, Claude (1971), Analyse numerique, Lidec.

CARLSSON, Svante (1986), Heaps, doctoral dissertation, Department of Computer Science,
Lund University, Sweden.

CARLSSON, Svante (1987a), "Average case results on heapsort", BIT, vol. 27, pp. 2-17.

CARLSSON, Svante (1987b), "The deap-A double-ended heap to implement double-ended
priority queues", Information Processing Letters, vol. 26, no. 1, pp. 33-36.

CARTER, J. Larry and Mark N. WEGMAN (1979), "Universal classes of hash functions", Journal
of Computer and System Sciences, vol. 18, no. 2, pp. 143-154.

CELIS, Pedro, Per-Ake LARSON and J. Ian MUNRO (1985), "Robin Hood hashing", Proceedings
of the 26th Annual Symposium on Foundations of Computer Science, pp. 281-288.

CHANG, Lena and James F. KORsH (1976), "Canonical coin changing and greedy solutions",
Journal of the ACM, vol. 23, no. 3, pp. 418-422.

CHERITON, David and Robert E. TARJAN (1976), "Finding minimum spanning trees", SIAM
Journal on Computing, vol. 5, no. 4, pp. 724-742.

CHIN, Francis Y., John LAM and I-Ngo CHEN (1982), "Efficient parallel algorithms for some
graph problems", Communications of the ACM, vol. 25, no. 9, pp. 659-665.

CHRISTOFIDES, Nicos (1975), Graph Theory: An Algorithmic Approach, Academic Press.

CHRISTOFIDES, Nicos (1976), "Worst-case analysis of a new heuristic for the traveling sales-
man problem", Research Report no. 388, Management Sciences, Carnegie-Mellon Univer-
sity, Pittsburgh, PA.

COBHAM, Alan (1964), "The intrinsic computational difficulty of functions", Proceedings of
the 1964 Congress on Logic, Mathematics and the Methodology of Science, North-Holland,
pp. 24-3 0.

COHEN, Henri and Arjen K. LENSTRA (1987), "Implementation of a new primality test",
Mathematics of Computation, vol. 48, no. 177, pp. 103-121.

COLE, Richard (1988), "Parallel merge sort", SIAM Journal on Computing, vol. 17, no. 4,
pp. 770-785.

COOK, Steven A. (1971), "The complexity of theorem-proving procedures", Proceedings of the
3rd Annual ACM Symposium on Theory of Computing, pp. 151-158.

COOK, Steven A. and Staal 0. AANDERAA (1969), "On the minimum complexity of functions",
Transactions of the American Mathematical Society, vol. 142, pp. 291-314.

COOLEY, James W., Peter A. W. LEWIS and Peter D. WELCH (1967), "History of the fast Fourier
transform", Proceedings of the IEEE, vol. 55, pp. 1675-1679.

COOLEY, James W. and John W. TUKEY (1965), "An algorithm for the machine calculation of
complex Fourier series", Mathematics of Computation, vol. 19, no. 90, pp. 297-301.

COPPERSMITH, Don and Shmuel WINOGRAD (1990), "Matrix multiplication via arithmetic
progressions", Journal of Symbolic Computation, vol. 9, pp. 251-280.

CORMEN, Thomas H., Charles E. LEISERSON, and Ronald L. RIVEST (1990), Introduction to
Algorithms, MIT Press and McGraw-Hill.

504 References



COUVREUR, Chantal and Jean-Jacques QUISQUATER (1982), "An introduction to fast genera-
tion of large prime numbers", Philips Journal of Research, vol. 37, pp. 231-264; errata (1983),
ibid., vol. 38, p. 77.

CURTISS, John H. (1956), "A theoretical comparison of the efficiencies of two classical methods
and a Monte Carlo method for computing one component of the solution of a set of linear
algebraic equations", in Symposium on Monte Carlo Methods, H. A. Meyer (ed.), Wiley,
pp. 191-233.

DAMGARD, Ivan B., Peter LANDROCK and Carl POMERANCE (1993), "Average case error esti-
mates for the strong probable prime test", Mathematics of Computatio n, vol. 61, no. 203,
pp. 177-194.

DANIELSON, G. C. and C. LANCZOS (1942), "Some improvements in practical Fourier analysis
and their application to X-ray scattering from liquids", Journal of the Franklin Institute,
vol. 233, pp. 365-380,435-452.

DE BRUIJN, Nicolaas G. (1961), Asymptotic Methods in Analysis, North-Holland.

DENNING, Dorothy E. R. (1983), Cryptography and Data Security, Addison-Wesley.

DEUTSCH, David (1985), "Quantum theory, the Church-Turing principle and the universal
quantum computer", Proceedings of the Royal Society, London, vol. A400, pp. 97-117.

DEUTSCH, David and Richard JOZSA (1992), "Rapid solution of problems by quantum com-
putation", Proceedings of the Royal Society, London, vol. A439, pp. 553-558.

DEVROYE, Luc (1986), Non-Uniform Random Variate Generation, Springer-Verlag.

DEWDNEY, Alexander K. (1984), "Computer recreations - Yin and yang: Recursion and
iteration, the Tower of Hanoi and the Chinese rings", Scientific American, vol. 251, no. 5,
pp. 19-28.

DEYONG, Lewis (1977), Playboy's Book of Backgammon, Playboy Press.

DIFFIE, Whitfield and Martin E. HELLMAN (1976), "New directions in cryptography", IEEE
Transactions on Information Theory, vol. IT-22, no. 6, pp. 644-654.

DIJKsTRA, Edsger W. (1959), "A note on two problems in connexion with graphs", Numerische
Mathematik, vol. 1, pp. 269-271.

DIXON, John D. (1981), "Asymptotically fast factorization of integers", Mathematics of Com-
putation, vol. 36, no. 153, pp. 255-260.

DROMEY, R. G. (1982), How to Solve It by Computer, Prentice-Hall.

DUNCAN, Ralph (1990), "A survey of parallel computer architectures", Computer, vol. 23,
no. 2, pp. 5-16.

EDMONDS, Jack (1965), "Paths, trees, and flowers", Canadian Journal of Mathematics, vol. 17,
no. 3, pp. 449-467.

EDMONDS, Jack (1971), "Matroids and the greedy algorithm", Mathematical Programming,
vol. 1, pp. 127-136.

ELKIES, Noam D. (1988), "On A4 +B4 + C4 = D4 ", Mathematics of Computation, vol. 51, no. 184,
pp. 825-835.

ERDOSs, Paul and Carl POMERANCE (1986), "On the number of false witnesses for a composite
number", Mathematics of Computation, vol. 46, no. 173, pp. 259-279.

EVEN, Shimon (1980), Graph Algorithms, Computer Science Press.

EVES, Howard (1983), An Introduction to the History of Mathematics, 5th edition, Saunders
College Publishing.

FEYNMAN, Richard (1982), "Simulating physics with computers", International Journal of
Theoretical Physics, vol. 21, nos. 6/7, pp. 467-488.

References 505



FEYNMAN, Richard (1986), "Quantum mechanical computers", Foundations of Physics, vol. 16,
no. 6, pp. 507-531; originally appeared in Optics News, February 1985.

FISCHER, Michael J. and Albert R. MEYER (1971), "Boolean matrix multiplication and transitive
closure", Proceedings of the 12th Annual IEEE Symposium on Switchingand Automata Theory,
pp. 129-131.

FLAJOLET, Philippe (1985), "Approximate counting: A detailed analysis", BIT, vol. 25,
pp. 113-134.

FLAJOLET, Philippe and G. Nigel MARTIN (1985), "Probabilistic counting algorithms for data
base applications", Journal of Computer and System Sciences, vol. 31, no. 2, pp. 182-209.

FLOYD, Robert W. (1962), "Algorithm 97: Shortest path", Communications of the ACM, vol. 5,
no. 6, p. 345.

Fox, Bennett L. (1986), "Algorithm 647: Implementation and relative efficiency of quasir-
andom sequence generators", ACM Transactions on Mathematical Software, vol. 12, no. 4,
pp. 362-376.

FREDMAN, Michael L. (1976), "New bounds on the complexity of the shortest path problem",
SIAM Journal on Computing, vol. 5, no. 1, pp. 83-89.

FREDMAN, Michael L. and Robert E. TARJAN (1987), "Fibonacci heaps and their use in im-
proved network optimization algorithms", Journal of the ACM, vol. 34, no. 3, pp. 596-615.

FREDMAN, Michael L. and Dan E. WILLARD (1990), "BLASTING through the information theo-
retic barrier with FUSION TREES", Proceedings of the 22nd Annual ACM Symposium on Theory
of Computing, pp. 1-7.

FREIVALDS, Rusini§ (1977), "Probabilistic machines can use less running time", Proceedings of
Information Processing '77, pp. 839-842.

FREIVALDS, Rfisinr (1979), "Fast probabilistic algorithms", Proceedings of the 8th Symposium
on the Mathematical Foundations of Computer Science, Lecture Notes in Computer Science,
vol. 74, Springer-Verlag.

FURMAN, M. E. (1970), "Application of a method of fast multiplication of matrices in the
problem of finding the transitive closure of a graph" (in Russian), Doklady Akademii Nauk
SSSR, vol. 194, p. 524.

GALIL, Zvi and Giuseppe F. ITALIANO (1991), "Data structures and algorithms for disjoint set
union problems", Computing Surveys, vol. 23, no. 3, pp. 319-344.

GARDNER, Martin (1959), The Scientific American Book of Mathematical Puzzles and Diversions,
Simon and Schuster.

GARDNER, Martin (1977), "Mathematical games: A new kind of cipher that would take mil-
lions of years to break", Scientific American, vol. 237, no. 2, pp. 120-124.

GARDNER, Martin and Charles H. BENNETT (1979), "Mathematical games: The random num-
ber omega bids fair to hold the mysteries of the universe", Scientific American, vol. 241,
no. 5, pp. 20-34.

CAREY, Michael R., Ronald L. GRAHAM and David S. JOHNSON (1977), "The complexity of
computing Steiner minimal trees", SIAM Journal on Applied Mathematics, vol. 32,
pp. 835-859.

GAREY, Michael R. and David S. JOHNSON (1976), "Approximation algorithms for combina-
torial problems: An annotated bibliography", in Algorithms and Complexity: Recent Results
and Newr Directions, J. E Traub (ed.), Academic Press, pp. 41-52.

GAREY, Michael R. and David S. JOHNSON (1979), Computers and Intractability: A Guide to the
Theory of NP-Completeness, W. H. Freeman.

506 References



GIBBONS, Alan and Wojciech RYTTER (1988), Efficient Parallel Algorithms, Cambridge Univer-
sity Press.

GILBERT, Edgard N. and Edward F. MOORE (1959), "Variable length encodings", Bell System
Technical Journal, vol. 38, no. 4, pp. 933-968.

GILL, John (1977), "Computational complexity of probabilistic Turing machines", SIAM Jour-
nal on Computing, vol. 6, pp. 675-695.

GODBOLE, Sadashiva S. (1973), "On efficient computation of matrix chain products", IEEE
Transactions on Computers, vol. C-22, no. 9, pp. 864-866.

GOEMANS, Michel X. and David P. WILLIAMSON (1994), ".878-Approximation algorithms for
MAX CUT and MAX 2SAT", Proceedings of the 26th Annual ACM Symposium on Theory of
Computing, pp. 422-431.

GOLDREICH, Oded, Silvio MICALI and Avi WIGDERSON (1991), "Proofs that yield nothing but
their validity, or all languages in NP have zero-knowledge proof systems", Journal of the
ACM, vol. 38, pp. 691-729.

GOLDWASSER, Shafi and Joe KILIAN (1986), "Almost all primes can be quickly certified",
Proceedings of the 18th Annual ACM Symposium on Theory of Computing, pp. 316-329.

GOLDWASSER, Shafi, Silvio MICALI and Charles RACKOFF (1989), "The knowledge complexity
of interactive proof-systems", SIAM Journal on Computing, vol. 18, pp. 186-208.

GOLOMB, Solomon W. and Leonard D. BAUMERT (1965), "Backtrack programming", Journal
of the ACM, vol. 12, no. 4, pp. 516-524.

GONDRAN, Michel and Michel MINOUX (1979), Graphes et algorithmes, Eyrolles. Translated as
Graphs and Algorithms, Wiley, 1984.

GONNET, Gaston H. and Ricardo BAEZA-YATES (1984), Handbook of Algorithms and Data Struc-
tures, Addison-Wesley; 2nd edition, 1991.

GONNET, Gaston H. and J. Ian MUNRO (1986), "Heaps on heaps", SIAM Journal on Computing,
vol. 15, no. 4, pp. 964-971.

GOOD, Irving J. (1968), "A five-year plan for automatic chess", in Machine Intelligence 2,
E. Dale and D. Michie (eds), American Elsevier.

GRAHAM, Ronald L. and Pavol HELL (1985), "On the history of the minimum spanning tree
problem", Annals of the History of Computing, vol. 7, no. 1, pp. 43-57.

GREENE, Daniel H. and Donald E. KNUTH (1981), Mathematicsfor the Analysis of Algorithms,
Birkhauser.

GRIES, David (1981), The Science of Programming, Springer-Verlag.

GRIES, David and Gary LEVIN (1980), "Computing Fibonacci numbers (and similarly defined
functions) in log time", Information Processing Letters, vol. 11, no. 2, pp. 68-69.

GUIBAS, Leonidas J. and Robert SEDGEWICK (1978), "A dichromatic framework for balanced
trees", Proceedings of the 19th Annual Symposium on Foundations of Computer Science,
pp. 8-21.

GUY, Richard K. (1981), Unsolved Problems in Number Theory, Springer-Verlag.

HALL, A. (1873), "On an experimental determination of Tr", Messenger of Mathematics, vol. 2,
pp. 113-114.

HAMMERSLEY, John M. and David C. HANDSCOMB (1965), Monte Carlo Methods; reprinted by
Chapman and Hall, 1979.

HARDY, Godfrey H. and Edward M. WRIGHT (1938), An Introduction to the Theory of Numbers,
Oxford University Press; 5th edition, 1979.

HAREL, David (1987), Algorithmics: The Spirit of Computing, Addison-Wesley; 2nd edition,
1992.

References 507



HEATH, Sir Thomas L. (1926), The Thirteen Books of Euclid's Elements, 3 volumes, 2nd edition,
Cambridge University Press; reprinted by Dover Publications, 1956.

HELD, M. and Richard KARP (1962), "A dynamic programming approach to sequencing
problems", SIAM Journal on Applied Mathematics, vol. 10, no. 1, pp. 196-210.

HELLMAN, Martin E. (1980), "The mathematics of public-key cryptography", Scientific Amer-
ican, vol. 241, no. 2, pp. 146-157.

HILLIER, Frederick S. and Gerald J. LIEBERMAN (1967), Introduction to Operations Research,
Holden-Day.

HIRSCHBERG, D. S., Ashok K. CHANDRA and D. V. SARWATE (1979), "Computing connected
components on parallel computers", Communications of the ACM, vol. 22, no. 8,
pp. 461-464.

HOARE, Charles A. R. (1962), "Quicksort", Computer Journal, vol. 5, no. 1, pp. 10-15.

HOPCROFT, John E. and Richard KARP (1971), "An algorithm for testing the equivalence of
finite automata", Technical Report TR-71-114, Department of Computer Science, Cornell
University, Ithaca, NY.

HOPCROFT, John E. and Leslie R. KERR (1971), "On minimizing the number of multiplications
necessary for matrix multiplication", SIAM Journal on Applied Mathematics, vol. 20, no. 1,
pp. 30-36.

HOPCROFT, John E. and Robert E. TARJAN (1973), "Efficient algorithms for graph manipula-
tion", Communications of the ACM, vol. 16, no. 6, pp. 372-378.

HOPCROFT, John E. and Robert E. TARJAN (1974), "Efficient planarity testing", Journal of the
ACM, vol. 21, no. 4, pp. 549-568.

HOPCROFT, John E. and Jeffrey D. ULLMAN (1973), "Set merging algorithms", SIAM Journal
on Computing, vol. 2, no. 4, pp. 294-303.

HOPCROFTJohn E. andJeffrey D. ULLMAN (1979), Introduction toAutomata Theory, Languages,
and Computation, Addison-Wesley.

HOROWITZ, Ellis and Sartaj SAHNI (1976), Fundamentals of Data Structures, Computer Science
Press.

HOROWITZ, Ellis and Sartaj SAHNI (1978), Fundamentals of Computer Algorithms, Computer
Science Press.

Hu, Te Chiang (1981), Combinatorial Algorithms, Addison-Wesley.

Hu, Te Chiang and M. T. SHING (1982), "Computations of matrix chain products", Part 1,
SIAM Journal on Computing, vol. 11, no. 2, pp. 362-373.

Hu, Te Chiang and M. T. SHING (1984), "Computations of matrix chain products", Part II,
SIAM Journal on Computing, vol. 13, no. 2, pp. 228-251.

IBARRA, Oscar H. and Chul E. KIM (1975), "Fast approximation algorithms for the knapsack
and sum of subset problems", Journal of the ACM, vol. 22, no. 4, pp. 463-468.

IRVING, Robert W. (1984), "Permutation backtracking in lexicographic order", The Computer
Journal, vol. 27, no. 4, pp. 373-375.

JA'JA', Joseph (1992), An Introduction to Parallel Algorithms, Addison-Wesley.

JANKO, Wolfgang (1976), "A list insertion sort for keys with arbitrary key distribution", ACM
Transactions on Mathematical Software, vol. 2, no. 2, pp. 143-153.

JARNfK, V. (1930), "O jistem problemu minimalnim", Prdce MoravskU Pffrodoved Spolecnosti,
vol. 6, pp. 57-63.

JENSEN, Kathleen and Niklaus WIRTH (1985), Pascal User Manual and Report, 3rd edition
revised by Andrew B. Mickel and James F. Miner, Springer-Verlag.

508 References



JOHNSON, David S. (1973), Near-Optimal Bin-Packing Algorithms, doctoral dissertation, Mas-
sachusetts Institute of Technology, MIT Report MAC TR-109.

JOHNSON, David S. (1974), "Approximation algorithms for combinatorial problems", Journal
of Computer and System Sciences, vol. 9, pp. 256-289.

JOHNSON, David S. (1990), "A catalog of complexity classes", in van Leeuwen (1990),
pp. 67-161.

JOHNSON, Donald B. (1975), "Priority queues with update and finding minimum spanning
trees", Information Processing Letters, vol. 4, no. 3, pp. 53-57.

JOHNSON, Donald B. (1977), "Efficient algorithms for shortest paths in sparse networks",
Journal of the ACM, vol. 24, no. 1, pp. 1-13.

KAHN, David (1966), "Modern cryptology", Scientific American, vol. 215, no. 1, pp. 38-46.

KAHN, David (1967), The Codebreakers: The Story of Secret Writing, Macmillan.

KALISKI, Burt S., Ronald L. RIVEST and Alan T. SHERMAN (1988), "Is the Data Encryption
Standard a group? (Results of cycling experiments on DES)", Journal of Cryptology, vol. 1,
no. 1, pp. 3-36.

KARATSUBA, Anatolil A. and Y. OFMAN (1962), "Multiplication of multidigit numbers on
automata" (in Russian), Doklady Akademii Nauk SSSR, vol. 145, pp. 293-294.

KARP, Richard (1972), "Reducibility among combinatorial problems", in Complexity of Com-
puter Computations, R. E. Miller and J. W. Thatcher (eds), Plenum Press, pp. 85-104.

KAsIMI, T. (1965), "An efficient recognition and syntax algorithm for context-free languages",
Scientific Report AFCRL-65-758, Air Force Cambridge Research Laboratory, Bedford, MA.

KIM, Su Hee and Carl POMERANCE (1989), "The probability that a random probable prime is
composite", Mathematics of Computation, vol. 53, no. 188, pp. 721-741.

KINGSTON, Jeffrey H. (1990), Algorithms and Data Structures: Design, Correctness, Analysis,
Addison-Wesley.

KIRKERUD, Bj0rn (1989), Object-Oriented Programming with Simula, Addison-Wesley

KLEENE, Stephen C. (1956), "Representation of events in nerve nets and finite automata",
in Automata Studies, C. E. Shannon and J. McCarthy (eds), Princeton University Press,
pp. 3-40.

KLINE, Morris (1972), Mathematical Thoughtsfrom Ancient to Modern Times, Oxford University
Press.

KNUTH, Donald E. (1968), The Art of Computer Programming; Volume 1: Fundamental Algo-
rithms, Addison-Wesley; 2nd edition, 1973.

KNUTH, Donald E. (1969), The Art of Computer Programming; Volume 2: Seminumerical Algo-
rithms, Addison-Wesley; 2nd edition, 1981.

KNUTH, Donald E. (1971), "Optimal binary search trees", Acta Informatica, vol. 1, pp. 14-25.

KNUTH, ponald E. (1973), TheArt of Computer Programming; Volume 3: Sorting and Searching,
Addison-Wesley.

KNUTH, Donald E. (1975), "Estimating the efficiency of backtrack programs", Mathematics of
Computation, vol. 29, pp. 121-136.

KNUTH, Donald E. (1976), "Big omicron and big omega and big theta", ACM Sigact News,
vol. 8, no. 2, pp. 18-24.

KNUTH, Donald E. (1977), "Algorithms", Scientific American, vol. 236, no. 4, pp. 63-80.

KOBLITZ, Neal (1987), A Course in Number Theory and Cryptography, Springer-Verlag.

KOZEN, Dexter C. (1992), The Design and Analysis of Algorithms, Springer-Verlag.

References 509



KRAITCHIK, Maurice B. (1926), Thgorie des nombres, Tome II, Gauthier-Villars.

KRANAKIS, Evangelos (1986), Primality and Cryptography, Wiley-Teubner Series in Computer
Science.

KRUSKAL, Joseph B., Jr. (1956), "On the shortest spanning subtree of a graph and the traveling
salesman problem", Proceedings of the American Mathematical Society, vol. 7, no. 1, pp. 48-
50.

KUCERA, Ludek. (1982), "Parallel computation and conflicts in memory access", Information
Processing Letters, vol. 14, no. 2, pp. 93-96.

LAKSHMIVARAHAN, S. and Sudarshan K. DHALL (1990), Analysis and Design of Parallel Algo-
rithms: Arithmetic and Matrix Problems, McGraw-Hill.

LAPORTE, Gilbert (1992), "The traveling salesman problem: An overview of exact and ap-
proximate algorithms", European Journal of Operational Research, vol. 59, pp. 231-247.

LAROUSSE (1968), Grand Larousse Encyclopedique, Librairie Larousse, article on "Paque".

LAURIPRE, Jean-Louis (1979), Elements de programmation dynamique, Bordas.

LAWLER, Eugene L. (1976), Combinatorial Optimization: Networks and Matroids, Holt, Rinehart
and Winston.

LAWLER, Eugene L. (1979), "Fast approximation algorithms for knapsack problems", Math-
ematics of Operations Research, vol. 4, pp. 339-356.

LAWLER, Eugene L. and D. W. WOOD (1966), "Branch-and-bound methods: A survey", Op-
erations Research, vol. 14, no. 4, pp. 699-719.

LECARME, Olivier and Jean-Louis NEBUT (1985), Pascal pour programmeurs, McGraw-Hill.

LECLERC, Georges L., Comte de BUFFON (1977), Essai d'arithmetique morale.

L'tCUYER, Pierre (1988), "Efficient and portable combined random number generators",
Communications of the ACM, vol. 31, no. 6, pp. 742-749 and 774.

L'UCUYER, Pierre (1990), "Random numbers for simulation", Communications of the ACM,
vol. 33, no. 10, pp. 85-97.

LEIGHTON, F. Thomson (1992), Introduction to Parallel Algorithms and Architectures: Arrays
Trees o Hypercubes, Morgan Kaufmann.

LENSTRA, Arjen K., Hendrik W. LENSTRA Jr., Mark S. MANASSE and John M. POLLARD (1993),
"The number field sieve", in The Development of the Number Field Sieve, A. K. Lenstra and
H. W. Lenstra Jr. (eds), Lecture Notes in Mathematics, vol.1554, Springer-Verlag, pp. 11-42.

LENSTRA, Arjen K. and Mark S. MANASSE (1990), "Factoring by electronic mail", in Advances
in Cryptology -Eurocrypt '89 Proceedings, Lecture Notes in Computer Science, vol. 434,
Springer-Verlag, pp. 355-371.

LENSTRA, Arjen K. and Mark S. MANASSE (1991), "Factoring with two large primes", in
Advances in Cryptology - Eurocrypt'90 Proceedings, Lecture Notes in Computer Science,
vol. 473, Springer-Verlag, pp. 72-82.

LENSTRA, Hendrik W., Jr. (1982), "Primality testing", in Lenstra and Tijdeman (1982),
pp. 55-97.

LENSTRA, Hendrik W., Jr. (1987), "Factoring integers with elliptic curves", Annals of Mathe-
matics, vol. 126, no. 3, pp. 649-673.

LENSTRA, Hendrik W., Jr. and R. TIJDEMAN (eds) (1982), Computational Methods in Number
Theory, Part 1, Mathematical Centre Tracts 154, Mathematisch Centrum, Amsterdam.

LEVIN, Leonid (1973), "Universal search problems" (in Russian), Problemy Peredaci Informacii,
vol. 9, pp. 115-116.

510 References



References 511

LEWIS, Harry R. and Larry DENENBERG (1991), Data Structures & Their Algorithms, Harper
Collins Publishers.

LEWIS, Harry R. and Christos H. PAPADIMITRIOU (1978), "The efficiency of algorithms", Sci-
entific American, vol. 238, no. 1, pp. 96-109.

LLOYD, Seth (1993), "A potentially realizable quantum computer", Science, vol. 261, 17
September, pp. 1569-1571.

LUEKER, George S. (1980), -Some techniques for solving recurrences", Computing Surveys,
vol. 12, no. 4, pp. 419-436.

MANBER, Udi (1989), Introdution to Algorithms: A Creative Approach, Addison-Wesley

MARSH, D. (1970), "Memo functions, the graph traverser, and a simple control situation", in
Machine Intelligence 5, B. Meltzer and D. Michie (eds), American Elsevier and Edinburgh
University Press, pp. 281-300.

MAURER, Ueli M. (1995), "Fast generation of prime numbers and secure public-key crypto-
graphic parameters", J ournal of Cryptology, vol. 8, no. 3.

MCCARTY, Carl P. (1978), "Queen squares", The American Mathematical Monthly, vol. 85,no. 7,
pp. 578-580.

MCDIARMID, Colin J. H. and Bruce A. REED (1989), "Building heaps fast", Journal of Algo-
rithms, vol. 10, no. 3, pp. 352-365.

MELHORN, Kurt (1984a), Data Structures and Algorithms 1: Sorting and Searching, Springer-
Verlag.

MELHORN, Kurt (1984b), Data Structures and Algorithms 2: Graph Algorithms and NP-Com-
pleteness, Springer-Verlag.

MELHORN, Kurt (1984c), Data Structures and Algorithms 3: Multi-Dimensional Searching and
Computational Geometry, Springer-Verlag.

MERKLE, Ralph C. (1978), "Secure communications over insecure channels", Communications
of the ACM, vol. 21, pp. 294-299.

METROPOLIS, I. Nicholas and Stanislaw ULAM (1949), "The Monte Carlo method", Journal of
the American Statistical Association, vol. 44, no. 247, pp. 335-341.

MICHIE, Donald (1968), "'Memo' functions and machine learning", Nature, vol. 218,
pp. 19-22.

MILLER, Gary L. (1976), "Riemann's hypothesis and tests for primality", Journal of Computer
and System Sciences, vol. 13, no. 3, pp. 300-317.

MONIER, Louis (1980), "Evaluation and comparison of two efficient probabilistic primality
testing algorithms", Theoretical Computer Science, vol. 12, pp. 97-108.

MORET, Bernard M. E. and Henry D. SHAPIRO (1991), Algorithms from P to NP; Volume I:
Design & Efficiency, Benjamin/Cummings.

MORRIS, Robert (1978), "Counting large numbers of events in small registers", Communica-
tions of the ACM, vol. 21, no. 10, pp. 840-842.

NAIK, Ashish V., Mitsunori OGIWARA and Alan L. SELMAN (1993), "P-selective sets, and reduc-
ing search to decision vs. self-reducibility", Proceedings of the 8th Annual IEEE Conference
on Structure in Complexity Theory, pp. 52-64.

NELSON, C. Greg and Derek C. OPPEN (1980), "Fast decision procedures based on congruence
closure", Journal of the ACM, vol. 27, pp. 356-364.

NEMHAUSER, George (1966), Introduction to Dynamic Programming, Wiley.

NIEVERGELT, Jurg and Klaus HINRICHS (1993), Algorithms and Data Structures with Applica-
tions to Graphics and Geometry, Prentice-Hall.



NILSSON, Nils J. (1971) Problem Solving Methods in Artificial Intelligence, McGraw-Hill.
PAGEAU, Marie (1993), Applications du probabilisme a l'algorithmique, masters dissertation,

D6partement d'informatique et de R.O., Universit6 de Montreal.

PAN, Viktor Y. (1980), "New fast algorithms for matrix operations", SIAM Journal on Com-
puting, vol. 9, pp. 321-342.

PAPADIMITRIOU, Christos H. (1994), Computational Complexity, Addison-Wesley.

PAPADIMITRIOU, Christos H. and Kenneth STEIGLITZ (1982), Combinatorial Optimization: Al-
gorithms and Complexity, Prentice-Hall.

PERALTA, Ren6 C. (1986), "A simple and fast probabilistic algorithm for computing square
roots modulo a prime number", IEEE Transactions on Information Theory, vol. IT-32, no. 6,
pp. 846-847.

PIPPENGER, Nicholas (1978), "Complexity theory", Scientific American, vol. 238, no. 6,
pp. 114-124.

PIPPENGER, Nicholas (1979), "On simultaneous resource bounds", Proceedings of the 20th
Annual Symposium on Foundations of Computer Science, pp. 307-311.

POLLARD, John M. (1971), "The fast Fourier transform in a finite field", Mathematics of Com-
putation, vol. 25, no. 114, pp. 365-374.

POLLARD, John M. (1975), "A Monte Carlo method of factorization", BIT, vol. 15, pp. 331-334.

POLYA, Gyorgy (1945), How to Solve It: A New Aspect of Mathematical Method, Princeton
University Press.

POLYA, Gybrgy (1954), Induction and Analogy in Mathematics, Princeton University Press.

POMERANCE, Carl (1982), "Analysis and comparison of some integer factoring algorithms",
in Lenstra and Tijdeman (1982), pp. 89-139.

POMERANCE, Carl (1984), "The quadratic sieve algorithm", in Advances in Cryptology: Pro-
ceedings of Eurocrypt 84, Lecture Notes in Computer Science, vol. 209, Springer-Verlag,
pp. 169-182.

POMERANCE, Carl (1987), "Very short primality proofs", Mathematics of Computation, vol. 48,
no. 177, pp. 315-322.

PRATT, Vaughan R. (1975), "Every prime has a succinct certificate", SIAM Journal on Com-
puting, vol. 4, no. 3, pp. 214-220.

PRIM, Robert C. (1957), "Shortest connection networks and some generalizations", Bell System
Technical Journal, vol. 36, pp. 1389-1401.

PURDOM, Paul W., Jr. and Cynthia A. BROWN (1985), The Analysis of Algorithms, Holt, Rinehart
and Winston.

QUINN, Michael J. and Narsingh DEO (1984), "Parallel Graph Algorithms", Computing Sur-
veys, vol. 16, no. 3, pp. 319-348.

RABIN, Michael 0. (1976), "Probabilistic Algorithms", in Algorithms and Complexity: Recent
Results and New Directions, J. F. Traub (ed.), Academic Press, pp. 21-39.

RABIN, Michael 0. (1980a), "Probabilistic algorithms in finite fields", SIAM Journal on Com-
puting, vol. 9, no. 2, pp. 273-280.

RABIN, Michael 0. (1980b), "Probabilistic algorithm for primality testing", Journal of Number
Theory. vol. 12, pp. 128-138.

RAWLINS, Gregory J. E. (1992), Compared to What? An Introduction to the Analysis ofAlgorithms,
Computer Science Press.

REIF, John H. (1993), Synthesis of Parallel Algorithms, Morgan Kaufman.

512 References



References

REINGOLD, Edward M., Jurg NIEVERGELT and Narsingh DEO (1977), Combinatorial Algorithms:
Theory and Practice, Prentice-Hall.

RICE, John A. (1988), Mathematical Statistics and Data Analysis, Duxbury Press; 2nd edition,
1995.

RIVEST, Ronald L. and Robert W. FLOYD (1973), "Bounds on the expected time for median
computations", in Combinatorial Algorithms, R. Rustin (ed.), Algorithmics Press, pp. 69-76.

RiVEST, Ronald L., Adi SHAMIR and Leonard M. ADLEMAN (1978), "A method for obtaining
digital signatures and public-key cryptosystems", Communications of the ACM, vol. 21,
no. 2, pp. 120-126.

ROBSON, John M. (1973), "An improved algorithm for traversing binary trees without aux-
iliary stack", Information Processing Letters, vol. 2, no. 1, pp. 12-14.

ROSEN, Kenneth H. (1991), Discrete Mathematics and Its Applications, 2nd edition, McGraw-
Hill.

ROSENTHAL, Arnie and Anita GOLDNER (1977), "Smallest augmentation to biconnect a graph",
SIAM Journal on Computing, vol. 6, no. 1, pp. 55-66.

RUNGE, Carl D. T. and Hermann KONIG (1924), "Vorlesungen uber numerisches Rechnen",
Die Grundlehren der Mathematischen Wissenschaften, vol. 11, Springer-Verlag, Berlin,
pp. 211-237.

SAHNI, Sartaj (1975), "Approximate algorithms for the 0/1 knapsack problem", Journal of the
ACM, vol. 22, no. 1, pp. 115-124.

SAHNI, Sartaj and Ellis HOROWITZ (1978), "Combinatorial problems: Reducibility and ap-
proximation", Operations Research, vol. 26, no. 4, pp. 718-759.

SAVITCH, Walter J. (1970), "Relationship between nondeterministic and deterministic tape
classes", Journal of Computer and System Sciences, vol. 4, pp. 177-192.

SCHAFFER, Russel and Robert SEDGEWICK (1993), "The analysis of heapsort", Journal of Algo-
rithms, vol. 15, no. 1, pp. 76-100.

SCHARLAU, Winfried and Hans OPOLKA (1985), From Fermat to Minkowski: Lectures on the
Theory of Numbers and Its Historical Development, Springer-Verlag.

SCHNEIER, Bruce (1994), Applied Cryptography: Protocols, Algorithms, and Source Code in C,
Wiley.

SCHONHAGE, Arnold and Volker STRASSEN (1971), "Schnelle Multiplikation grosser Zahlen",
Computing, vol. 7, pp. 281-292.

SCHWARTZ, Eugene S. (1964), "An optimal encoding with minimum longest code and total
number of digits", Information and Control, vol. 7, no. 1, pp. 37-44.

SCHWARTZ, J. (1978), "Probabilistic algorithms for verification of polynomial identities",
Technical Report no. 604, Computer Science Department, Courant Institute, New York
University.

SEDGEWICK, Robert (1983), Algorithms, Addison-Wesley; 2nd edition, 1988.

SHALLIT, Jeffrey (1992), "Randomized algorithms in 'primitive' cultures, or what is the oracle
complexity of a dead chicken", ACM Sigact News, vol. 23, no. 4, pp. 77-80; see also ibid.
(1993), vol. 24, no. 1, pp. 1-2.

SHAMIR, Adi (1979), "Factoring numbers in 0 (log n) arithmetic steps", Information Processing
Letters, vol. 8, no. 1, pp. 28-31.

SHOR, Peter W. (1994), "Algorithms for quantum computation: Discrete logarithms and fac-
toring", Proceedings of the 35th Annual Symposium on Foundations of Computer Science,
pp. 124-134.

513



SIMMONS, Gustavus J. (ed.) (1992), Contemporary Cryptology: The Science of Information In-
tegrity, IEEE Press.

SIMON, Daniel R. (1994), "On the power of quantum computation", Proceedings of the 35th
Annual Symposium on Foundations of Computer Science, pp. 116-123.

SLEATOR, Daniel D. and Robert E. TARJAN (1985), "Self-adjusting binary search trees", Journal
of the ACM, vol. 32, pp. 652-686.

SLOANE, Neil J. A. (1973), A Handbook of Integer Sequences, Academic Press.

SOBOL', Il'ia M. (1974), The Monte Carlo Method, 2nd edition, University of Chicago Press.

SOLOMON, Herbert (1978), Geometric Probability, SIAM.

SOLOVAY, Robert and Volker STRASSEN (1977), "A fast Monte-Carlo test for primality", SIAM
Journal on Computing, vol. 6, no. 1, pp. 84-85; erratum (1978), ibid., vol. 7, no. 1, p. 118.

STANDISH, Thomas A. (1980), Data Structure Techniques, Addison-Wesley.

STINSON, Douglas R. (1985), An Introduction to the Design and Analysis of Algorithms, The
Charles Babbage Research Centre, St. Pierre, Manitoba; 2nd edition, 1987.

STINSON, Douglas R. (1995), Cryptography: Theory and Practice, CRC Press, Inc.

STOCKMEYER, Larry J. (1973), "Planar 3-colorability is polynomial complete", ACM Sigact
News, vol. 5, no. 3, pp. 19-25.

STOCKMEYER, Larry J. and Ashok K. CHANDRA (1979), "Intrinsically difficult problems",
Scientific American, vol. 240, no. 5, pp. 140-159.

STONE, Harold S. (1972), Introduction to Computer Organization and Data Structures, McGraw-
Hill.

STRASSEN, Volker (1969), "Gaussian elimination is not optimal", Numerische Mathematik,
vol. 13, pp. 354-356.

TARJAN, Robert E. (1972), "Depth-first search and linear graph algorithms", SIAM Journal
on Computing, vol. 1, no. 2, pp. 146-160.

TARJAN, Robert E. (1975), "On the efficiency of a good but not linear set merging algorithm",
Journal of the ACM, vol. 28, no. 3, pp. 577-593.

TARIAN, Robert E. (1981), "A unified approach to path problems", Journal of the ACM, vol. 28,
no. 3, pp. 577-593.

TARJAN, Robert E. (1983), Data Structures and Network Algorithms, SIAM.

TARJAN, Robert E. (1985), "Amortized computational complexity", SIAM Journal on Algebraic
and Discrete Methods, vol. 6, no. 2, pp. 306-318.

TUCKER, Lewis W. and George G. ROBERTSON (1988), "Architecture and applications of the
connection machine", Computer, vol. 21, no. 8, pp. 26-38.

TURING, Alan M. (1936), "On computable numbers with an application to the Entschei-
dungsproblem", Proceedings of the London Mathematical Society, vol. 2, no. 42, pp. 230-265.

TURK, J. W. M. (1982), "Fast arithmetic operations on numbers and polynomials", in Lenstra
and Tijdeman (1982), pp. 43-54.

URBANEK, Friedrich J. (1980), "An 0 (log n) algorithm for computing the nth element of the
solution of a difference equation", Information Processing Letters, vol. 11, no. 2, pp. 66-67.

VAN LEEUWEN, Jan (ed.) (1990), Handbook of Theoretical Computer Science; VolumeA: Algorithms
and Complexity, Elsevier and MIT Press.

VAZIRANI, Umesh V. (1986), Randomness, Adversaries, and Com mutation, doctoral dissertation,
Computer Science, University of California, Berkeley, CA.

VAZIRANI, Umesh V. (1987), "Efficiency considerations in using semi-random sources", Pro-
ceedings of the 19th Annual ACM Symposium on Theory of Computing, pp. 160-168.

514 References



References

VERMA, Rakesh M. (1994), "A general method and a master theorem for divide-and-conquer
recurrences with applications", Journal of Algorithms, vol. 16, pp. 67-79.

VICKERY, C. W. (1956), "Experimental determination of eigenvalues and dynamic influence
coefficients for complex structures such as airplanes", in Symposium on Monte Carlo Meth-
ods, H. A. Meyer (ed.), Wiley, pp. 145-146.

VON NEUMANN, John (1951), "Various techniques used in connection with random digits",
Journal of Research of the National Bureau of Standards, Applied Mathematics Series, vol. 3,
pp. 36-38.

VUILLEMIN, Jean (1978), "A data structure for manipulating priority queues", Communica-
tions of the ACM, vol. 21, no. 4, pp. 309-315.

WAGNER, Robert A. and Michael J. FISCHER (1974), " The string-to-string correction problem",
Journal of the ACM, vol. 21, no. 1, pp. 168-173.

WARSHALL, Stephen (1962), "A theorem on Boolean matrices", Journal of the ACM, vol. 9,
no. 1, pp. 11-12.

WARUSFEL, Andre (1961), Les nombres et leurs myst~res, Editions du Seuil.

WEGMAN, Mark N. and J. Larry CARTER (1981), "New hash functions and their use in au-
thentication and set equality", Journal of Computer and System Sciences, vol. 22, no. 3,
pp. 265-279.

WILLIAMS, Hugh (1978), "Primality testing on a computer", Ars Combinatoria, vol. 5,
pp. 127-185.

WILLIAMS, John W. J. (1964), "Algorithm 232: Heapsort", Communications of the ACM, vol. 7,
no. 6, pp. 347-348.

WINOGRAD, Shmuel (1980), Arithmetic Complexity of Computations, SIAM.

WINTER, Pavel (1987), "Steiner problem in networks: A survey", Networks, vol. 17, no. 2,
pp. 129-167.

WOOD, Derick (1993), Data Structures, Algorithms, and Performance, Addison-Wesley.

WRIGHT, J. W. (1975), "The change-making problem", Journal of the ACM, vol. 22, no. 1,
pp. 125-128.

YAO, Andrew C.-C. (1975), "An O( EI log log (VI) algorithm for finding minimum spanning
trees", Information Processing Letters, vol. 4, no. 1, pp. 21-23.

YAO, Andrew C.-C. (1982), "Theory and applications of trapdoor functions", Proceedings of
the 23rd Annual Symposium on Foundations of Computer Science, pp. 80-91.

YAO, Frances F. (1980), "Efficient dynamic programming using quadrangle inequalities",
Proceedings of the 12th Annual ACM Symposium on Theory of Computing, pp. 429-435.

YOUNGER, Daniel H. (1967), "Recognition of context-free languages in time n3 ", Information
and Control, vol. 10, no. 2, pp. 189-208.

ZIPPEL, Richard E. (1979), ProbabilisticAlgorithmsfor Sparse Polynomials, doctoral dissertation,
Massachusetts Institute of Technology, Cambridge, MA.

515





13
2-3 tree, 159
2-edge-connected, 296

A

Aanderaa, S.O., 472
Abramson, B., 327
Absolute approximation

problem, 486
Accepting computation, 459
Accounting trick, 116, 174
Ackermann, W., 186
Ackermann's function, 180,

185-186, 283
Acyclic graph, 300
Adder, 257
Adel'son-Vel'skii, G.M., 186
Adjacency matrix, 153
Adleman, L.M., 248, 258, 374,

472
Advantage, 350
Adversary arguments, 423-427
Ahmes, 55
Aho, A.V., 55, 186, 327, 472, 473
Akl, S.G., 55, 412
al-Khowarizmi, 1
Alford, W.R., 374
Algorithm, 1-6

approximate, 2, 474
biased, 350
efficiency, 59
efficient, 441
enciphering, 248
greedy, characteristics of,

188
heuristic, 2, 474
Las Vegas, 353-365
Monte Carlo, 341-352
nondeterministic, 458

parallel, optimal, 384
polynomial-time, 442
probabilistic, 2

characteristics, 329
numerical, 333-340

smooth, 431
Algorithmics, defined, 3
Alice, 248
Allison, L., 327
Alpha-beta pruning, 319
Amortized analysis, 112-116
Amplification, 350-352
Analysis, amortized, 112-116

of control structures, 98-104
of divide-and-conquer

algorithms, 224
on the average, 63, 111

quicksort, 232
worst case, 62

Ancestor, 154, 293
Ancestry, 293
Approximate algorithm, 474
Approximation problem,

absolute, 485
relative, 485

Approximation scheme, 492
Arlazarov, V.L., 472
Arora, S., 500
Array, 147
Articulation points, 296-298
Assignment problem, 312-315
Associative table, 159
Asymptotic notation, 61, 79-92

conditional, 88
exact order, 87
Omega, 85

alternative, 94
operations on, 91
order, 79
Theta, 87

with several parameters,
91

At least quadratic, 431
Average, 46
Average case analysis, 63, 111
Average height of a tree, 416
Average time, 331
AVL tree, 159
Axiom of the least integer,

19, 52

B

Baase, S., 55
Babai, L., 373, 472
Bach, E., 375
Bachmann, P.G.H., 97
Backtracking, 305-311

general template, 311
Baeza-Yates, R., 55, 186
Ball, W.W.R., 327
Barometer, 104
Basic subalgorithm, 223
Batcher, K.E., 402, 412
Baumert, L., 327
Beauchemin, P., 374
Bellare, M., 472, 500
Bellman, R.E., 283
Bellmore, M., 327
Benioff, P., 472
Bennett, C.H., 258, 473
Bentley, J.L., 78, 146, 258, 375
Berge, C., 186, 326
Berlekamp, E.R., 327
Berliner, H.J., 327
Bernstein, E., 472
Berthiaume, A., 472
Bezzel, 327
Biased algorithm, 350
Bicoherent, 296

Index

517



Index

Biconnected, 296
Bin packing problem, 482-484,

493
Binary counter, 113, 115-116
Binary search, 102, 226-228
Binary tree, 157, 416

computing with, 379
Binomial coefficient, 40, 140, 260
Binomial heap, 170-175

lazy, 174
Binomial tree, 170
Bipartite graph, 476
Bishop, E., 55
Bitton, D., 412
Blum, L., 373
Blum, M., 258, 373, 375, 472
Bob, 248
Book of Common Prayer, 2, 78
Boruvka, 0., 217
Botodin, A.B., 55, 258, 473
Bottom-up, 259, 274
Branch-and-botind, 3i2-316

general considerations, 316
Brassard, G., 55, 78, 97, 257, 258,

327, 373-375, 472
Bratley, P., 55, 78, 258, 327, 374,

375, 472
Breadth-first search, 302-305
Brent, R.P., 385, 412
Brent's theorem, 385
Bressoud, D.M., 374, 375
Brigham, E.C., 55
Brown, C.A., 146, 284
Brown, M.R., 186
Buffon's needle, 333-336
Bunch, J., 77, 472
Buneman, P., 146

C

Calinger, R., 56
Carasso, C., 374
Cardinality, 8
Carlsson, S., 186, 471
Carter, J.L., 375
Cartesian product, 8
Catalan number, 272, 280
Ceiling, 13
Celis, P., 375
Central Limit Theorem, 48, 335,

352
Certificate, 443
Chained matrix multiplication,

271-274
Chandra, A.K., 412, 473

Chang, L., 217, 283
Change of variable, 130
Characteristic equation, 118
Characteristic polynomial,

120
Chen, I-N., 412
Cheriton, D., 218
Child, 155
Chin, EY, 412
Choosing a threshold:

empirically, 225
the hybrid approach, 226

Christofides, N., 55, 326, 500
Chromatic number, 455, 488
Chvatal, V., 412
Ciphertext, 248
Clause, 452
Clique, 469
Cluster, 489
co-X'P, defined, 462
Cobham, A., 472
Cohen, H., 374
Cole, R., 402, 412
Cole's parallel merge sort,

402
Collatz's problem, 327
Collision, 160
Colouring, 455
Combination, 39
Common Prayer, Book of,

2, 78
Comparator, 397
Complexity, 87

of sorting, 418-421
Complexity classes, 460-464

parallel, 463
probabilistic, 462

Concurrent-read, exclusive-write
model, 378

Conditional probability, 43
Confidence interval, 330, 336
Conjunctive normal form 452
Connected components, 387-392
Connectivity of a graph, testing,

425
Constructive induction, 27-30,

234, 241, 276, 292
Conway, J.H., 327
Cook, S.A., 451, 472
Cooley, J.M., 73, 78
Coppersmith, D., 243, 258
Cormen, T.H., 55
Counting, probabilistic, 338-340
Couvreur, C., 374
CRCW p-ram, 407

,Crepeau, C., 374
CREW model, 378
Cryptography, an introduction,

247-250
public-key, 248
RSA system, 248

,Curtiss, J.H., 374
,Cut, 395

D

Damgard, I.B., 374
Danielson, G.C., 74, 78
,de Bruijn, N.G., 97
,de l'H6pital's rule, 33
,de Moivre, 28, 66, 72, 121
Deap, 175
Decimal war, 243
Decision problem, 442
Decision-reducible, 448
Decision tree, 414

valid, 418
Denenberg, L., 55, 186
Denning, D.E.R., 258
Deo, N., 55, 326, 412
Depth, 159
Depth-first search, 294-302
Depth of a network, 398
Dequeue, 148
Descendant, 155
Determinants, 110
Deterministic game, 289
Deutsch, D., 472
Devroye, L., 373
Dewdney, A.K., 146
DeWitt, D.J., 412
Deyong, L., 327
Dhall, S.K., 55, 412
Diffie, W., 248, 258
Dijkstra, E.W., 217
Dijkstra's algorithm, 198-202,

217, 270
.Dinic, E.A., 472
Disjoint set structure, 175-180,

195, 212, 382, 387
Distributed computing, 408
Divide-and-conquer, 400, 402
Dixon, J.D., 375
Dot notation, 150
Double-ended heap, 175
Dreyfus, S.E., 283
Dromey, R.G., 55
Duality rule, 86
Duncan, R., 412

518



Index

E

Easter, date of, 48, 74, 78
Edge, 153
Edmonds, J., 217, 472
Efficiency of parallel algorithms,

383-386
Efficient algorithm, 441
Eight queens problem, 308-311,

355-358
Einstein, 17
Ekert, A.K., 258
Elementary operation, 64
Elkies, N.D., 16, 55
Elliptic curve, 365
Enciphering algorithm, 248
Enqueue, 148
Erdos, P., 374
EREW p-ram, 407
Essentially complete, 162
Euclid, 14, 18
Euclid's algorithm, 2, 71, 77, 108,

255, 365
Euler, 16, 55, 56, 344
Euler path, 324
Euler's constant, 38
Evaluation function, 317
Even, S., 55, 326
Event, 42
Eventually nondecreasing 89
Eves, H., 55, 56
Exact order, 87
Expectation, 46
Expected time, 331
Exponentiation, 243-247
Expressions, parallel evaluation,

392-396

F

Factorizing large integers,
362-366, 409

False witness, 345
strong, 346

Faradzev, I.A., 472
Fast Fourier transform, 73
Fermat, 16, 344
Fermat's little theorem, 344
Feynman, R., 472
Fibonacci, 28, 56
Fibonacci heap, 175, 216
Fibonacci sequence, 28, 72, 120
Fibonacci tree, 175, 184
Field, 150

Fischer, M.J., 284, 472
Flajolet, Ph., 374
Floor, 12
Floyd, R.W., 258, 284, 375
Floyd's algorithm, 269, 439
For loops, 99
Fox, B.L., 374
Fredman, M.L., 186, 217, 285,

471, 472
Freivalds, R., 374
Frye, 16
Full adder, 257
Function, 9
Functions see Programs
Fundamental theorem of

arithmetic, 24
Furman, M.E., 472

G

Galil, Z., 186
Game, deterministic, 289

symmetric, 289
Games and graphs, 285-291
Gardner, M., 146, 258, 473
Garey, M.R., 218, 472, 500
Gauss, 74, 78
Gauss-Jordan elimination,

68, 364
Generalized mathematical

induction, 24
Gibbons, A., 412
Gilbert, E.N., 284
Gill, J., 472
Godbole, S., 284
Goemans, MX., 500
Golden ratio, 28, 66
Goldner, A., 327
Goldreich, O., 473
Goldwasser, S., 374, 472
Golomb, S., 327
Gondran, M., 55, 326
Gonnet, G.H., 55, 186, 471
Good, I.J., 327
Goutier, C., 374
Graham, R.L., 218
Granville, A., 374
Graph, 152

acyclic, 300
bipartite, 477
connected, 153
planar, 322, 496
strongly connected, 153, 323

Graph colouring problem,
441, 455, 475-477

Graphs and games, 285-291
Greatest common divisor 71
Greene, D.H., 146
Gries, D., 77, 258
Grundy's game, 327
Guibas, L.J., 186
Guy, R.K., 327

H

Haken, D., 146
Half-move, 286
Hall, A., 374
Halley, 17
Hamiltonian cycle, 479, 487
Hamiltonian cycle problem,

441, 446, 459
Hamiltonian path, 324, 479
Hammersley, J.M., 374
Handscomb, D.C., 374
Hanoi, Towers of, 109, 126
Hardy, G.H., 374
Harel, D., 55
Hash coding see Hashing
Hash function, 160
Hashing, 160

universal, 360
Heap, 162-175

binomial, 170-175
lazy, 174

double-ended, 174
Fibonacci, 175, 216
inverted, 170
k-ary, 183, 216

Heap property, 163
heapsort, 68
Heath, TEL., 78
Height, 159
Held, M., 284
Hell, P., 217
Hellman, M.E., 248, 258
Heuristic, 2, 474
Hidden constant, 61
Hillier, ES., 327
Hinrichs, K., 55
Hirschberg, D.S., 412
Hoare, C.A.R., 68, 231
Hopcroft, J.E., 55, 78, 186, 243,

258, 284, 327, 472, 473
Horowitz, E., 55, 186, 218, 500
Hsiao, D.K., 412
Hu, T.C., 283, 327
Huang, M.-D.A., 374
Huffman codes, 218

519



520

Ibarra, O.H., 500
Implicit graph, 306
Induction, constructive, 27-30,

234, 241, 276, 292
mathematical, 16-30

generalized, 24
Information-theoretic arguments,

414-423
Inorder, 291
Insertion sorting, 62, 107
Insertion sorting network 398
Instance, 58

size of, 59
Integration, numerical, 336-338
Internal node, 155
Interval, 8
Invariance, principle of, 60
Inverted heap, 170
Irving, R.W., 327
Isthmus-free, 296
Italiano, G.E, 186

J

Ja'Ja', J., 55
Janko, W., 375
Jarnik, V., 217
Jensen, K., 55
Johnson, D.B., 186, 217
Johnson, D.S., 218, 472, 500
Jozsa, R., 472

K
k-ary heap, 183, 216
k-smooth, 363
Kahn, D., 258
Kaliski, B.S., 374
Karatsuba, A., 55, 78, 257
Karp, R., 186, 284, 472
Kasimi, T., 284
Kasparov, G., 327
Kerr, L.R., 243, 258
Key, 248
Kilian, J., 374
Kim, C.E., 500
Kim, S.H., 374
Kingston, J.H., 55, 186
Kirkerud, B., 78
Kleene, S.C., 284
Kline, M., 55
Knapsack problem, 202-204,

266-268, 306-308, 315,
441, 480-482, 493-496

Knuth, D.E., 55, 78, 97, 146, 186,
258, 284, 327, 373, 375,
412

Koblitz, N., 258, 374, 375
Konig, H., 74, 78
Korsh, J., 217, 283
Kozen, D.C., 55, 186
Kraitchik, M., 375
Kranakis, E., 258, 374
Kronrod, M.A., 258, 472
Kruskal, J.B. Jr, 217
Kruskal's algorithm, 193-195, 217
Kucera, L., 412

L

Utcuyer, P., 374
Lakshmivarahan, S., 55, 412
Lam, J., 412
Lanczos, C., 74, 78
Landis, E.M., 186
Landrock, P., 374
Laporte, G., 500
Larson, P.-A., 375
Las Vegas algorithm, 353-366
Lauriere, J.-L., 283
Lawler, E.L., 55, 326, 327, 500
Lazy binomial heap, 174
Leaf, 155
Lecarme, O., 55
Leclerc, G.-L., 333, 374
Leighton, FT., 55, 412
Leiserson, C.E., 55
Lenstra, A.K., 374, 375, 409, 412
Lenstra, H.W. Jr, 374, 375
Level, 159
Levin, G., 78, 258
Levin, L., 451, 472
Levy, L., 146
Lewis, H.R., 55, 186
Lewis, P.A., 78
Ig, defined, 12
Lieberman, G.J., 327
Limit rule, 84, 87
Limits, 31
Linear reduction, 427-440
Linearly equivalent, 430
Linearly reducible, 430
List 151, 380
Literal, 452
Lloyd, S., 472
Load factor, 161
Logarithm, 12

iterated, 185
LZOSPACE, defined, 462

Lucas, t, 146
Lueker, G.S., 146
Lund, C., 500

M

Making change, 187, 263-265
Manasse, M.S., 375, 409, 412
Manber, U., 55
Manders, K., 472
Marienbad game, 285
Marsh, D., 284
Martin, G.N., 374
Matrix multiplication, 242

chained, 271-274
verifying, 341-343

Maurer, U., 374
Maximum clique, 488
Maximum cut problem, 489
Maximum of an array, 424
Maximum rule, 81, 87
McCarty, C.P., 327
McDiarmid, C.J.H., 186
McGaughey, M., 327
Mean, 46
Median, approximation, 239

complexity of finding, 426
defined, 237
finding, 237-242

Melhorn, K., 55, 326
Memory function, 276, 288
Mendeleev, 17
Menon, J., 412
mergesort, 68, 258
Merging networks, 400-401
Merging with help, 404
Merkle, R.C., 248, 258
Metric property, 478
Metropolis, I.N., 373
Meyer, A.R., 472
Micali, S., 374, 472
Michie, D., 284
Miller, G.L., 347, 374, 375
MIMD model, 408
Minimax principle, 317-319
Minimum cluster problem,

489
Minimum spanning tree,

190-198, 479
Minoux, M., 55, 326
Miskre, 289
Modular arithmetic, 247
Monet, S., 77, 257
Monier, L., 374
Monte Carlo algorithm, 341-352

Index



Index

Montreal, 265
Moore, E.F., 284
Moran, S., 472
Moret, B.M.E., 55
Morris, R., 374
Motwani,R., 500
Move, 286
Multiple-instruction multiple

data-stream model, 408
Multiple integral, 338
Multiplication, 3-6

a la russe, 4, 26, 55
Arabic, 49, 55
classic, 3
divide-and-conquer, 219
of large integers, 70, 219-223
of matrices, 242

Munro, JI., 55, 186, 258, 375,
471, 473

N

Naik, A.V., 472
Natural numbers, 8
Nebut, J.-L., 55
Nelson, G., 186
Nemhauser, G., 283, 327
Network, depth, 398

size, 398
Newton, 40
Nievergelt, J., 55, 326
Nilsson, N., 55, 327
Nim, 285, 327
Node, 151

depth, 159
height, 159
internal, 155
level, 159

Nondeterministic algorithm,
458

X[, defined, 444

WP- completeness, 441-460
fP-complete, defined, 450

WN- complete problems,
450-456

JVP-hard approximation
problems, 484-489

PN-hard, defined, 457
Number field sieve, 365
Numerical probabilistic

algorithm, 333-340

0

Odd-even networks, 402
Ofman, Y., 55, 77, 257
Ogiwara, M., 472
Omar Khayyam, 40
Operation, elementary, 64
Opolka, H., 56
Oppen, D.C., 186
Optimal parallel algorithm,

384
Optimal speed-up, 384
Optimality, principle of, 265
Oracle, 446
Order, 61
Ordered pair, 8

P

P, defined, 443
p-correct, 341
p-ram, 376-378
Pageau, M., 375
Pan, V., 243, 258
Papadimitriou, C.H., 55, 326,

471, 472
Parallel complexity classes,

463
Parallel evaluation of expres-

sions, 392-397
Parallel random-access machine,

376-378
Parallel sorting, 402-406
Parent, 155
Partition problem, 470
Pascal's triangle, 260
Path compression, 178
Peralta, R.C., 375
Percolate, 164
Perfect shuffle, 400
Permutation, 39
Permutations, generating, 309
Pigeonhole sorting, 69
Pippenger, N., 471, 472
Pisano, Leonardo see Fibonacci
Pivot, 231
Planar graph, 322, 496
Pointer, 150
Pointer doubling, 380-383, 390
Pollard, J.M., 257, 375
P61ya, G., 18, 55
Polylogarithmic time, 384
Polynomial reduction, 445-450
Polynomial-time algorithm,

442
Pomerance, C., 374-375, 472

Pop, 148
Postorder, 291
Potential functions, 114
Pratt, V.R., 258, 472
Preconditioning, 292
Predicate, 9
Preorder, 291
Prim, R.C., 217
Prim's algorithm, 196-198, 217
Primality testing, 343-347
Prime Number Theorem, 44, 369
Principle of invariance, 60
Principle of optimality, 265
Probabilistic complexity classes,

462
Probabilistic counting, 338-340
Probability measure, 42
Problem, 58

smooth, 431
Procedures see Programs
Programs:

adhocsort3, 419
alter-heap, 165
approx-knap, 481
backpack, 308
backtrack, 311
badmergesort, 230
bfs, 302
Binanj-Search, 103
biniter, 228
binrec, 227
binsearch, 227
Black, 318
BP, 493
Btest, 346
C, 140, 260
card, 368
coinflip, 332
coins, 264
concomps, 391
count, 113, 340
DC, 140, 223
DecideX, 449
delete-max, 166
DETint, 338
dfs, 294
dfs2, 302
dfsearch, 294
Dijkstra, 199
draw, 371
DumpEuclid, 14
dynwin, 288
Euclid, 71, 108
expoDC, 245
expoiter, 247

521



Index

Programs (continued)

expomod, 248
exposeq, 244
Fermat, 344
Fibiter, 73, 100
Fibonacci, 29, 65
Fibrec, 72, 101
find-max, 166, 407
find-root, 407
find, 175
find2, 176
find3, 179
flatten, 382
Floyd, 269
fin, 275
fin-mem, 277
Freivalds, 342
Freivaldsepsilon, 343
gcd, 71
greedy-knap, 481
Ham, 446
HamD, 446
HamND, 459
Hanoi, 110
heapsort, 169
init, 340
insert, 62, 107
insert-node, 166
knapsack, 203
Kruskal, 195
make-change, 188
make-heap, 167
MAX-CUT-approx, 490
maxindex, 424
MC3, 350
MCint, 337
merge, 229
merger, 175
merge2, 176
merge, 178
mergesort, 229
MillRab, 347
mult, 429
Newprime, 14
nim, 289
P, 261
pardist, 380
paroper, 382
parpaths, 387
parsum, 379
percolate, 166
perm, 309
peval, 396
pigeonhole, 69
pivot, 231

pivotbis, 236
Prim, 196, 197
pseudomed, 239
queens, 311
queensl, 309
queens2, 309
queensLV, 356
quicksort, 232
quicksortLV, 360
randomprime, 349
recwin, 287
RepeatFreivalds, 343
RepeatLV, 354
RepeatMC, 351
RepeatMillRab, 347
russe, 7
search, 158, 303
select, .62, 106
selection, 238
selectionLV, 359
sequence, 210
sequence, 214
sequential, 226
series, 262
sift-down, 165
slow-make-heap, 166
sq, 18
square, 429
stupid, 350
Sum, 65
tick, 340
trialdiv, 362
uniform, 332
waste, 141
White, 318
Wilson, 64
XND, 460

Programs, notation, 6
parallel, notation, 378

Proof, by contradiction, 13-15
by mathematical induction,

16-30
indirect, 13
nonconstructive, 15

Proof space, 443
Proof system, 443
Property, 9
Propositional calculus, notation,

7
Pseudoprime, 346
Pseudorandom generator, 332
PSPACE, defined, 462
Public-key cryptography, 248

Purdom, P.W. Jr, 146, 284
Push, 148
Pythagoras, 15

Q

Quadratic sieve, 366
Quantifier, 10
Quantum computer, 249, 464
Quasi Monte Carlo integration,

338
Queue, 148, 181
quicksort, 69, 231-237, 258
Quinn, M.J., 412
Quisquater, J.-J., 374
Quotient, 13

R
Rabin, M.O., 347, 374, 375
Rackoff, C., 472
Random number generator,

331
Random variable, 46
Range transformations, 136
Rawlins, G.J.E., 146
Record, 150
Recurrences, asymptotic, 137

change of variable, 130
characteristic equation, 118
characteristic polynomial,

120
linear, homogeneous, 119

inhomogeneous, 123
range transformations, 136
solving, 116-139

Recursive calls, 101
Red-black tree, 159
Reduction, defined, 428

linear, 427-440
polynomial, 445-450

Reductions, among matrix
problems, 433-438

among shortest path problems,
438-440

Reed, B.A., 186
Rehashing, 161
Reif, J.H., 412
Reingold, E.M., 55, 326
Relation, 9
Relative approximation problem,

485
Repeat loops, 102
Rice, J.A., 374
Rivest, R.L., 55, 248, 258, 374,

375

522



Index

Robertson, G.G., 412
Robin Hood effect, 353
Robson, J.M., 327
Root, 154
Rosen, K.H., 55
Rosenthal, A., 327
RSA cryptographic system,

248
Rumely, R.S., 374
Runge, C., 74, 78
Rytter, W., 412

S
Sahni, S., 55, 186, 218, 500
Sample space, 41
Sarwate, D.V., 412
Satisfiability problem, 451
Satisfiable, 451
Savitch, W.J., 473
Saxe, J.B., 146
Schaffer, R, 186
Scharlau, W., 56
Scheduling, 205-214

with deadlines, 207
Schneier, B., 258
Schonhage, A., 78, 257
Schrage, L.E., 374
Schwartz, E.S., 218
Schwartz, J., 375
Search tree, 157, 282

optimal, 282-283
Sedgewick, R., 55, 186
Seed, 332
Selection, probabilistic, 358
Selection problem, 237
Selection sorting, 62, 106
Selection sorting network,

398
Selman, A.L., 472
Sentinel, 229
Sequential search, 227
Series, arithmetic, 34

geometric, 35
harmonic, 37

Set theory, notation, 8
Shallit, J., 373, 375
Shamir, A., 78, 248, 258
Shapiro, H.D., 55
Sherman, A.T., 374
Shing, M.T., 284
Shor, P.W., 258, 472
Shortest paths, 198-202, 268-270,

386, 438-440
Shub, M., 374

Sibling, 155
Sift down, 165
Sift up, 164
SIMD model, 377
Simmons, G.J., 258
Simon, D.R., 472
Simple path, 266, 270
Simplification, 223
Simulation, 333
Single-instruction, multiple

data-stream model, 377
Sink, 323
Size of a network, 398
Sleator, D.D., 186
Sloane, N.J.A., 284
Smooth algorithm, 431
Smooth function, 89
Smooth problem, 431
Smoothness rule, 90
Sobol', I.M., 374
Solomon, H., 374
Solovay, R., 374
Sorting, 228

by insertion, 62, 107
by merging, 68, 228-231
by selection, 62, 106
comparison-based, 418
complexity of, 418-421
heapsort, 68, 169
parallel, 402-406
pigeonhole, 69
probabilistic, 358
quicksort, 68, 231-237
topological, 300

Sorting networks, 397-402
Spanning tree, minimum, 191
Speed-up, optimal, 384
Splay tree, 159
Stack, 148, 152
Stanat, D.R, 375
Standard deviation, 47
Standish, T.A., 186
Steele, J.M., 375
Steiglitz, K., 55, 326
Steiner trees, 218
Stinson, D.R., 55, 258
Stirling's formula, 13
Stockmeyer, L.J., 473
Stone, H.S., 186
Strassen, V., 68, 78, 242, 257, 258,

374
Strassen's algorithm, 440
Strong false witness, 346
Strong pseudoprime, 346
Strongly connected graph 323

Strongly quadratic, 431
Student's t distribution, 336
Sudan, M., 500
Sum, conditional, 11
Switch circuit, 257
Symbol table, 160
Symmetric game, 289
Szegedy, M., 500

T

Table, associative, 159
Tally, 257
Tarjan, R.E., 55, 146, 180, 186,

217, 258, 284, 326, 327
Terminal position, 289
Threshold, 80-81

for divide-and-conquer,
224

Threshold rule, 81, 87
Tictactoe, three-dimensional,

326
Tiling problem, 20
Top-down, 259, 274
Topological sorting, 300
Tournament 256
Towers of Hanoi, 109, 126
Transitive closure, 439
Travelling salesperson problem,

409, 441, 449, 477, 487
Euclidean, 478
metric, 478-480, 486

Tree, 154-159
2-3, 159
AVL, 159
binary, 157, 416

essentially complete, 162
binomial, 170
Fibonacci, 175, 184
free, 154
height, 159

average, 416
k-ary, 157
red-black, 159
rooted, 154
search, 157
splay, 159

Tucker, L.W., 412
Tukey, J.W., 73, 78
Turing, A.M., 473
Turk, J.W.M., 258
Twenty questions, 414
Type:

adjgraph, 153
binary-node, 157

523



Index

Type (continued)

k-ary-node, 157
lisgraph, 154
tablelist, 160
treenodel, 155
treenode2, 156

U

Ulam, S., 373
Ullman, J.D., 55, 186, 284, 327,

472, 473
Unarticulated, 296
Universal2 class of functions,

361
Universal hashing, 360
Urbanek, EJ., 78, 258

V

van Leeuwen, J., 55
Variance, 47
Vazirani, U.V., 374, 472
Verdict, 415
Verifying matrix multiplication,

341-343
Verma, R.M., 146

Vickery, C.W., 374
Virtual initialization, 106, 149,

277, 289
von Neumann, J., 373, 376
von Neumann machine, 376
Vuillemin, J, 186

w

Wagner. R.A., 284
Warshall, S., 284
Warshall's algorithm, 279,

439-440
Warusfel, A., 55
Wegman,M.N., 375
Weighing coins, 421
Welch, P.D., 78
While loops, 102
Wigderson, A., 473
Willard, D.E., 471
Williams, H., 374
Williams, J.W.J., 68, 169, 186
Williamson, D.P., 500
Wilson's theorem, 64, 76
Winograd, S., 243, 258, 473
Winter, P., 218
Wirth, N., 55

Witness, false, 345
false, strong, 346

Wood, D., 186
Wood, D.W., 327
Work, 383-386
Work-efficient, 384
World Series, 261
Worst case analysis, 63
Wright, E.M., 374
Wright, J.W., 217, 283
Write-only memory, 367

y

Yao, A.C., 374
Yao, F.F., 284
Yee, C.N., 327
Yeo, A.C., 217
Younger, D.H., 284
Yung, M.M., 327

z
Zero-one principle, 399
Zippel, R.E., 375
Zuffellato, D., 78, 257

524




